Дифракция любое отклонение света от. Явление дифракции. Дифракция на щели света

Расчеты, сделанные Френелем, полностью были подтверждены экспериментом. Из-за того что длина световой волны очень мала, угол отклонения света от направления прямолинейного распространения невелик. Поэтому для отчетливого наблюдения дифракции нужно либо использовать очень маленькие препятствия, либо не располагать экран далеко от препятствий. При расстоянии между препятствием и экраном порядка метра размеры препятствия не должны превышать сотых долей миллиметра. Если же расстояние до экрана достигает сотен метров или нескольких километров, то дифракцию можно наблюдать на препятствиях размерами в несколько сантиметров и даже метров.

На рисунке 8.57, а-в схематично показаны дифракционные картины от различных препятствий: а - от тонкой проволочки; б - от круглого отверстия; в - от круглого экрана.

Вместо тени от проволочки видны светлые и темные полосы; в центре дифракционной картины от отверстия появляется темное пятно, окруженное светлыми и темными кольцами 1 ; в центре тени, образованной круглым экраном, видно светлое пятнышко, а сама тень окружена темными концентрическими кольцами.
Любопытный случай произошел на заседании Французской академии наук в 1818 г. Один из ученых, присутствовавших на заседании, обратил внимание на то, что из теории Френеля вытекают факты, явно противоречащие здравому смыслу. Так, при определенных размерах отверстия и определенных расстояниях от отверстия до источника света и экрана в центре светлого пятна должно находиться темное пятнышко. А за маленьким непрозрачным диском, наоборот, должно находиться светлое пятно в центре тени. Каково же было удивление ученых, когда поставленные эксперименты доказали, что так и есть на самом деле!

Д ифракция световых волн может легко наблюдаться, например, при освещении лезвия монохроматическим светом (см. Рис. 5). Тогда в области тени видно чередование темных и светлых полос (см. Рис. 6).

Рис. 5. Дифракция света на лезвии

Рис. 6. Дифракция света на лезвии

Также при освещении непрозрачного диска ровно в центре за ним может образоваться светлое пятно. Данный опыт был проделан в 1818 году математиком Пуассоном (см. Рис. 7). Он теоретически получил этот результат и хотел провести опыт, чтобы доказать его абсурдность.

И Пуассон был очень удивлен, когда эксперимент подтвердил теорию.

Рис. 7. Симон Дени Пуассон

Границы применимости геометрической оптики. Все физические теории отражают происходящие в природе процессы лишь приближенно. Для любой теории могут быть указаны определенные границы ее применимости. Можно ли применять в конкретном случае данную теорию или нет, зависит не только от той точности, которую обеспечивает эта теория, но и от того, какая точность требуется при решении той или иной практической задачи. Границы применимости теории можно установить лишь после того, как разработана более общая теория, охватывающая те же явления.

Все эти общие положения относятся и к геометрической оптике. Эта теория является приближенной. Она неспособна объяснить, например, явления интерференции и дифракции света. Более общей и более точной теорией является волновая оптика. Согласно ей, закон прямолинейного распространения света и другие законы геометрической оптики выполняются достаточно точно липхь в том случае, если размеры препятствий на пути распространения света много больше длины световой волны. Но совершенно точно они не выполняются никогда.

1 Изменяя диаметр отверстия, можно в центре дифракционной картины получить и светлое пятно, окруженное темными и светлыми кольцами.

Действие оптических приборов описывается законами геометрической оптики. Согласно этим законам можно различать с помощью микроскопа сколь угодно малые детали объекта; с помощью телескопа можно установить существование двух звезд при любых малых угловых расстояниях между ними. Однако в действительности это не так, и лишь волновая теория света позволяет разобраться в причинах предела разрешающей способности оптических приборов.

Разрешающая способность микроскопа и телескопа . Волновая природа света налагает предел на возможность различать детали предмета или очень мелкие предметы при их наблюдении с помощью микроскопа. Дифракция не позволяет получить отчетливые изображения мелких предметов, так как свет распространяется не строго прямолинейно, а огибает предметы. Из-за этого изображения получаются размытыми. Это происходит, когда линейные размеры предметов меньше длины световой волны.

Дифракция также налагает предел на разрешающую способность телескопа. Вследствие дифракции волн у края оправы объектива изображением звезды будет не точка, а система светлых и темных колец. Если две звезды находятся на малом угловом расстоянии друг от друга, то эти кольца налагаются друг на друга, и глаз не может различить, имеются ли две светящиеся точки или одна. Предельное угловое расстояние между светящимися точками, при котором их можно различать, определяется отношением длины волны к диаметру объектива.

Этот пример показывает, что с дифракцией приходится считаться всегда, при любых препятствиях. Ею при очень тщательных наблюдениях нельзя пренебрегать и в случае препятствий, размеры которых значительно больше, чем длина волны.

Дифракция света определяет границы применимости геометрической оптики. Огибание светом препятствий налагает предел на разрешающую способность важнейших оптических инструментов - телескопа и микроскопа.

Дифракционная решетка
На явлении дифракции основано устройство оптического прибора - дифракционной решетки.

Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разде.пенных непрозрачными промежутками (рис. 8.58). Хорошую решетку изготовляют с помощью специальной делительной машины, наносящей на стеклянную пластину параллельные штрихи.

Число штрихов доходит до нескольких тысяч на 1 мм; общее число штрихов превышает 100 000. Просты в изготовлении желатиновые отпечатки с такой решетки, зажатые между двумя стеклянными пластинами. Наилучшими качествами обладают так называемые отражательные решетки. Они представляют собой чередующиеся участки, отражающие свет и рассеивающие его. Рассеивающие свет штрихи наносятся резцом на отшлифованную металлическую пластину.

Если ширина прозрачных щелей (или отражающих свет полос) равна а, и ширина непрозрачных промежутков (или рассеивающих свет полос) равна b, то величина d = а + b называется периодом решетки. Обычно период дифракционной решетки порядка 10 мкм.

Рис. 8. Дифракционные решетки

Рассмотрим элементарную теорию дифракционной решетки. Пусть на решетку (рис. 8.59) падает плоская монохроматическая волна длиной волны . Вторичные источники, расположенные в щелях, создают световые волны, распространяющиеся по всем направлениям. Найдем условие, при котором идущие от щелей волны усиливают друг друга. Рассмотрим, например, волны, распространяющиеся в направлении, определяемом углом . Разность хода между волнами от краев соседних щелей равна длине отрезка АС. Если на этом отрезке укладывается целое число длин волн, то волны от всех щелей, складываясь, будут усиливать друг друга.

Периодом дифракционной решетки называется сумма ширины прозрачной и непрозрачной полос (см. Рис. 9).

Рис. 9. Дифракционная решетка



Из треугольника ABC можно найти длину катета АС: АС = АВ sin = d sin . Максимумы будут наблюдаться под углом , в соответствии с условием

где величина k = 0, 1, 2, ... определяет порядок спектра.

Нужно иметь в виду, что при выполнении условия (см. формулу (8.17)) усиливают друг друга не только волны, идущие от нижних (см. рис. 8.60) краев щелей, но и волны, идущие от всех других точек щелей.

Каждой точке в первой щели соответствует точка во второй щели, находящаяся на расстоянии d от первой точки. Поэтому разность хода испущенных этими точками вторичных волн равна k , и эти волны взаимно усиливаются.

За решеткой помещают собирающую линзу и за ней - экран на фокусном расстоянии от линзы. Линза фокусирует лучи, идущие параллельно, в одной точке. В этой точке происходит сложение волн и их взаимное усиление. Углы , удовлетворяющие условию (8.17), определяют положение так называемых главных максимумов на экране. Наряду скартиной

Получаемой в результате дифракции света, в случае дифракционной решетки наблюдается дифракционная картина и от отдельных щелей. Интенсивности максимумов в ней меньше интенсивности главных максимумов.

Так как положение максимумов (кроме центрального, соответствующего k = 0) зависит от длины волны, то решетка разлагает белый свет в спектр (см. рис. IV, 1 на цветной вклейке; спектры второго и третьего порядков перекрываются). Чем больше , тем дальше от центрального максимума располагается тот или иной максимум, соответствующий данной длине волны (см. рис. IV, 2, 3 на цветной вклейке). Каждому значению k соответствует свой порядок спектра.

Между максимумами расположены минимумы освещенности. Чем больше число щелей, тем более резко очерчены максимумы и тем более широкими минимумами они разделены. Световая энергия, падающая на решетку, перераспределяется ею так, что большая ее часть приходится на максимумы, а в область минимумов попадает незначительная часть энергии.

С помощью дифракционной решетки можно проводить очень точные измерения длины волны. Если период решетки известен, то определение длины волны сводится к измерению угла , соответствующего направлению на максимум.

Haши ресницы вместе с промежутками между ними представляют собой грубую дифракционную решетку. Поэтому, если посмотреть, прищурившись, на яркий источник света , то можно обнаружить радужные цвета. Белый свет разлагается в спектр при дифракции вокруг ресниц. Лазерный диск с бороздками, проходящими близко друг от друга, подобен отражательной дифракционной решетке. Если вы посмотрите на отраженный им свет от электрической лампочки , то обнаружите разложение света в спектр. Можно наблюдать несколько спектров, соответствующих разным значениям k.Картина будет очень четкой, если свет от лампочки падает на пластинку под большим углом.

Основное применение дифракционной решетки – это спектральный анализ .

Максимумы для разных длин волн будут наблюдаться под разными углами, то есть белый свет будет разложен в спектр.

Преимущество дифракционных решеток перед другими спектральными приборами заключается в том, что спектр получается более ярким. Интенсивность в главном максимуме пропорциональна квадрату полного числа щелей дифракционной решетки.

Любой кристалл также является дифракционной решеткой. На этом построен такой метод кристаллографии, как рентгеноструктурный анализ. Кристалл облучается рентгеновскими волнами, и по дифракционной картине этих волн можно определить тип кристаллической решетки и рассчитать ее период.

Дифракцией света в физике называют явление отклонения от законов геометрической оптики при распространении световых волн.

Термин «дифракция » происходит от латинского diffractus , что дословно означает «огибание препятствия волнами». Изначально явление дифракции именно так и рассматривалось. На самом деле это гораздо более широкое понятие. Хотя наличие препятствия на пути волны всегда является причиной дифракции, в одних случаях волны могут огибать его и проникать в область геометрической тени, в других они только отклоняются в определённом направлении. Разложение волн по частотному спектру также является проявлением дифракции.

Как проявляется дифракция света

В прозрачной однородной среде свет распространяется прямолинейно. Поставим на пути пучка света непрозрачный экран с небольшим отверстием в виде круга. На экране наблюдения, расположенном за ним на достаточно большом расстоянии, мы увидим дифракционную картинку : чередующиеся светлые и тёмные кольца. Если же отверстие в экране имеет форму щели, дифракционная картинка будет другой: вместо окружностей мы увидим параллельные чередующиеся светлые и тёмные полоски. Что же является причиной их появления?

Принцип Гюйгенса-Френеля

Объяснить явление дифракции пытались ещё во времена Ньютона. Но сделать это на основе существовавшей в то время корпускулярной теории света не удавалось.

Христиан Гюйгенс

В 1678 г. нидерландский ученый Христиан Гюйгенс вывел принцип, названный его именем, согласно которому каждая точка фронта волны (поверхности, достигнутой волной) является источником новой вторичной волны . А огибающая поверхностей вторичных волн показывает новое положение волнового фронта. Этот принцип позволял определять направление движения световой волны, строить волновые поверхности в разных случаях. Но дать объяснение явлению дифракции он не мог.

Огюстен Жан Френель

Много лет спустя, в 1815 г. французский физик Огюсте́н Жан Френе́ль развил принцип Гюйгенса, введя понятия когерентности и интерференции волн. Дополнив ими принцип Гюйгенса, он объяснил причину дифракции интерференцией вторичных световых волн.

Что же такое интерференция?

Интерференцией называют явление наложения когерентных (имеющих одинаковую частоту колебаний) волн друг на друга. В результате этого процесса волны либо усиливают друг друга, либо ослабляют. Интерференцию света в оптике мы наблюдаем, как чередующиеся светлые и тёмные полосы. Яркий пример интерференции световых волн - кольца Ньютона .

Источники вторичных волн являются частью одного и того же волнового фронта. Следовательно, они когерентны. Это означает,что между излучёнными вторичными волнами будет наблюдаться интерференция. В тех точках пространства, где световые волны усиливаются, мы видим свет (максимум освещенности), а там, где они гасят друг друга, наблюдается темнота (минимум освещённости).

В физике рассматривают два вида дифракции света: дифракцию Френéля (дифракция на отверстии) и дифракцию Фраунгофера (дифракция на щели).

Дифракция Френеля

Такую дифракцию можно наблюдать, если на пути световой волны расположить непрозрачный экран, в котором проделано узкое круглое отверстие (апертура).

Если бы свет распространялся прямолинейно, на экране наблюдения мы увидели бы светлое пятно. На самом деле, проходя через отверстие, свет расходится. На экране можно увидеть концентрические (имеющие общий центр) чередующиеся светлые и тёмные кольца. Как же они образуются?

Согласно принципу Гюйгенса - Френеля фронт световой волны, достигая плоскости отверстия в экране, становится источником вторичных волн. Так как эти волны когерентны, то они будут интерферировать. В результате в точке наблюдения мы будем наблюдать чередующиеся светлые и тёмные окружности (максимумы и минимумы освещённости).

Суть его в следующем.

Представим, что световая сферическая волна распространяется из источника S 0 в точку наблюдения М . Через точку S проходит сферическая волновая поверхность. Разобьём её на кольцевые зоны таким образом, чтобы расстояние от краёв зоны до точки М отличалось на ½ длины световой волны. Полученные кольцевые зоны называются зонами Френеля. А сам метод разбиения называют методом зон Френеля .

Расстояние от точки М до волновой поверхности первой зоны Френеля равно l + ƛ/2 , до второй зоны l + 2ƛ/2 и т.д.

Каждая зона Френеля рассматривается как источник вторичных волн определённой фазы. Две соседние зоны Френеля находятся в противофазе. Это означает, что вторичные волны, возникающие в соседних зонах, будут ослаблять друг друга в точке наблюдения. Волна из второй зоны будет гасить волну из первой зоны, а волна из третьей зоны будет её усиливать. Четвёртая волна снова ослабит первую и т.д. В результате суммарная амплитуда в точке наблюдения будет равна А = А 1 - А 2 + А 3 - А 4 + …

Если на пути света поставить такое препятствие, которое откроет только первую зону Френеля, то результирующая амплитуда станет равной А 1 . Это означает, что интенсивность излучения в точке наблюдения будет гораздо выше, чем в случае, когда открыты все зоны. А если закрыть все чётные зоны, то интенсивность возрастёт во много раз, так как не будет зон, ослабляющих его.

Чётные или нечётные зоны можно перекрыть с помощью специального устройства, представляющего собой стеклянную пластинку, на которой выгравированы концентрические окружности. Это устройство называют пластинкой Френеля.

К примеру, если внутренние радиусы тёмных колец пластинки совпадает с радиусами нечётных зон Френеля, а внешние - с радиусами чётных, то в этом случае будут «выключены» чётные зоны, что вызовет усиление освещения в точке наблюдения.

Дифракция Фраунгофера

Совсем другая дифракционная картинка возникнет, если расположить на пути плоской монохроматической световой волны перпендикулярно её направлению препятствие в виде экрана с узкой щелью. Вместо светлых и тёмных концентрических окружностей на экране наблюдения мы увидим чередующиеся светлые и тёмные полосы. В центре будет расположена самая яркая полоса. По мере удаления от центра яркость полос будет уменьшаться. Такая дифракция называется дифракцией Фраунгофера. Она возникает, когда на экран падает параллельный пучок света. Чтобы его получить, источник света располагают в фокальной плоскости линзы. Экран наблюдения находится в фокальной плоскости другой линзы, расположенной за щелью.

Если бы свет распространялся прямолинейно, то на экране мы наблюдали бы узкую светлую полоску, проходящую через точку О (фокус линзы). Но почему мы видим другую картину?

Согласно принципу Гюйгенса - Френеля в каждой точке волнового фронта, который достигает щели, образуются вторичные волны. Лучи, идущие от вторичных источников, меняют свое направление и отклоняются от первоначального направления на угол φ . Они собираются в точке P фокальной плоскости линзы.

Разобьём щель на зоны Френеля таким образом, чтобы оптическая разность хода между лучами, исходящими от соседних зон была равна половине длины волны ƛ/2 . Если в щель уложится нечётное число таких зон, то в точке Р мы будем наблюдать максимум освещённости. А если чётное, то минимум.

b · sin φ= + 2 m ·ƛ/2 - условие минимума интенсивности;

b · sin φ= + 2( m +1)·ƛ/2 - условие максимума интенсивности,

где m - число зон, ƛ - длина волны, b - ширина щели.

Угол отклонения зависит от ширины щели:

sin φ= m ·ƛ/ b

Чем шире щель, тем больше сдвинуты к центру положения минимумов, и тем ярче будет максимум в центре. И чем эта щель ỳже, тем более широкой и расплывчатой получится дифракционная картинка.

Дифракционная решётка

Явление дифракции света используют в оптическом приборе, который называется дифракционной решёткой . Мы получим такой прибор, если расположим на какой-либо поверхности через равные промежутки параллельные щели или выступы одинаковой ширины или нанесём на поверхность штрихи. Расстояние между серединами щелей или выступов называется периодом дифракционной решётки и обозначается буквой d . Если на 1 мм решётки приходится N штрихов или щелей, то d = 1/ N мм.

Свет, достигая поверхности решётки, разбивается штрихами или щелями на отдельные когерентные пучки. Каждый из этих пучков подвергается дифракции. В результате интерференции они усиливаются или ослабляются. И на экране мы наблюдаем радужные полосы. Так как угол отклонения зависит от длины волны, а у каждого цвета она своя, то белый свет, проходя через дифракционную решётку, раскладывается в спектр. Причём свет с бóльшей длиной волны отклоняется на бóльший угол. То есть красный свет отклоняется в дифракционной решётке сильнее всего в отличие от призмы, где всё происходит наоборот.

Очень важная характеристика дифракционной решётки - угловая дисперсия:

где φ - разность между максимумами интерференции двух волн,

∆ƛ - величина, на которую отличаются длины двух волн.

k - порядковый номер дифракционного максимума, отсчитанный от центра дифракционной картинки.

Дифракционные решётки делятся на прозрачные и отражательные. В первом случае вырезаются щели в экране из непрозрачного материала или наносятся штрихи на прозрачную поверхность. Во втором - штрихи наносят на зеркальную поверхность.

Компакт-диск, знакомый каждому из нас, представляет собой пример отражательной дифракционной решётки с периодом 1,6 мкм. Третья часть этого периода (0,5 мкм) - это углубление (звуковая дорожка), где хранится записанная информация. Оно рассеивает свет. Остальные 2/3 (1,1 мкм) свет отражают.

Дифракционные решётки широко применяются в спектральных приборах: спектрографах, спектрометрах, спектроскопах для точных измерений длины волны.

Набежал легкий ветерок, и по поверхности воды побежала рябь (волна малой длины и амплитуды), встречая на своем пути различные препятствия, над поверхностью воды, стебли растений, сук дерева. С подветренной стороны за суком вода спокойная, волнения нет, а стебли растений волна огибает.

ДИФРАКЦИЯ ВОЛН (от лат. difractus – разломанный) огибание волнами различных препятствий. Дифракция волн свойственна всякому волновому движению; имеет место, если размеры препятствия меньше длины волны или сравнимы с ней.

Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. При дифракции световые волны огибают границы непрозрачных тел и могут проникать в область геометрической тени.
Препятствием может быть отверстие, щель, край непрозрачной преграды.

Проявляется дифракция света в том, что свет проникает в область геометрической тени в нарушение закона прямолинейного распространения света. Например, пропуская свет через маленькое круглое отверстие, обнаруживаем на экране светлое пятно большего размера, чем следовало ожидать при прямолинейном распространении.

Из-за того, что длина световой волны мала, угол отклонения света от направления прямолинейного распространения невелик. Поэтому для отчетливого наблюдения дифракции нужно использовать очень маленькие препятствия или располагать экран далеко от препятствий.

Дифракция объясняется на основе принципа Гюйгенса–Френеля: каждая точка волнового фронта является источником вторичных волн. Дифракционная картина является результатом интерференции вторичных световых волн.

Волны, образованные в точках А и В, являются когерентными. Что наблюдается на экране в точках О, M, N?

Дифракция хорошо наблюдается только на расстояния

где R – характерные размеры препятствия. На меньших расстояниях применимы законы геометрической оптики.

Явление дифракции накладывает ограничение на разрешающую способность оптических инструментов (например, телескопа). Вследствие ее в фокальной плоскости телескопа образуется сложная дифракционная картина.

Дифракционная решетка – представляет собой совокупность большого числа находящихся в одной плоскости узких, параллельных, близко расположенных друг к другу прозрачных для света участков (щелей), разделенных непрозрачными промежутками.

Дифракционные решетки бывают отражающие и пропускающие свет. Принцип их действия одинаков. Решетку изготовляют с помощью делительной машины, наносящей периодические параллельные штрихи на стеклянной или металлической пластине. Хорошая дифракционная решетка содержит до 100 000 штрихов. Обозначим:

a – ширина прозрачных для света щелей (или отражающих полос);
b – ширина непрозрачных промежутков (или рассеивающих свет участков).
Величина d = a + b называется периодом (или постоянной) дифракционной решетки.

Дифракционная картина, создаваемая решеткой сложная . В ней наблюдаются главные максимумы и минимумы, побочные максимумы, дополнительные минимумы, обусловленные дифракцией на щели.
Практической значение при исследовании спектров с помощью дифракционной решетки имеют главные максимумы, представляющие собой узкие яркие линии в спектре. Если на дифракционную решетку падает белый свет, волны каждого цвета, входящего в его состав, образуют свои дифракционные максимумы . Положение максимума зависит от длины волны. Нулевые максимумы (k = 0 ) для всех длин волн образуются в направлениях падающего пучка = 0 ), поэтому в дифракционном спектре есть центральная светлая полоса. Слева и справа от нее наблюдаются цветные дифракционные максимумы разного порядка. Так как угол дифракции пропорционален длине волны, то красные лучи отклоняются сильнее, чем фиолетовые. Обратите внимание на различие в порядке расположения цветов в дифракционном и призматическом спектрах. Благодаря этому дифракционная решетка используется в качестве спектрального аппарата, наряду с призмой.

При прохождении через дифракционную решетку световая волна длиной λ на экране будет давать последовательность минимумов и максимумов интенсивности. Максимумы интенсивности будут наблюдаться под углом β:

где k – целое число, называемое порядком дифракционного максимума.

Опорный конспект:

Л 3 -4

Дифракция света

Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле – любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшое отверстие в экранах и т.д.

Между интерференцией и дифракцией нет существенного физического различия. Оба явления заключаются в перераспределении светового потока в результате наложения (суперпозиции) волн. По историческим причинам отклонение от закона независимости световых пучков, возникающее в результате суперпозиции когерентных волн, принято называть интерференцией волн. Отклонение от закона прямолинейного распространения света, в свою очередь, принято называть дифракцией волн.

Наблюдение дифракции осуществляется обычно по следующей схеме. На пути световой волны, распространяющейся от некоторого источника, помещается непрозрачная преграда, закрывающая часть волновой поверхности световой волны. За преградой располагается экран, на котором возникает дифракционная картина.

Различают два вида дифракции. Если источник света S и точка наблюденияP расположены от препятствия настолько далеко, что лучи, падающие на препятствие, и лучи, идущие в точкуP , образуют практически параллельные пучки, говорят одифракции в параллельных лучах или одифракции Фраунгофера . В противном случае говорят одифракции Френеля . Дифракцию Фраунгофера можно наблюдать, поместив за источником светаS и перед точкой наблюденияP по линзе так, чтобы точкиS иP оказались в фокальной плоскости соответствующей линзы (рис.).

Принципиально дифракция Фраунгофера не отличается от дифракции Френеля. Количественный критерий, позволяющий установить, какой вид дифракции имеет место, определяется величиной безразмерного параметра , гдеb – характерный размер препятствия,l – расстояние между препятствием и экраном, на котором наблюдается дифракционная картина,– длина волны. Если

Явление дифракции качественно объясняется с помощью принципа Гюйгенса, согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени. Для монохроматической волны волновая поверхность есть поверхность, на которой колебания совершаются в одинаковой фазе.

Пусть плоская волна нормально падает на отверстие в непрозрачном экране (рис.). Согласно Гюйгенсу, каждая точка выделяемого отверстием участка волнового фронта служит источником вторичных волн (в изотропной среде они сферические). Построив огибающую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т.е. огибает края отверстия.

Принцип Гюйгенса решает лишь задачу о направлении распространения волнового фронта, но не затрагивает вопроса об амплитуде, а, следовательно, и об интенсивности на фронте волны. Из повседневного опыта известно, что в большом числе случаев лучи света не отклоняются от их прямолинейного распространения. Так, предметы, освещенные точечным источником света, дают резкую тень. Таким образом, принцип Гюйгенса нуждается в дополнении, позволяющем определять интенсивность волны.

Френель дополнил принцип Гюйгенса идеей интерференции вторичных волн. Согласно принципу Гюйгенса-Френеля , световая волна, возбуждаемая каким-либо источникомS , может быть представлена как результат суперпозиции когерентных вторичных волн, излучаемых малыми элементами некоторой замкнутой поверхности, охватывающей источникS . Обычно в качестве этой поверхности выбирают одну из волновых поверхностей, поэтому источники вторичных волн действуют синфазно. В аналитическом виде для точечного источника этот принцип записывается в виде

, (1) гдеE – световой вектор, включающий в себя временную зависимость
,k – волновое число,r – расстояние от точкиP на поверхности S до точкиP ,K – коэффициент, зависящий от ориентации площадки по отношению к источнику и точкеP . Правомерность формулы (1) и вид функцииK устанавливается в рамках электромагнитной теории света (в оптическом приближении).

В том случае, когда между источником S и точкой наблюденияP имеются непрозрачные экраны с отверстиями, действие этих экранов может быть учтено следующим образом. На поверхности непрозрачных экранов амплитуды вторичных источников считаются равными нулю; в области отверстий амплитуды источников такие же, как при отсутствии экрана (так называемое приближение Кирхгофа).

Метод зон Френеля. Учет амплитуд и фаз вторичных волн позволяет в принципе найти амплитуду результирующей волны в любой точке пространства и решить задачу о распространении света. В общем случае расчет интерференции вторичных волн по формуле (1) довольно сложный и громоздкий. Однако ряд задач можно решить, применив чрезвычайно наглядный прием, заменяющий сложные вычисления. Метод этот получил название методазон Френеля .

Суть метода разберем на примере точечного источника света S . Волновые поверхности представляют собой в этом случае концентрические сферы с центром в S .Разобьем изображенную на рисунке волновую поверхность на кольцевые зоны, построенные так, что расстояния от краев каждой зоны до точкиP отличаются на
. Обладающие таким свойством зоны называютсязонами Френеля . Из рис. видно, что расстояниеот внешнего края – m -й зоны до точкиP равно

, гдеb – расстояние от вершины волновой поверхностиO до точкиP .

Колебания, приходящие в точку P от аналогичных точек двух соседних зон (например, точек, лежащих в середине зон или у внешних краев зон), находятся в противофазе. Поэтому колебания от соседних зон будут взаимно ослаблять друг друга и амплитуда результирующего светового колебания в точкеP

, (2) где,, … – амплитуды колебаний, возбуждаемых 1-й, 2-й, … зонами.

Для оценки амплитуд колебаний найдем площади зон Френеля. Пусть внешняя граница m -й зоны выделяет на волновой поверхности сферический сегмент высоты. Обозначив площадь этого сегмента через, найдем, что, площадьm -й зоны Френеля равна
. Из рисунка видно, что. После несложных преобразований, учитывая
и
, получим

. Площадь сферического сегмента и площадьm -й зоны Френеля соответственно равны

,
. (3) Таким образом, при не слишком большихm площади зон Френеля одинаковы. Согласно предположению Френеля, действие отдельных зон в точкеP тем меньше, чем больше уголмежду нормальюn к поверхности зоны и направлением наP , т.е. действие зон постепенно убывает от центральной к периферийным. Кроме того, интенсивность излучения в направлении точкиP уменьшается с ростомm и вследствие увеличения расстояния от зоны до точкиP . Таким образом, амплитуды колебаний образуют монотонно убывающую последовательность

Общее число зон Френеля, умещающихся на полусфере, очень велико; например, при
и
число зон достигает~10 6 . Это означает, что амплитуда убывает очень медленно и поэтому можно приближенно считать

. (4) Тогда выражение (2) после перегруппировки суммируется

, (5) так как выражения в скобках, согласно (4), равны нулю, а вклад последнего слагаемого ничтожно мал. Таким образом, амплитуда результирующих колебаний в произвольной точкеP определяется как бы половинным действием центральной зоны Френеля.

При не слишком больших m высота сегмента
, поэтому можно считать, что
. Подставив значение для, получим для радиуса внешней границыm -й зоны

. (6) При
и
радиус первой (центральной) зоны
. Следовательно, распространение света отS кP происходит так, как если бы световой поток шел внутри очень узкого канала вдольSP , т.е. прямолинейно.

Правомерность деления волнового фронта на зоны Френеля подтверждена экспериментально. Для этого используются зонная пластинка – в простейшем случае стеклянная пластинка, состоящая из системы чередующихся прозрачных и непрозрачных концентрических колец, с радиусами зон Френеля заданной конфигурации. Если поместить зонную пластинку в строго определенном месте (на расстоянии a от точечного источника и на расстоянииb от точки наблюдения), то результирующая амплитуда будет больше, чем при полностью открытом волновом фронте.

Дифракция Френеля на круглом отверстии. Дифракция Френеля наблюдается на конечном расстоянии от препятствия, вызвавшего дифракцию, в данном случае экрана с отверстием. Сферическая волна, распространяющаяся от точечного источникаS , встречает на своем пути экран с отверстием. Дифракционная картина наблюдается на экране, параллельном экрану с отверстием. Ее вид зависит от расстояния между отверстием и экраном (для данного диаметра отверстия). Проще определить амплитуду световых колебаний в центре картины. Для этого разобьем открытую часть волновой поверхности на зоны Френеля. Амплитуда колебания, возбуждаемая всеми зонами равна

, (7) где знак плюс отвечает нечетнымm и минус – четнымm .

Когда отверстие открывает нечетное число зон Френеля, то амплитуда (интенсивность) в центральной точке будет больше, чем при свободном распространении волны; если четное то амплитуда (интенсивность) будет равна нулю. Например, если отверстие открывает одну зону Френеля, амплитуда
, то интенсивность (
) больше в четыре раза.

Расчет амплитуды колебания на внеосевых участках экрана более сложен, так как соответствующие зоны Френеля частично перекрываются непрозрачным экраном. Качественно ясно, что дифракционная картина будет иметь вид чередующихся темных и светлых колец с общим центром (если m четное, то в центре будет темное кольцо, еслиm нечетное – то светлое пятно), причем интенсивность в максимумах убывает с расстоянием от центра картины. Если отверстие освещается не монохроматическим светом, а белым светом, то кольца окрашены.

Рассмотрим предельные случаи. Если отверстие открывает лишь часть централь­ной зоны Френеля, на экране получается размытое светлое пятно; чередования светлых и темных колец в этом случае не возникает. Если отверстие открывает большое число зон, то
и амплитуда в центре
, т.е. такая же, как и при полностью открытом волновом фронте; чередование светлых и темных колец происходит лишь в очень узкой области на границе геометрической тени. Фактически дифракционная картина не наблюдается, и распространение света, по сути, является прямолинейным.

Дифракция Френеля на диске. Сферическая волна, распространяющаяся от точечного источникаS , встречает на своем пути диск (рис.). Дифракционная картина, наблюдаемая на экране, является центрально симметричной. Определим амплитуду световых колебаний в центре. Пусть диск закрываетm первых зон Френеля. Тогда амплитуда колебаний равна

или
, (8) так как выражения, стоящие в скобках, равны нулю. Следовательно, в центре всегда наблюдается дифракционный максимум (светлое пятно), соответствующий половине действия первой открытой зоны Френеля. Центральный максимум окружен концентрическими с ним темными и светлыми кольцами. При небольшом числе закрытых зон амплитуда
мало отличается от. Поэтому интенсивность в центре будет почти такая же, как при отсутствии диска. Изменение освещенности экрана с расстоянием от центра картины изображено на рис.

Рассмотрим предельные случаи. Если диск закрывает лишь небольшую часть центральной зоны Френеля, он совсем не отбрасывает тени – освещенность экрана всюду остается такой же, как при отсутствии диска. Если диск закрывает много зон Френеля, чередование светлых и темных колец наблюдается только в узкой области на границе геометрической тени. В этом случае
, так что светлое пятно в центре отсутствует, и освещенность в области геометрической тени практически всюду равна нулю. Фактически дифракционная картина не наблюдается, и распространение света является прямолинейным.

Дифракция Фраунгофера на одной щели. Пусть плоская монохроматическая волна падает нормально плоскости узкой щели ширинойa . Оптическая разность хода между крайними лучами, идущими от щели в некотором направлении

.

Разобьем открытую часть волновой поверхности в плоскости щели на зоны Френеля, имеющие вид равновеликих полос, параллельных щели. Так как ширина каждой зоны выбирается такой, чтобы разность хода от краев этих зон была равна
, то на ширине щели уместится
зон. Амплитуды вторичных волн в плоскости щели будут равны, так как зоны Френеля имеют одинаковые площади и одинаково наклонены к направлению наблюдения. Фазы колебаний от пары соседних зон Френеля отличаются на, поэтому, суммарная амплитуда этих колебаний равна нулю.

Если число зон Френеля четное, то

, (9а) и в точкеB наблюдается минимум освещенности (темный участок), если же число зон Френеля нечетное, то

(9б) и наблюдается близкая к максимуму освещенность, соответствующей действию одной нескомпенсированной зоны Френеля. В направлении
щель действует, как одна зона Френеля, и в этом направлении наблюдается наибольшая освещенность, точкесоответствует центральный или главный максимум освещенности.

Расчет освещенности в зависимости от направления дает

, (10) где– освещенность в середине дифракционной картины (против центра линзы),– освещенность в точке, положение которой определяется направлением. График функции (10) изображен на рис. Максимумы освещенности соответствуют значениям, удовлетворяющие условиям

,
,
и т.д. Вместо этих условий для максимумов приближенно можно пользоваться соотношением (9б), дающим близкие значения углов. Величина вторичных максимумов быстро убывает. Численные значения интенсивностей главного и следующих максимумов относятся как

и т.д., т.е. основная часть световой энергии, прошедшей через щель, сосредоточена в главном максимуме.

Сужение щели приводит к тому, что центральный максимум расплывается, а его освещенность уменьшается. Наоборот, чем щель шире, тем картина ярче, но дифракционные полосы уже, а число самих полос больше. При
в центре получается резкое изображение источника света, т.е. имеет место прямолинейное распространение света.

Часто волна встречает на своем пути небольшие (по сравнению с ее длиной) препятствия. Соотношение между длиной волны и размером препятствий определяет в основном поведение волны.

Волны способны огибать края препятствий. Когда размеры препятствий малы, волны, огибая края препятствий, смыкаются за ними. Так, морские волны свободно огибают выступающий из воды камень, если его размеры меньше длины волны или сравнимы с ней. За камнем волны распространяются так, как если бы его не было совсем (маленькие камни на рис. 127). Точно так же волна от брошенного в пруд камня огибает торчащий из воды прутик. Только за препятствием большого по сравнению с длиной волны размера (большой камень на рис. 127) образуется «тень»: волны за него не проникают.

Способностью огибать препятствия обладают и звуковые волны. Вы можете слышать сигнал машины за углом дома, когда самой машины не видно. В лесу деревья заслоняют ваших товарищей. Чтобы их не потерять, вы начинаете кричать. Звуковые волны в отличие от света свободно огибают стволы деревьев и доносят ваш голос до товарищей. Отклонение от прямолинейного распространения волн, огибание волнами препятствий, называется дифракцией. Дифракция присуща любому волновому процессу в той же мере, как и интерференция. При дифракции происходит искривление волновых поверхностей у краев препятствий.

Дифракция волн проявляется особенно отчетливо в случаях, когда размеры препятствий меньше длины волны или сравнимы с ней.

Явление дифракции волн на поверхности воды можно наблюдать, если поставить на пути волн экран с узкой щелью, размеры которой меньше длины волны (рис. 128). Хорошо будет видно, что за экраном распространяется круговая волна, как если бы в отверстии экрана располагалось колеблющееся тело -источник волн. Согласно принципу Гюйгенса так и должно быть. Вторичные источники в узкой щели располагаются столь близко друг к другу, что их можно рассматривать как один точечный источник.


Если размеры щели велики по сравнению с длиной волны, то картина распространения волн за экраном совершенно иная (рис. 129). Волна проходит сквозь щель, почти не меняя своей формы. Только по краям можно заметить небольшие искривления волновой поверхности, благодаря которым волна частично проникает и в пространство за экраном. Принцип Гюйгенса позволяет понять, почему происходит дифракция. Вторичные волны, испускаемые участками среды, проникают за края препятствия, расположенного на пути распространения волны.

ДИФРАКЦИЯ СВЕТА

Если свет представляет собой волновой процесс, то, кроме интерференции, должна наблюдаться и дифракция света. Ведь дифракция - огибание волнами препятствий - присуща любому волновому движению. Но наблюдать дифракцию света нелегко. Дело в том, что волны заметным образом огибают препятствия, размеры которых сравнимы с длиной волны, а длина световой волны очень мала.

Пропуская тонкий пучок света через маленькое отверстие, можно наблюдать нарушение закона прямолинейного распространения света. Светлое пятно против отверстия будет большего размера, чем это следует ожидать при прямолинейном распространении света.

Опыт Юнга. В 1802 г. Юнг, открывший интерференцию света, поставил классический опыт по дифракции (рис. 203). В непрозрачной ширме он проколол булавкой два маленьких отверстия В и С на небольшом расстоянии друг от друга.

Эти отверстия освещались узким световым пучком, прошедшим в свою очередь через малое отверстие А в другой ширме. Именно эта деталь, до которой очень трудно было додуматься в то время, решила успех опыта. Интерферируют только когерентные волны. Возникшая в соответствии с принципом Гюйгенса сферическая волна от отверстия А возбуждала в отверстиях В и С когерентные колебания. Вследствие дифракции из отверстий В и С выходили два световых конуса, которые частично перекрывались. В результате интерференции световых волн на экране появлялись чередующиеся светлые и темные полосы. Закрывая одно из отверстий, Юнг обнаруживал, что интерференционные полосы исчезали. Именно с помощью этого опыта впервые Юнгом были измерены длины волн, соответствующие световым лучам разного цвета, причем весьма точно.

Теория Френеля. Исследование дифракции получило свое завершение в работах Френеля. Френель не только более детально исследовал различные случаи дифракции на опыте, но и построил количественную теорию дифракции, позволяющую в принципе рассчитать дифракционную картину, возникающую при огибании светом любых препятствий. Им же было впервые объяснено прямолинейное распространение света в однородной среде на основе волновой теории.

Этих успехов Френель добился, объединив принцип Гюйгенса с идеей интерференции вторичных волн. Об этом кратко уже упоминалось в четвертой главе.

Для того чтобы вычислить амплитуду световой волны в любой точке пространства, надо мысленно окружить источник света замкнутой поверхностью. Интерференция волн от вторичных источников, расположенных на этой поверхности, определяет амплитуду в рассматриваемой точке пространства.

Такого рода расчеты позволили понять, каким образом свет от точечного источника S, испускающего сферические волны, достигает произвольной точки пространства В (рис. 204).

Если рассмотреть вторичные источники на сферической волновой поверхности радиусе R. то результат интерференции вторичных волн от этих источников в точке В оказывается таким, как если бы лишь вторичные источники на малом сферическом сегменте ab посылали свет в точку В. Вторичные волны, испущенные источниками, расположенными на остальной части поверхности, гасят друг друга в(результате интерференции. Поэтому все происходит так, как если бы свет распространялся лишь вдоль прямой SB, т. е. прямолинейно.

Одновременно Френель рассмотрел количественно дифракцию на различного рода препятствиях.

Любопытный случай произошел на заседании Французской Академии наук в 1818 г. Один из ученых, присутствовавших на заседании, обратил внимание на то, что теории Френеля вытекают факты, явно противоречащие здравому смыслу. При определенных размерах отверстия и определенных расстояниях от отверстия до источника света и экрана в центре светлого пятна должно находиться темное пятнышко. За маленьким непрозрачным диском, наоборот, должно находиться светлое пятно в центре тени. Каково же было удивление ученых, когда поставленные эксперименты доказали, что так и есть на самом деле.

Дифракционные картины от различных препятствий. Из-за того, что длина световой волны очень мала, угол отклонения света от направления прямолинейного распространения невелик. Поэтому для отчетливого наблюдения дифракции (в частности, в тех случаях, о которых только что говорилось) расстояние между препятствием, которое огибается светом, и экраном должно быть велико.

На рисунке 205 показано, как выглядят на фотографиях дифракционные картины от различных препятствий: а) тонкой проволочки; б) круглого отверстия; в) круглого экрана.

Зоны Френеля для трехсантиметровой волны

Зонная пластинка для трехсантиметровых волн

Трёхсантиметровые волны: пятно Пуассона

Трёхсантиметровые волны: фазовая зонная пластинка

Круглое отверстие. Геометрическая оптика - дифракция Френеля

Круглое отверстие. Дифракция Френеля - дифракция Фраунгофера

Сравнение картин дифракции: ирисовая диафрагма и круглое отверстие

Пятно Пуассона