Чем отличаются экзогенные процессы от эндогенных. Научная электронная библиотека. Органическое выветривание горных пород

Наш организм является довольно сложным и в то же время хрупким механизмом. Его деятельность может нарушаться по причине воздействия самых разных факторов, далеко не всегда зависящих от самого человека. Существует несколько вариантов классификации причин, способствующих развитию заболеваний. И один их них предполагает деление таких факторов на внешние и внутренние. Попробуем разобраться в их особенностях чуть более подробно. Рассмотрим экзогенные и эндогенные болезнетворные факторы.

Только владея информацией о причинах возникновения недугов, можно успешно справиться с ними и предотвратить их развитие. Заболевания могут провоцироваться разными раздражителями внешней среды – экзогенными факторами. Другие же недуги формируются по причине особенных свойств организма, такие причины развития называют внутренними – эндогенными. В целом внешние и внутренние факторы нельзя рассматривать обособлено, ведь внутренняя среда нашего организма довольно тесно взаимодействует со внешней.

Экзогенные и эндогенные факторы заболевания

Экзогенные причины

Условия, в которых мы обитаем и с которыми мы взаимодействуем, могут стать внешней причиной, провоцирующей разные болезни. Все экзогенные факторы можно разделить на механические, физические, а также химические и биологические. Кроме того некоторые специалисты относят в эту группу еще и недостаточно правильнее питание, влияние социальной среды и так называемый словесный раздражитель.

Механическими экзогенными причинами принято считать самые разные механические травмы, разного рода ушибы и ранения. В эту же группу стоит отнести переломы, суставные вывихи, растяжения связок, появление разрывов и размозжения тканей, сотрясений мозга и пр.

Физические причины представлены температурными воздействиями, лучистой энергией (солнечная энергия, а также энергия, возникающая при радиоактивном распаде), электрическим током, изменениями атмосферного давления и пр.

Химические факторы довольно-таки разнообразны, ведь воздействия химических веществ на организм могут провоцировать самые разные проблемы, в зависимости от их типа, свойств, количества, а также места контакта.

Если говорить о таком факторе, как неправильное питание, то стоит признать, что оно может стать причиной самых разных расстройств организма, спровоцировать белковое, углеводное либо жировое голодание, гиповитаминоз и авитаминоз, поспособствовать развитию малокровия или даже туберкулеза. Чрезмерное потребление пищи чревато развитием ожирения, сахарного диабета, атеросклероза и пр.

Еще один экзогенный фактор, провоцирующий болезни, - это социальная среда. Так обитание в малоразвитых странах способствует распространению малярии, тифа, туберкулеза, рахита и пр. Чрезмерный физический труд, безработица, голодание и нищета увеличивают общий процент заболеваемости. Неблагоприятные социальные условия провоцируют перенапряжение ЦНС и могут стать причиной ряда соматических недугов – внутренних, кожных, аллергических и пр.

Эндогенные причины

Что касается внутренних причин заболеваний, то они представлены теми факторами, которые развиваются в самом организме по причине какого-то особенного строения органов, из-за изменения их функций либо на фоне нарушений обменных процессов. Все эти особенности способны передаваться по наследству или же приобретаться на протяжении жизни по причине продолжительного взаимодействия человека с разными агрессивными условиями окружающего мира.

Отдельной группой эндогенных факторов стоят наследственные болезни, они сами или предрасположенность к ним передается на генетическом уровне. К известным недугам такого типа можно отнести дальтонизм, альбинизм, гемофилию, аллергические заболевания и пр.

От наследственных недугов стоит отделять врожденные патологии, которые развились у плода. К примеру, воздействие каких-то факторов может стать причиной ненормального развития ребенка еще на этапе беременности. К таковым эндогенным факторам можно отнести врожденные уродства, пороки и болезни (к примеру, сифилис).

Еще к эндогенным факторам развития заболеваний некоторые специалисты относят возраст и пол. Ведь особенности возраста и половых анатомо-физиологических отличий также могут предрасполагать к формированию определенных недугов. Так в детском возрасте организм часто поражается коклюшем, рахитом, ветрянкой, в юношеском и молодом – легочным туберкулезом и ревматизмом. Для пожилых людей характерно возникновение атеросклероза, болезней обмена веществ и пр. Если говорить о половых особенностях, то у женщин чаще встречается , воспалительное поражение желчного пузыря и желчнокаменная болезнь, мужчины же чаще страдают от язвенных поражений и атеросклероза.

Стоит учитывать, что кроме экзогенных и эндогенных, все причины болезней можно разделить на те, которые непосредственно вызывают недуг, и те, которые способствуют его развитию. Так, к примеру, туберкулез провоцируется инфекцией, но к предрасполагающим факторам его возникновения можно отнести недостаточно благоприятные условия жизни.

Екатерина, www.сайт
Google

- Уважаемые наши читатели! Пожалуйста, выделите найденную опечатку и нажмите Ctrl+Enter. Напишите нам, что там не так.
- Оставьте, пожалуйста, свой комментарий ниже! Просим Вас! Нам важно знать Ваше мнение! Спасибо! Благодарим Вас!

ЭНДОГЕННЫЕ ПРОЦЕССЫ (а. endogenous processes; н. endogene Vorgange; ф. processus endogenes, processus endogeniques; и. procesos endogenos) — геологические процессы, связанные с энергией, возникающей в Земли . К эндогенным процессам относятся тектонические движения земной коры , магматизм , метаморфизм , . Главными источниками энергии эндогенных процессов являются тепло и перераспределение материала в недрах Земли по плотности (гравитационное дифференциация).

Глубинное тепло Земли, по мнению большинства учёных, имеет преимущественно радиоактивное происхождение. Определённое количество тепла выделяется и при гравитационной дифференциации. Непрерывная генерация тепла в недрах Земли ведёт к образованию потока его к поверхности (тепловой поток). На некоторых глубинах в недрах Земли при благоприятном сочетании вещественного состава, температуры и давления могут возникать очаги и слои частичного плавления. Таким слоем в верхней мантии является астеносфера — основной источник образования магмы; в ней могут возникать конвекционные токи, которые служат предположительного причиной вертикальных и горизонтальных движений в литосфере . Конвекция происходит и в масштабе всей мантии, возможно, раздельно в нижней и верхней, тем или иным способом приводя к крупным горизонтальным перемещениям литосферных плит . Охлаждение последних ведёт к вертикальным опусканиям (см. ). В зонах вулканических поясов островных дуг и окраин континентов основные очаги магм в мантии связаны со сверхглубинными наклонными разломами (сейсмофокальные зоны Вадати-Заварицкого-Беньоффа), уходящими под них со стороны океана (приблизительно до глубины 700 км). Под влиянием теплового потока или непосредственно тепла, приносимого поднимающейся глубинной магмой, возникают так называемые коровые очаги магмы в самой земной коре; достигая приповерхностных частей коры, магма внедряется в них в виде различных по форме интрузивов (плутонов) или изливается на поверхность, образуя вулканы .

Гравитационная дифференциация привела к расслоению Земли на геосферы разной плотности. На поверхности Земли она проявляется также в форме тектонических движений, которые, в свою очередь, ведут к тектоническим деформациям пород земной коры и верхней мантии; накопление и последующая разрядка тектонических напряжений вдоль активных разломов приводят к землетрясениям .

Оба вида глубинных процессов тесно связаны: радиоактивное тепло, понижая вязкость материала, способствует его дифференциации, а последняя ускоряет вынос тепла к поверхности. Предполагается, что сочетание этих процессов ведёт к неравномерности во времени выноса тепла и лёгкого вещества к поверхности, что, в свою очередь, может объяснить наличие в истории земной коры тектономагматических циклов. Пространственные неравномерности тех же глубинных процессов привлекаются к объяснению разделения земной коры на более или менее геологически активные области, например на геосинклинали и платформы . С эндогенными процессами связано формирование рельефа Земли и образование многих важнейших

Эндогенные и экзогенные геологические процессы

Эндогенные процессы - геологические процессы, связанные с энергией, возникающей в недрах Земли. К эндогенным процессам относятся тектонические движения земной коры, магматизм, метаморфизм, сейсмические итектонические процессы. Главными источниками энергии эндогенных процессов являются тепло и перераспределение материала в недрах Земли по плотности (гравитационное дифференциация). Это процессы внутренней динамики: происходят вследствие воздействия внутренних, по отношению к Земле, источников энергии.

Глубинное тепло Земли, по мнению большинства учёных, имеет преимущественно радиоактивное происхождение. Определённое количество тепла выделяется и при гравитационной дифференциации. Непрерывная генерация тепла в недрах Земли ведёт к образованию потока его к поверхности (тепловой поток). На некоторых глубинах в недрах Земли при благоприятном сочетании вещественного состава, температуры и давления могут возникать очаги и слои частичного плавления. Таким слоем в верхней мантии является астеносфера - основной источник образования магмы; в ней могут возникать конвекционные токи, которые служат предположительного причиной вертикальных и горизонтальных движений в литосфере. Конвекция происходит и в масштабе всей мантия|мантии, возможно, раздельно в нижней и верхней, тем или иным способом приводя к крупным горизонтальным перемещениям литосферных плит. Охлаждение последних ведёт к вертикальным опусканиям (тектоника плит). В зонах вулканических поясов островных дуг и окраин континентов основные очаги магм в мантии связаны со сверхглубинными наклонными разломами(сейсмофокальные зоны Вадати-Заварицкого-Беньоффа), уходящими под них со стороны океана (приблизительно до глубины 700 км). Под влиянием теплового потока или непосредственно тепла, приносимого поднимающейся глубинноймагмой, возникают так называемые коровые очаги магмы в самой земной коре; достигая приповерхностных частей коры, магма внедряется в них в виде различных по форме интрузивов (плутонов) или изливается на поверхность, образуя вулканы. Гравитационная дифференциация привела к расслоению Земли на геосферы разной плотности. На поверхности Земли она проявляется также в форме тектонических движений, которые, в свою очередь, ведут к тектоническим деформациям пород земной коры и верхней мантии; накопление и последующая разрядка тектонических напряжений вдоль активных разломов приводят к землетрясениям. Оба вида глубинных процессов тесно связаны: радиоактивное тепло, понижая вязкость материала, способствует его дифференциации, а последняя ускоряет вынос тепла к поверхности. Предполагается, что сочетание этих процессов ведёт к неравномерности во времени выноса тепла и лёгкого вещества к поверхности, что, в свою очередь, может объяснить наличие в истории земной коры тектономагматических циклов. Пространственные неравномерности тех же глубинных процессов привлекаются к объяснению разделения земной коры на более или менее геологически активные области, например на геосинклинали и платформы. С эндогенными процессами связано формирование рельефа Земли и образование многих важнейших полезных ископаемых.

Экзогенные- геологические процессы, обусловленные внешними по отношению к Земле источниками энергии (преимущественно солнечное излучение) в сочетании с силой тяжести. Э. п. протекают на поверхности и в приповерхностной зоне земной коры в форме механического и физико-химического её взаимодействия с гидросферой и атмосферой. К ним относятся: Выветривание, геологическая деятельность ветра (эоловые процессы, Дефляция), проточных поверхностных и подземных вод (Эрозия,Денудация), озёр и болот, вод морей и океанов (Абразия),ледников (Экзарация). Главные формы проявления Э. п. на поверхности Земли: разрушение горных пород и химическое преобразование слагающих их минералов (физическое, химическое, органическое выветривание); удаление и перенос разрыхлённых и растворимых продуктов разрушения горных пород водой, ветром и ледниками; отложение (аккумуляция) этих продуктов в виде осадков на суше или на дне водных бассейнов и постепенное их преобразование в осадочные горные породы (Седиментогенез,Диагенез,Катагенез). Э. п. в сочетании с эндогенными процессами участвуют в формировании рельефа Земли, в образовании толщ осадочных горных пород и связанных с ними месторождений полезных ископаемых. Так, например, в условиях проявления специфических процессов выветривания и осадконакопления образуются руды алюминия (бокситы), железа, никеля и др.; в результате селективного отложения минералов водными потоками формируются россыпи золота и алмазов; в условиях, благоприятствующих накоплению органические вещества и обогащенных им толщ осадочных горных пород, возникают горючие полезные ископаемые.

7-Химический и минеральный состав земной коры В состав земной коры входят все известные химические элементы. Но распределены они в ней неравномерно. Наиболее распространены 8 элементов (кислород, кремний, алюминий, железо, кальций, натрий, калий, магний), которые составляют 99,03% от общего веса земной коры; на долю остальных элементов (их большинство) приходится всего 0,97%, т. е. менее 1%. В природе, благодаря геохимическим процессам нередко образуются значительные скопления какого-либо химического элемента и возникают его месторождения, а другие элементы находятся в рассеянном состоянии. Вот почему некоторые элементы, составляющие небольшой процент в составе земной коры, как, например, золото, находят практическое применение, а другие элементы, пользующиеся более широким распространением в земной коре, как, например, галлий (его содержится в земной коре почти в два раза больше, чем золота), не находят широкого применения, хотя и обладают весьма ценными качествами (галлий применяется для изготовления солнечных фотоэлементов, используемых в космическом кораблестроении). «Редкого» в нашем понимании ванадия в земной коре содержится больше, чем «распространенной» меди, но он не образует больших скоплений. Радия в земной коре содержится десятки миллионов тонн, но он находится в рассеянном виде и поэтому представляет «редкий» элемент. Общие запасы урана исчисляются триллионами тонн, но он рассеян и редко образует месторождения. Химические элементы, входящие в состав земной коры, не всегда находятся в свободном состоянии. Большей частью они образуют природные химические соединения - минералы; Минерал-составная часть горной породы, образовавшейся в результате физико- химических процессов, протекавших и протекающих внутри Земли и на ее поверхности. Минерал - вещество определенного атомного, ионного, или молекулярного строения, устойчивый при определенных значениях температуры и давления. В настоящее время некоторые минералы получают и искусственным путем. Абсолютное большинство представляет собой вещества твердые, кристаллические (кварц и др.). Бывают минералы жидкие (самородная ртуть) и газообразные (метан). В виде свободных химических элементов, или, как их называют, самородных, встречаются золото, медь, серебро, платина, углерод (алмаз и графит), сера и некоторые другие. Такие химические элементы, как молибден, вольфрам, алюминий, кремний и многие другие, встречаются в природе только в виде соединений с другими элементами. Человек извлекает нужные ему химические элементы из природных соединений, которые служат рудой для получения этих элементов. Таким образом, рудой называются минералы или горные породы, из которых промышленным способом можно извлекать чистые химические элементы (металлы и неметаллы). Минералыбольшей частью встречаются в земной коре совместно, группами, образуя большие естественные закономерные скопления, так называемые горные породы. Горными породами называются минеральные агрегаты, состоящие из нескольких минералов, или большие их скопления. Так, например, горная порода гранит состоит из трех основных минералов: кварца, полевого шпата и слюды. Исключение составляют горные породы, состоящие из одного минерала, как, например, мрамор, состоящий из кальцита. Минералы и горные породы, которые используются и могут быть использованы в народном хозяйстве, называются полезными ископаемыми. Среди полезных ископаемых различают металлические, из которых извлекают металлы, неметаллические, используемые в качестве строительного камня, керамического сырья, сырья для химической промышленности, минеральных удобрений и т. д., горючие ископаемые - уголь, нефть, горючие газы, горючий сланец, торф. Минеральные скопления, содержащие полезные компоненты в количествах, достаточных для экономически выгодной их добычи, представляют месторождения полезных ископаемых. 8- Распространенность химических элементов в земной коре Элемент % массы Кислород 49.5 Кремний 25.3 Алюминий 7.5 Железо 5.08 Кальций 3.39 Натрий 2.63 Калий 2.4 Магний 1.93 Водород 0.97 Титан 0.62 Углерод 0.1 Марганец 0.09 Фосфор 0.08 Фтор 0.065 Сера 0.05 Барий 0.05 Хлор 0.045 Стронций 0.04 Рубидий 0.031 Цирконий 0.02 Хром 0.02 Ванадий 0.015 Азот 0.01 Медь 0.01 Никель 0.008 Цинк 0.005 Олово 0.004 Кобальт 0.003 Свинец 0.0016 Мышьяк 0.0005 Бор 0.0003 Уран 0.0003 Бром 0.00016 Йод 0.00003 Серебро 0.00001 Ртуть 0.000007 Золото 0.0000005 Платина 0.0000005 Радий 0.0000000001

9- Общие сведения о минералах

Минера́л (от позднелат. "minera" - руда) - природное твёрдое тело с определённым химическим составом, физическими свойствами и кристаллической структурой, образующееся в результате природных физико-химических процессов и являющееся составной частью Земной Коры, горных пород, руд, метеоритов и других планет Солнечной системы. Изучением минералов занимается наука минералогия.

Понятие "минерал" подразумевает твёрдое природное неорганическое кристаллическое вещество. Но иногда его рассматривают в неоправданно расширенном контексте, относя к минералам некоторые органические, аморфные и другие природные продукты, в частности некоторые горные породы, которые в строгом смысле не могут быть отнесены к минералам.

Эндогенные процессы

Земная кора подвержена, постоянным воздействиям внутренних (эндогенных) и внешних (экзогенных) сил, изменивших ее состав, строение и форму поверхности.

Внутренние силы Земли, обусловленные, главным образом, колоссальным давлением и высокой температурой глубинных толщ вызывают нарушения первоначального залегания пластов горных пород, в связи, с чем образуются складки, трещины, сбросы, сдвиги.

С деятельностью внутренних сил связаны землетрясения и магматизм.

Магматизм - сложный геологический процесс, включающий, в себя явления зарождения магмы в подкорковой области, перемещение ее в верхние горизонты земной коры и образование магматических горных пород.

Движение магмы к поверхности обусловлено, во-первых, гидростатическим давлением и во вторых, значительным увеличением объема, которым сопровождается переход твердых горных пород в состояние расплава.

Результатом деятельности внутренних сил является образование на земной поверхности гор и глубоких впадин.

Внутренние силы вызывают вековые колебания - медленные поднятая и опускания отдельных частей земной коры. Море при этом надвигается на сушу (трансгрессия) или отступает (регрессия). Кроме медленных вертикальных движений происходят также и горизонтальные смещения земной коры.

Раздел геологии, занимающийся изучением движений земной коры, изменяющих ее строение и формы залегания горных пород (складки, сбросы и др.), получил название тектоники. Тектонические процессы проявлялись на протяжении всей геологической истории Земли, менялась только их интенсивность.

Современные движения поверхности земной коры изучаются неотектоникой (наукой о новейших движениях земной коры).

Скандинавия медленно поднимается, а горное сооружение Большого Кавказа каждый год «вырастает» почти на 1 см. Очень медленные поднятия и опускания испытывают и равнинные участки Восточно-Европейской равнины, Западно-Сибирской низменности, Восточной Сибири и многих других районов.

Земная кора испытывает не только вертикальные, но и горизонтальные перемещения, причем их скорость составляет несколько сантиметров в год. Иными словами, земная кора как бы «дышит», постоянно находясь в замедленном движении.

Этот вопрос очень серьезный и в первую очередь имеет большое значение при строительстве крупных сооружений, а также при их эксплуатации. Поднятия и опускания, несомненно, имеют влияние на их сохранность, особенно на сооружения, имеющие линейно-удлиненные формы (например, плотины, каналы), а также водохранилища и др. объекты.

При разработке каменных карьеров и оценке прочности оснований сооружений необходимо также учитывать наличие в земной коре трещин, разломов, возникающих также в результате движений земной коры.

Следовательно, сведения о геологических процессах необходимы для того, чтобы заранее предвидеть возможность их появления, результаты изменений, происходящих в природе под влиянием естественных причин и деятельности человека.

При оценке какой-либо территории в связи со строительством объектов инженерная геология дает планирующим органам сведения о возможности и характере геологических процессов данного района. Прогноз должен даваться как во времени, так и в пространстве. Это позволит правильно и рационально проектировать сооружение с учетом всех инженерных мероприятий и нормальной эксплуатации.

В этой связи инженерная геология изучает также и те процессы, которых раньше не было на данной территории, но они могут возникнуть в результате деятельности человека. Эти процессы называются инженерно-геологическими. У них много общего есть с природными геологическими процессами, но есть и отличия.

Разница заключается в том, что инженерно- геологические процессы отличаются большой интенсивностью, более быстрым протеканием во времени, более ограниченной площадью своего проявления. Особенно большое воздействие сказывается на состоянии и свойствах пород.

Кора Земли обладает различной подвижностью, отсюда характерное для нее образование и сочетание платформ и геосинклиналей.

Платформы - это наиболее жесткие части земли, для них характерны сравнительно спокойные колебательные движения вертикального характера. Они занимают огромные пространства. К ним относятся Восточно Европейская, Сибирская платформы, Австралийская, Северо-Африканская и др.

Области, залегающие между платформами, называются складчатыми и являются их подвижными сочленениями.

В начале своего развития зоны складчатостей представляют собой морской бассейн, куда сносился обломочный материал. Накапливаются многокилометровые толщи осадков. В результате эндогенных процессов тектонические силы сминают накопившиеся осадочные толщи, происходит горообразовательный процесс. Так образовались Альпы, Карпаты, Крымские, Кавказские горы и другие.

Для районов геосинклиналей характерны разнообразные движения, но в основном складчатого и разрывного характера, что вызывает изменения первоначального положения пород и образование разломов.

Разломы на Земле могут быть скрытые под чехлом пород и могут быть хорошо выражены на поверхности.

Разломы - это зоны дробления коры, участки ослабленные, которые в свою очередь помогают ученым изучать различные явления, например землетрясения, изучать самые корни этого явления. В земной коре в результате вертикальных и боковых давлений происходит нарушение первоначального залегания пластов горных пород, с образованием складок сбросов, сдвигов и других тектонических форм.

Горами принято называть возвышенности, имеющие высоту более 500 м над уровнем моря, характеризующимся расчлененным рельефом.

Различают формы - хребты, горные цепи, горы массивные и даже глыбы.

5-7 млн. лет назад образовались Жигулевские горы - единственное в пределах Русской платформы уникальное тектоническое сооружение. По разлому в фундаменте поднялся блок. Движения осадочной толщи были плавными, без разрывов и смещения слоев относительно друг друга.

Образовавшаяся дислокация имеет форму складки с крутым северным крылом и пологим южным. Разлом в фундаменте проходит от города Кузнецка через город Сызрань, поселок Зольное и переходит на левый берег р.Волги. Сокольи горы являются продолжением Жигулей. Самарская Лука и Сокольи горы - часть общего куполообразного тектонического поднятия, которое постепенно становится пологим на восток, юг и запад. На южном крыле флексуры располагается г.Самара.

Горные породы, слагающие горы залегают обычно в виде пластов (слоев). Если пласты расположены горизонтально или немного под уклоном, носят название нормального залегания. Параллельное залегание нескольких пластов называется согласным залеганием.



Простейшей тектонической структурой служит моноклиналь (рис.2), где пласты имеют общий наклон в ту или другую сторону.


Складка - это один сплошной перегиб слоев, возникающий в результате воздействия на породы вертикальных тектонических сил (рис.3).

Рис.3 Антиклиналь (А) и синклиналь (С): 1 -1 оси складки, 2 складки, 3 - крыло складки, 4 - ядро складки

Выделяют два главных типа складок: антиклиналь- повернутую выпуклой частью вверх и синклиналь - обратную форму.

Первая складка характеризуется тем, что в ее центральной части или в ядре, залегают более древние породы, во второй - более молодые. Эти определения не меняются, даже если складки наклонить, положить на бок или перевернуть.

У каждой складки существуют определенные элементы: крыло складки, ядро, свод, осевая поверхность, ось и шарнир складки.

Характер наклона осевой поверхности складки позволяет выделять следующие виды складок: прямые, наклонные, опрокинутые, лежачие, ныряющие (рис. 4).

В зависимости от положения осевой плоскости складки делятся на


Рис.4 . Классификация складок по наклону осевой поверхности и крыльев (складки изображены в поперечном разрезе): а - прямая; б- наклонная; в - опрокинутая; г - лежачая; д - ныряющая

При определенных условиях возникает разновидность этого типа дислокаций - флексура - коленоподобная складка (рис.5), образовавшаяся при смещении одной толщи пород относительно другой без разрыва сплошности.


Рис.5 Флексура

Необходимо запомнить, что при выборе площадок для строительства в районе со складчатым характером залегания пород всегда в вершинах складок породы более трещиноватые, даже иногда раздроблены, что естественно ухудшает их технические свойства.

При горизонтальном движении горных пород возникают тектонические напряжения.

Если тектонические напряжения увеличиваются, то в какое-то время может быть превышен предел прочности горных пород и тогда эти напряжения могут разрушиться или разорваться - образуется разрывное нарушение, разрыв и разлом, а вдоль этой плоскости разрыва происходит смещение одного массива относительно другого.

Тектонические разрывы, как и складки, чрезвычайно разнообразны по своей форме, размерам, величине смещения и т. д.

Основные формы разрывных дислокаций - сброс и взброс. Эти формы характеризуются возникновением разрывов пластов и последующим относительным перемещением разорванных частей. Они возникают по месту разрыва перемещения пластов вверх (взброс) или вниз (сброс) (рис. 6).





Рис.6 Сброс. Взброс



Грабен – это, когда опускается участок земли между двумя неподвижными

(Красное море)(рис.7).

Рис. 7 Грабен. Горст.

Знаменитое озеро Байкал, крупнейшее в мире хранилище пресной воды, как раз и приурочено к асимметричному грабену, в котором наибольшая глубина озера достигает 1620 м, а глубина днища грабена по осадкам плиоценового возраста (4 млн лет) составляет - 5км. Байкальский грабен многоступенчатый и является частью сложной рифтовой системы молодых грабенов, имеющей протяженность 2500 км

Горст – это, когда участок поднимается между двумя неподвижными крыльями.

Сдвиг и надвиг – это горизонтальное смещение слоев (рис.8). В результате этих процессов более молодые породы могут оказаться погребенными под более древними.


Рис. 8 Сдвиг. Надвиг.

Сдвиги и надвиги интересны тем, что под ними могут залегать важные полезные ископаемые, особенно нефть и газ. Но на поверхности никаких признаков нефти нет, и чтобы добраться до нее, надо пробурить 3 - 4-километровую толщу совсем других пород.

Виды залегания слоев, их мощность, состав необходимо учитывать при строительстве.

Так, с инженерно - геологической точки зрения наиболее благоприятным является горизонтальное залегание слоев, большая их мощность и однородный состав, В этом случае созданы условия для предпосылок равномерной сжимаемости пластов под весом сооружений, наибольшей устойчивости (рис.9).



Рис. 9 Неблагоприятные и благоприятные условия строительства.

Наличие дислокаций, геологических нарушений резко изменяет и усложняет инженерно- геологические условия строительных площадок.

Например, строительство на пластах с крутым падением может оказаться очень неблагоприятным.

При наличии, например, сбросом, надвигов расположенных на больших пространствах, следует выбирать место для сооружений в удалении от линии разлома.

Сейсмические явления

Землетрясения - резкие сотрясения земной коры, обычно вызванные естественными причинами.

Изучаются землетрясения наукой - сейсмологией (от греч. сейсмос - сотрясаю).

По происхождениюземлетрясения подразделяют на:

Тектонические, вулканические, обвальные(денудационные), ударные

(метеоритные) и антропогенные (искусственные, вызванные человеком).

Тектонические - обусловленные перемещением пород в глубинных недрах земли.

Вулканические- вызваны процессами извержения вулканов.

Ударные- вызванные ударами метеоритов.

Антропогенные- искусственные, вызванные человеком.

Слабые сотрясения этого типа регистрируются приборами непрерывно. За год их насчитывается более миллиона. Большинство их не ощущается. Почти каждую минуту на Земле происходит 2 - 3 макросейсмических удара, а мегасейсмические - катастрофические землетрясения наблюдаются 1-2 раза в год. Обычно происходит несколько сот, приносящих минимальный ущерб и oт 20 крупных.

Вулканические землетрясения происходят при вулканических извержениях, могут достигать большой силы, но ощущают только в непосредственной близости от вулкана.

Ударные (метеоритные, космогенные) землетрясения в настоящий период отмечались только при падении очень крупных метеоритов (в 1908году. Тунгусским метеорит и в 1947 г. Сихотэ-Алиньский).

Антропогенныеземлетрясения не принято описывать в разделах, посвященных описанию землетрясений, возникающих под действием природных факторов. Однако деятельность человека, часто приводит к возникновению таких сотрясений, которые вполне соизмеримы с обвальными землетрясениями.

В центре очага условно выделяется точка, называемая гипоцентром. Проекция гипоцентра на поверхность Земли называется эпицентром.

Из гипоцентра во все стороны расходятся сейсмические волны. Различают два типа волн; продольные и поперечные.

Первые вызывают колебания частиц горных пород вдоль, вторые -перпендикулярно к направлениям сейсмических лучей.

Продольные волны обладают наибольшим запасом энергии. Разрушение зданий и сооружений обусловлено воздействием главным образом продольных волн.

Поперечные волны несут меньший запас энергии, скорость их в 1,7 раза меньше. Они не распространяются в жидких и газообразных средах.

При оценке разрушительного воздействия сейсмической волны большое значение имеет угол, под которым она проходит из гипоцентра к поверхности земли. Его величина может быть различной.

Степень разрушительности землетрясений оценивается по величине ускорения горизонтальной составляющей (λ).

Максимальная величина ее вычисляется по формуле:

где: Т - период, сек.

А - амплитуда сейсмической волны, мм.

Для оценке силы землетрясения употребляется коэффициент сейсмичности

где g- ускорение силы тяжести.

При расчете сооружений, а также определении устойчивости откосов курьеров величина горизонтальной составляющей сейсмической волны (сейсмической инерционной силы) определяется по формуле:

где Р - вес сооружения или оползневого массива, т.

Угол подходасейсмических волн к поверхности земли тоже влияет на силу землетрясения.

Наибольшую опасность вызывают те очаги, из которых сейсмические волны подойдут к поверхности под углом 30-6Оградусов, В этом случае особенно большую роль в проявлении силы сейсмического толчка будут играть инженерно- геологические условия.

На увеличение балльности землетрясения влияют обводненные грунты. Отмечено, что в пределах верхней 10- метровой толщи повышение грунтовых вод влечет постоянное приращение балльности.

Анализ сейсмических геологических и геофизических данных позволяет заранее наметить те области, где следует ожидать в будущем землетрясение и оценить их максимальную интенсивность.

В этом сущность сейсмического районирования.

Карта сейсмического районирования - официальный документ,

который обязаны принимать в расчет проектирующие организации в сейсмических районах. Строгое соблюдение норм сейсмостойкого строительства позволяет значительно снизить разрушительное воздействие землетрясения.

Сила землетрясений оценивается по ряду признаков; смещению грунтов, степени повреждения зданий, изменению режима грунтовых вод, остаточным явлениям в грунтах и т.д.

В России для определения силы землетрясения принята 12-балльная шкала, по которой самое слабое землетрясение оценивается в 1 балл, самое сильное - в 12 баллов.

Строительство сооружений и проектирование карьеров в сейсмических районах

В районах, подверженных землетрясениям (от 7 баллов и выше) , ведется антисейсмическое строительство, при котором осуществляются мероприятия, направленные на повышение сейсмостойкости зданий и сооружений,

В сейсмических районах, в которых максимальная сейсмичность не превосходит 5 баллов, никаких особых мероприятий не предусматривается.

При 6 баллах строительство ведется с применением соответствующих строительных материалов, а также предъявляются более высокие требования к качеству строительных работ:

При проектировании сооружений в районах с возможным 7 -9-балльным землетрясением необходимо применение специальных мероприятий, предусмотренных в особых нормативах.

В этих районах при выборе места, для сооружений необходимо стремиться размещать их на участках, сложенных массивными породами или мощными толщами рыхлых отложений с глубоким залеганием уровня грунтовых вод.

Опасно размещение сооружений в зонах, разбитых сбросами.

Конструкции зданий делаются по возможности более жесткими. Для этой цели предпочтительно применять железобетонные монолитные конструкции.

Как правило, устраиваются один-два и более железобетонных поясов.

Избегают тяжеловесные архитектурные украшения.

Контуры здания в плане предусматриваются возможно более простыми, без входящих углов.

Ограничивается высота зданий.

Большое значение при проектировании сооружений имеет соблюдение следующего принципа: период собственных свободных колебаний сооружения не должен резко отличаться от периода сейсмических колебаний, характерных для данной местности.

Соблюдение этого условия помогает избежать возникновения резонанса (сложение однозначных, совпадающих по фазе колебаний), который может привести к полному разрушению зданий.

Если периоды колебаний оказываются близкими, то изменяется жесткость сооружения или способ устройства фундаментов и оснований.

При проектирования в сейсмических районах карьеров строительных материалов и различных выемок необходимо помнить, что при землетрясениях устойчивость откосов резко снижается.

Это заставляет ограничивать высоту я крутизну стенок выемок. При несоблюдении этих требований при землетрясениях неизбежны обвалы и оползни. При расчетной величине землетрясений в 7 баллов глубина выемки должна быть не более 15-16м. В районах с 8-балльным землетрясением -14-15м.

1. ЭКЗОГЕННЫЕ И ЭНДОГЕННЫЕ ПРОЦЕССЫ

Экзогенные процессы – геологические процессы, происходящие на поверхности Земли и в самых верхних частях земной коры (выветривание, эрозия, деятельность ледников и др.); обусловлены главным образом энергией солнечной радиации, силой тяжести и жизнедеятельностью организмов.

Эрозия (от лат. erosio – разъедание) – разрушение горных пород и почв поверхностными водными потоками и ветром, включающее в себя отрыв и вынос обломков материала и сопровождающееся их отложением.

Часто, особенно в зарубежной литературе, под эрозией понимают любую разрушительную деятельность геологических сил, таких, как морской прибой, ледники, гравитация; в таком случае эрозия выступает синонимом денудации. Для них, однако, существуют и специальные термины: абразия (волновая эрозия), экзарация (ледниковая эрозия), гравитационные процессы, солифлюкция и т. д. Такой же термин (дефляция) используется параллельно с понятием ветровая эрозия, но последнее гораздо более распространено.

По скорости развития эрозию делят на нормальную и ускоренную. Нормальная имеет место всегда при наличии сколько-либо выраженного стока, протекает медленнее почвообразования и не приводит к заметным изменением уровня и формы земной поверхности. Ускоренная идет быстрее почвообразования, приводит к деградации почв и сопровождается заметным изменением рельефа. По причинам выделяют естественную и антропогенную эрозию. Следует отметить, что антропогенная эрозия не всегда является ускоренной, и наоборот.

Работа ледников – рельефообразующая деятельность горных и покровных ледников, состоящая в захвате частиц горных пород движущимся ледником, переносе и отложении их при таянии льда.

Эндогенные процессы Эндогенные процессы – геологические процессы, связанные с энергией, возникающей в недрах твердой Земли. К эндогенным процессам относятся тектонические процессы, магматизм, метаморфизм, сейсмическая активность.

Тектонические процессы – образование разломов и складок.

Магматизм – термин, объединяющий эффузивные (вулканизм) и интрузивные (плутонизм) процессы в развитии складчатых и платформенных областей. Под магматизмом понимают совокупность всех геологических процессов, движущей силой которых является магма и её производные.

Магматизм является проявлением глубинной активности Земли; он тесно связан с ее развитием, тепловой историей и тектонической эволюцией.

Выделяют магматизм:

геосинклинальный

платформенный

океанический

магматизм областей активизации

По глубине проявления:

абиссальный

гипабиссальный

поверхностный

По составу магмы:

ультраосновной

основной

кислый

щелочной

В современную геологическую эпоху магматизм особенно развит в пределах Тихоокеанского геосинклинального пояса, срединно-океанических хребтов, рифовых зон Африки и Средиземноморья и др. С магматизмом связано образование большого количества разнообразных месторождений полезных ископаемых.

Сейсмическая активность – это количественная мера сейсмического режима, определяемая средним числом очагов землетрясений в некотором диапазоне энергетической величины, которые возникают на рассматриваемой территории за определенное время наблюдения.

2. ЗЕМЛЕТРЯСЕНИЯ

геологический земной кора эпейрогенический

Наиболее отчетливо действие внутренних сил Земли обнаруживается в явлении землетрясений, под которыми понимаются сотрясения земной коры, вызванные смещениями горных пород в недрах Земли.

Землетрясение – явление достаточно распространенное. Оно наблюдается на многих участках материков, а также на дне океанов и морей (в последнем случае говорят о «моретрясении»). Количество землетрясений на земном шаре достигает нескольких сотен тысяч в год, т. е. в среднем совершается одно два землетрясения в минуту. Сила землетрясения различна: большинство из них улавливается только высокочувствительными приборами -сейсмографами, другие ощущаются человеком непосредственно. Количество последних достигает двух-трех тысяч в год, причем распределяются они очень неравномерно – в одних районах такие сильные землетрясения очень часты, а в других необычайно редки или даже практически отсутствуют.

Землетрясения можно подразделить на эндогенные, связанные с процессами, происходящими в глубине Земли, и экзогенные, зависящие от процессов, происходящих вблизи поверхности Земли.

К зндогенным землетрясениям относятся вулканические землетрясения, вызванные процессами извержения вулканов, и тектонические, обусловленные перемещением вещества в глубоких недрах Земли.

К экзогенным землетрясениям относятся землетрясения, происходящие в результате подземных обвалов, связанных с карстовыми и некоторыми другими явлениями, взрыво газов и т.п. Экзогенные землетрясения могут вызываться также процессами, происходящими на самой поверхности Земли: обвалами скал, ударами метеоритов, падением воды с большой высоты и другими явлениями, а также факторами, связанными с деятельностью человека (искусственными взрывами, работой машин и т.п.).

Генетически землетрясения можно классифицировать следующим образом:. Естественные

Эндогенные: а) тектонические, б) вулканические. Экзогенные: а) карстово-обвальные, б) атмосферные в) от ударов волн, водопадов и т. п.. Искусственные

а) от взрывов, б) от артиллерийской стрельбы, в) от искусственного обрушения горных пород, г) от транспорта и т. п.

В курсе геологии рассматриваются только землетрясения, связанные с эндогенными процессами.

В тех случаях, когда сильные землетрясения происходят в густонаселенных районах, они наносят огромный вред человеку. По бедствиям, причиняемым человеку, землетрясения не могут сравниться ни с каким другим явлением природы. Так например, в Японии во время землетрясения 1 сентября 1923 г., продолжавшегося всего несколько секунд, было полностью уничтожено 128266 домов и 126233 частично разрушено, погибло около 800 судов, были убиты и пропали без вести 142 807 человек. Более 100 тыс. человек получили ранения.

Описать явление землетрясения необычайно трудно, так как весь процесс длится всего несколько секунд или минут, и человек не успевает воспринять все многообразие перемен, совершающихся за это время в природе. Внимание фиксируется обычно только на тех колоссальных разрушениях, которые появляются в результате землетрясения.

Вот как описывает М. Горький землетрясение, происшедшее в Италии в 1908 г., очевидцем которого он был: «Земля глухо гудела, стонала, горбилась под ногами и волновалась, образуя глубокие трещины – как будто в глубине проснулся и ворочается веками дремавший некий огромный червь… Вздрогнув и пошатываясь, здания наклонялись, по их белым стенам, как молнии, змеились трещины и стены рассыпались, засыпая узкие улицы и людей среди них… Подземный гул, грохот камней, визг дерева заглушают вопли о помощи, крики безумия. Земля волнуется, как море, сбрасывая с груди своей дворцы, лачуги, храмы, казармы, тюрьмы, школы, каждым содроганием уничтожая сотни и тысячи женщин, детей, богатых и бедных. ».

В результате этого землетрясения был разрушен г. Мессина и ряд других населенных пунктов.

Общая последовательность всех явлений при землетрясении была изучена И. В. Мушкетовым во время крупнейшего из среднеазиатских Алма-Атинского землетрясения 1887 г.

27 мая 1887 г. вечером, как писали очевидцы, никаких признаков землетрясения не было, но домашние животные вели себя неспокойно, не принимали корма, рвались с привязи и т. п. Утром 28 мая в 4 часа 35 минут послышался подземный гул и довольно сильный толчок. Сотрясение продолжалось не более секунды. Через несколько минут гул возобновился, он напоминал глухой звон мощных многочисленных колоколов или грохот проезжающей тяжелой артиллерии. За гулом последовали сильные сокрушительные удары: в домах сыпалась штукатурка, вылетали стекла, рушились печи, падали стены и потолки: улицы наполнились серой пылью. Наиболее сильно пострадали массивные каменные постройки. У домов, расположенных по меридиану, вываливались северные и южные стены, тогда как западные и восточные сохранялись. В первую минуту казалось, что города больше не существует, что разрушены все здания без исключения. Удары и сотрясения, но менее сильные, продолжались в течение всего дня. Многие поврежденные, но ранее устоявшие дома, падали от этих более слабых толчков.

В горах образовались обвалы и трещины, по которым местами на поверхность вышли потоки подземной воды. Глинистая почва на склонах гор, и до того уже сильно смоченная дождями, начала ползти, ч загромождая русла рек. Подхваченная потоками вся эта масса земли, щебня, валунов Б виде густых селевых потоков устремилась к подножию гор. Один из таких потоков протянулся на 10 км при ширине 0,5 км.

Разрушения в самом г. Алма-Ата были огромны: из 1800 домов уцелели единичные дома, но количество человеческих жертв было относительно невелико (332 человека).

Многочисленные наблюдения показали, что в домах сначала (на какую-то долю секунды раньше) разваливались южные стены, а затем уже северные, что колокола в Покровской церкви (в северной части города) ударили через несколько секунд после разрушений, происшедших в южной части города. Все это свидетельствовало, что центр землетрясения находился к югу от города.

Большинство трещин в домах было наклонено также на юг или точнее на юго-восток (170°) под углом 40-60°. Анализируя направление трещин, И. В. Мушкетов пришел к выводу, что источник волн землетрясения располагался на глубине 10- 12 км п в 15 км к югу от г. Алма-Ата.

Глубинный центр, или очаг землетрясения, называется гипоцентром. В плане он очерчивается как округлая или овальная площадь.

Область, расположенная на поверхности Земли над гипоцентром носит название эпицентра. Она характёризуётся максимальными разрушениями, причем многие предметы здесь смещаются вертикально (подпрыгивают), и трещины в домах располагаются очень круто, почти вертикально.

Площадь эпицентра Алма-Атинского землетрясения определялась в 288 км² (36 *8 км), а область, где землетрясение было наиболее сильным, охватила площадь в 6000 км². Такая область получила название плейстосейстовой («плейсто» – наибольший и « сейстос» – сотрясенный).

Алма-Атинское землетрясение продолжалось не один день: вслед за толчками 28 мая 1887 г. в течение более двух лет происходили толчки меньшей силы с. интервалами сначала в несколько часов, а затем дней. Всего за два года было свыше 600 ударов, все более и более ослабевающих.

В истории Земли описаны землетрясения с еще большим количеством толчков. Так, например, в 1870 г. в провинции Фокида в Греции начались толчки, которые продолжались в течение трех лет. В первые три дня толчки следовали через 3 минуты, в течение первых пяти месяцев произошло около 500 тыс. толчков, из них 300 обладали разрушительной силой и следовали друг за другом со средним интервалом в 25 секунд. За три года всего произошло свыше 750 тыс. ударов.

Таким образом, землетрясение происходит не в результате единовременного акта, совершающегося на глубине, но вследствие какого-то длительно развивающегося процесса движения материи во внутренних частях земного шара.

Обычно за начальным крупным толчком следует цепь более мелких толчков, и весь этот период можно назвать периодом землетрясения. Все толчки одного периода исходят из общего гипоцентра, который иногда в процессе развития может смещаться, в связи с чем смещается и эпицентр.

Это хорошо видно на ряде примеров кавказских землетрясений, а также землетрясения в районе г. Ашхабада, которое произошло 6 октября 1948 г. Основной толчок последовал в 1 час 12 минут без предварительных толчков и продолжался 8-10 секунд. За это время в городе и окрестных селениях произошли огромные разрушения. Одноэтажные дома из кирпича-сырца рассыпались, и крыши накрыли эти груды кирпича, домашней утвари и т. п. У более прочно построенных домов вылетели отдельные стены, развалились трубы и печи. Интересно отметить, что здания круглой формы (элеватор, мечеть, собор и др.) противостояли толчку лучше, чем обычные четырехугольные постройки.

Эпицентр землетрясения располагался в 25 км. к юго-востоку от Ашхабада, в районе совхоза «Карагаудан». Эпицентральная область оказалась вытянутой в северо-западном направлении. Гипоцентр располагался на глубине 15-20 км. Длина плейстосейстовой области достигала 80 км, а ширина- 10 км. Период Ашхабадского землетрясения был длителен и состоял из множества (более 1000) толчков, эпицентры которых располагались к северо-западу от главного в пределах узкой полосы, расположенной в предгорьях Копет-Дага

Гипоцентры всех этих повторных толчков находились на той же малой глубине (порядка 20-30 км), что и гипоцентр основного толчка.

Гипоцентры землетрясений могут располагаться не только под поверхностью материков, но и под дном морей и океанов. При моретрясениях разрушения приморских городов бывают тоже весьма значительными и сопровождаются человеческими жертвами.

Сильнейшее землетрясение произошло в 1775 г. в Португалии. Плейстосейстовая область этого землетрясения охватила огромную площадь; эпицентр располагался под дном Бискайского залива вблизи столицы Португалии г. Лиссабона, пострадавшего наиболее сильно.

Первый толчок произошел днем 1 ноября и сопровождался страшным грохотом. По свидетельству очевидцев, земля на целый локоть то поднималась вверх, то опускалась. Дома падали со страшным треском. Огромный монастырь на горе так сильно качался из стороны в сторону, что каждую минуту грозил рухнуть. Толчки продолжались 8 минут. Через несколько часов землетрясение возобновилось.

Мраморная набережная провалилась и ушла под воду. В образовавшуюся водяную воронку были увлечены люди и корабли, стоявшие у берега. После землетрясения глубина залива на месте набережной достигала 200 м.

Море вначале землетрясения отступило, но затем огромная волна высотой 26 м обрушилась на берег и затопила побережье на ширину до 15 км. Таких волн, следовавших одна за другой, было три. То, что уцелело от землетрясения, было смыто и унесено в море. Только в гавани Лиссабона было уничтожено или повреждено свыше 300 судов.

Волны Лиссабонского землетрясения прошли через весь Атлантический океан: у Кадикса их высота достигала 20 м, на Африканском побережье, у берегов Танжера и Марокко – 6 м, на о-вах Фуншал и Мадера -до 5 м. Волны пересекли Атлантический океан и ощущались у берегов Америки на о-вах Мартиника, Барбадос, Антигуа и др. При Лиссабонском землетрясении погибло свыше 60 тыс. человек.

Подобные волны довольно часто возникают при моретрясениях, они называаются цуцнами. Скорость распространения этих волн колеблется от 20 до 300 м/сек в зависимости:от глубины океана; высота волн достигает 30 м.

Осушение берега перед цунами длится обычно несколько минут и в исключительных случаях достигает чяса. Возникают цунами только при тех моретрясениях, когда происходит провал или поднятие определенного участка дна.

Появление цунами и волн отлива объясняется следующим образом. В эпицентральной области из-за деформации дна образуется волна давления, распространяющаяся вверх. Море в этом месте только сильно вспучивается, на поверхности образуются кратковременные течения, расходящиеся во всех направлениях, или «вскипает» с подбрасыванием воды вверх на высоту до 0,3м. Все это сопровождается гулом. Затем волна давления преобразуется на поверхности в волны цунами, разбегающиеся в разных направлениях. Отливы перед цунами объясняются тем, что вначале вода устремляется в подводный провал, из которого затем выталкивается в эпицентральную область.

В случае, когда эпицентры приходятся на густонаселенные районы, землетрясения приносят огромные бедствия. Особенно разрушительными были землетрясения Японии, где за 1500 лет зафиксировано 233 крупных землетрясения с количеством толчков, превышающим 2 млн.

Большие бедствия причиняют землетрясения в Китае. Во время катастрофы 16 декабря 1920 г. в районе Кансу погибло свыше 200 тыс. человек, причем главной причиной гибели были обвалы жилищ, вырытых в лёссе. Землетрясения исключительной силы происходили в Америке. При землетрясении в районе Риобамба в 1797 г. погибло 40 тыс. человек и было разрушено 80% зданий. В 1812 г. город Каракас (Венесуэла) был разрушен полностью в течение 15 секунд. Неоднократно почти полностью разрушался г. Консепсион в Чили, Сильно пострадал г. Сан-Франциско в 1906 г. В Европе наибольшие разрушения наблюдались после землетрясения в Сицилии, где в 1693 г. было уничтожено 50 селений и погибло свыше 60 тыс. человек.

На территории СССР наиболее разрушительными были землетрясения на юге Средней Азии, в Крыму (1927 г.) и на Кавказе. Особенно часто страдал от землетрясений г. Шемаха в Закавказье. Он разрушался в 1669, 1679, 1828, 1856, 1859, 1872, 1902 гг. До 1859 г. город Шемаха был губернским центром Восточного Закавказья, но из-за землетрясения столицу пришлось перенести в Баку. На рис. 173 показано размещение эпицентров Шемахинских землетрясений. Так же, как и в Туркмении, они располагаются вдоль определенной линии, вытянутой в северо-западном направлении.

При землетрясениях происходят существенные изменения на поверхности Земли, выражающиеся в образовании трещин, провалов, складок, поднятии отдельных участков на суше, в образовании островов на море и т. п. Эти нарушения, называемые сейсмическими, часто способствуют образованию мощных обвалов, осыпей, оползней, оплывин и селевых потоков в горах, появлению новых источников, прекращению старых, образованию грязевых сопок, газовых выбросов и др. Нарушения, образующиеся после землетрясений называютсяпостсейсмическими.

Явления. связанные с землетрясениями как на поверхности Земли, так и в ее недрах, называются сейсмическими явлениями. Наука, изучающая сейсмические явления, называется сейсмологией.

3. ФИЗИЧЕСКИЕ СВОЙСТВА МИНЕРАЛОВ

Хотя главные характеристики минералов (химический состав и внутренняя кристаллическая структура) устанавливаются на основе химических анализов и рентгеноструктурного метода, косвенно они отражаются в свойствах, которые легко наблюдаются или измеряются. Для диагностики большинства минералов достаточно определить их блеск, цвет, спайность, твердость, плотность.

Блеск (металлический, полуметаллический и неметаллический – алмазный, стеклянный, жирный, восковой, шелковистый, перламутровый и др.) обусловлен количеством отражаемого от поверхности минерала света и зависит от его показателя преломления. По прозрачности минералы разделяются на прозрачные, полупрозрачные, просвечивающие в тонких осколках и непрозрачные. Количественное определение светопреломления и светоотражения возможно только под микроскопом. Некоторые непрозрачные минералы сильно отражают свет и имеют металлический блеск. Это характерно для рудных минералов, например, галенита (минерал свинца), халькопирита и борнита (минералы меди), аргентита и акантита (минералы серебра). Большинство минералов поглощают или пропускают значительную часть падающего на них света и обладают неметаллическим блеском. Некоторые минералы имеют блеск, переходный от металлического к неметаллическому, который называется полуметаллическим.

Минералы с неметаллическим блеском обычно светлоокрашенные, некоторые из них прозрачны. Часто бывают прозрачными кварц, гипс и светлая слюда. Другие минералы (например, молочно-белый кварц), пропускающие свет, но сквозь которые нельзя четко различить предметы, называют просвечивающими. Минералы, содержащие металлы, отличаются от прочих по светопропусканию. Если свет проходит сквозь минерал, хотя бы в самых тонких краях зерен, то он, как правило, нерудный; если же свет не проходит, то он – рудный. Бывают, впрочем, и исключения: например, светлоокрашенный сфалерит (минерал цинка) или киноварь (минерал ртути) нередко прозрачны или просвечивают.

Минералы различаются по качественным характеристикам неметаллического блеска. Глина имеет тусклый землистый блеск. Кварц на гранях кристаллов или на поверхностях излома – стеклянный, тальк, разделяющийся на тонкие листочки по плоскостям спайности, – перламутровый. Яркий, сверкающий, как у алмаза, блеск называется алмазным.

Когда свет падает на минерал с неметаллическим блеском, то он частично отражается от поверхности минерала, а частично преломляется на этой границе. Каждое вещество характеризуется определенным показателем преломления. Поскольку этот показатель может быть измерен с высокой точностью, он является весьма полезным диагностическим признаком минералов.

Характер блеска зависит от показателя преломления, а оба они – от химического состава и кристаллической структуры минерала. В общем случае прозрачные минералы, содержащие атомы тяжелых металлов, отличаются сильным блеском и высоким показателем преломления. К этой группе относятся такие распространенные минералы, как англезит (сульфат свинца), касситерит (оксид олова) и титанит, или сфен (силикат кальция и титана). Минералы, состоящие из относительно легких элементов, также могут иметь сильный блеск и высокий показатель преломления, если их атомы плотно упакованы и удерживаются сильными химическими связями. Ярким примером является алмаз, состоящий только из одного легкого элемента углерода. В меньшей степени это справедливо и для минерала корунда (Al2O3), прозрачные цветные разновидности которого – рубин и сапфиры – являются драгоценными камнями. Хотя корунд состоит из легких атомов алюминия и кислорода, они так крепко связаны между собой, что минерал имеет довольно сильный блеск и относительно высокий показатель преломления.

Некоторые блески (жирный, восковой, матовый, шелковистый и др.) зависят от состояния поверхности минерала или от строения минерального агрегата; смоляной блеск характерен для многих аморфных веществ (в том числе минералов, содержащих радиоактивные элементы уран или торий).

Цвет- простой и удобный диагностический признак. В качестве примеров можно привести латунно-желтый пирит (FeS2), свинцово-серый галенит (PbS) и серебристо-белый арсенопирит (FeAsS2). У других рудных минералов с металлическим или полуметаллическим блеском характерный цвет может быть замаскирован игрой света в тонкой поверхностной пленке (побежалостью). Это свойственно большинству минералов меди, особенно борниту, который называют «павлиньей рудой» из-за его радужной сине-зеленой побежалости, быстро возникающей на свежем изломе. Однако другие медные минералы окрашены в хорошо всем знакомые цвета: малахит – в зеленый, азурит – в синий.

Некоторые неметаллические минералы безошибочно узнаются по цвету, обусловленному главным химическим элементом (желтому – серы и черному – темно-серому – графита и др.). Многие неметаллические минералы состоят из элементов, которые не обеспечивают им специфической окраски, но у них известны окрашенные разновидности, цвет которых обусловлен присутствием примесей химических элементов в малых количествах, не сопоставимых с интенсивностью вызываемой ими окраски. Такие элементы называют хромофорами; их ионы отличаются избирательным поглощением света. Например, густо-фиолетовый аметист обязан своей окраской ничтожной примеси железа в кварце, а густой зеленый цвет изумруда связан с небольшим содержанием хрома в берилле. Окраска обычно бесцветных минералов может появляться вследствие дефектов кристаллической структуры (обусловленных незаполненными позициями атомов в решетке или вхождением посторонних ионов), которые могут вызвать селективное поглощение некоторых длин волн в спектре белого света. Тогда минералы окрашиваются в дополнительные цвета. Рубины, сапфиры и александриты обязаны своей окраской именно таким световым эффектам.

Бесцветные минералы могут быть окрашены механическими включениями. Так, тонкая рассеянная вкрапленность гематита придает кварцу красный цвет, хлорита – зеленый. Молочный кварц замутнен газово-жидкими включениями. Хотя цвет минералов – одно из самых легко определяемых свойств при диагностике минералов, его надо использовать с осторожностью, так как он зависит от многих факторов.

Несмотря на изменчивость окраски многих минералов, цвет порошка минерала весьма постоянен, а потому является важным диагностическим признаком. Обычно цвет порошка минерала устанавливают по черте (т.н. «цвету черты»), которую оставляет минерал, если им провести по неглазурованной фарфоровой пластинке (бисквиту). Например, минерал флюорит бывает окрашен в разные цвета, но черта у него всегда белая.

Спайность – весьма совершенная, совершенная, средняя (ясная), несовершенная (неясная) и весьма несовершенная – выражается в способности минералов раскалываться по определённым направлениям. Излом (ровный ступенчатый, неровный, занозистый, раковистый и др.) характеризуют поверхности раскола минерала, произошедшего не по спайности. Например, кварц и турмалин, поверхность излома которых напоминает скол стекла, имеют раковистый излом. У других минералов излом может быть описан как шероховатый, неровный или занозистый. Для многих минералов характеристикой служит не излом, а спайность. Это означает, что они раскалываются по гладким плоскостям, непосредственно связанным с их кристаллической структурой. Силы связи между плоскостями кристаллической решетки могут быть различными в зависимости от кристаллографического направления. Если в каких-то направлениях они гораздо больше, чем в других, то минерал будет раскалываться поперек самой слабой связи. Так как спайность всегда параллельна атомным плоскостям, она может быть обозначена с указанием кристаллографических направлений. Например, галит (NaCl) имеет спайность по кубу, т.е. три взаимоперпендикулярных направления возможного раскола. Спайность характеризуется также легкостью проявления и качеством возникающей спайной поверхности. Слюда обладает весьма совершенной спайностью в одном направлении, т.е. легко расщепляется на очень тонкие листочки с гладкой блестящей поверхностью. У топаза спайность совершенная в одном направлении. Минералы могут иметь два, три, четыре или шесть направлений спайности, по которым они одинаково легко раскалываются, либо несколько направлений спайности разной степени. У некоторых минералов спайность вообще отсутствует. Поскольку спайность как проявление внутренней структуры минералов является их неизменным свойством, она служит важным диагностическим признаком.

Твердость – сопротивление, которое минерал оказывает при царапании. Твердость зависит от кристаллической структуры: чем прочнее связаны между собой атомы в структуре минерала, тем труднее его поцарапать. Тальк и графит – мягкие пластинчатые минералы, построенные из слоев атомов, связанных между собой очень слабыми силами. Они жирные на ощупь: при трении о кожу руки происходит соскальзывание отдельных тончайших слоев. Самый твердый минерал – алмаз, в котором атомы углерода так прочно связаны, что его можно поцарапать только другим алмазом. В начале 19 в. австрийский минералог Ф.Моос расположил 10 минералов в порядке возрастания их твердости. С тех пор они используются как эталоны относительной твердости минералов, т.н. шкала Мооса (табл. 1)

ШКАЛА ТВЕРДОСТИ МООСА

Плотность и Масса атомов химических элементов меняется от водорода (самый легкий) до урана (самый тяжелый). При прочих равных условиях масса вещества, состоящего из тяжелых атомов, больше, чем у вещества, состоящего из легких атомов. Например, два карбоната – арагонит и церуссит – имеют сходную внутреннюю структуру, но в состав арагонита входят легкие атомы кальция, а в состав церуссита – тяжелые атомы свинца. В результате масса церуссита превышает массу арагонита того же объема. Масса единицы объема минерала зависит также от плотности упаковки атомов. Кальцит, как и арагонит, представляет собой карбонат кальция, но в кальците атомы упакованы менее плотно, потому он имеет меньшую массу единицы объема, чем арагонит. Относительная масса, или плотность, зависит от химического состава и внутренней структуры. Плотность – это отношение массы вещества к массе того же объема воды при 4° С. Так, если масса минерала составляет 4 г, а масса того же объема воды – 1 г, то плотность минерала равна 4. В минералогии принято выражать плотность в г/см3.

Плотность – важный диагностический признак минералов, и ее нетрудно измерить. Сначала образец взвешивается в воздушной среде, а затем – в воде. Поскольку на образец, погруженный в воду, действует выталкивающая сила, направленная вверх, его вес там меньше, чем в воздухе. Потеря веса равна весу вытесненной воды. Таким образом, плотность определяется отношением массы образца на воздухе к потере его веса в воде.

Пироэлектричество. Некоторые минералы, например турмалин, каламин и др., при нагревании или охлаждении электризуются. Это явление можно наблюдать с помощью опыления охлаждающегося минерала смесью порошков серы и сурика. При этом сера покрывает положительно заряженные участки поверхности минерала, а сурик – участки с отрицательным зарядом.

Магнитность – это свойство некоторых минералов действовать на магнитную стрелку или притягиваться магнитом. Для определения магнитности используют магнитную стрелку, помещенную на остром штативе, или магнитную подковку, брусок. Очень удобно также пользоваться магнитной иглой или ножом.

При испытании на магнитность возможны три случая:

а) когда минерал в естественном виде («сам по себе») действует на магнитную стрелку,

б) когда минерал становится магнитным лишь после прокаливания в восстановительном пламени паяльной трубки

в) когда минерал ни до, ни после прокаливания в восстановительном пламени магнитности не проявляет. Для прокаливания восстановительном пламени нужно брать мелкие кусочки величиной 2-3 мм.

Свечение. Многие минералы, не светящиеся сами по себе, начинают светиться при некоторых специальных условиях.

Различают фосфоресценцию, люминесценцию, термолюминесценцию и триболюминесценцию минералов. Фосфоресценция-способность минерала светиться после воздействия на него теми или другими лучами (виллемит). Люминесценция – способность светиться в момент облучения (шеелит при облучении ультрафиолетовыми и катодными луча кальцит и др.). Термолюминесценция – свечение при нагревании (флюорит, апатит).

Триболюминесценция – свечение в момент царапания иглой или раскалывания (слюды, корунд).

Радиоактивность. Многие минералы, содержащие такие элементы как ниобий, тантал, цирконий, редкие земли, уран, торий часто имеют довольно значительную радиоактивность, легко обнаруживаемую даже бытовыми радиометрами, которая может служить важным диагностическим признаком.

Для проверки радиоактивности сначала измеряют и записывают величину фона, затем минерал подносят, возможно, ближе к детектору прибора. Увеличение показаний более чем на 10-15% может служить показателем радиоактивности минерала.

Электропроводность. Целый ряд минералов обладает значительной электропроводностью, которая позволяет их однозначно отличить от похожих минералов. Может проверяться обычным бытовым тестером.

ЭПЕЙРОГЕНИЧЕСКИЕ ДВИЖЕНИЯ ЗЕМНОЙ КОРЫ

Эпейрогенические движения – медленные вековые поднятия и опускания земной коры, не вызывающие изменения первичного залегания пластов. Эти вертикальные движения имеют колебательный характер и обратимы, т.е. поднятие может сменится опусканием. Среди этих движений различают:

Современные, которые зафиксированы в памяти человека и их можно измерить инструментально путем проведения повторного нивелирования. Скорость современных колебательных движений в среднем не превышает 1-2 см/год, а в горных районах она может достигать и 20 см/год.

Неотектонические движения – это движения за неоген-четвертичное время (25 млн. лет). Принципиально они ничем не отличаются от современных. Неотектонические движения зафиксированы в современном рельефе и главный метод их изучения – геоморфологический. Скорость их движения на порядок меньше, в горных районах – 1 см/год; на равнинах – 1 мм/год.

Древние медленные вертикальные движения зафиксированы в разрезах осадочных пород. Скорость древних колебательных движений по оценке ученых меньше 0.001 мм/год.

Орогенические движения происходят в двух направлениях – горизонтальном и вертикальном. Первое приводит к смятию пород и образованию складок и надвигов, т.е. к сокращению земной поверхности. Вертикальные движения приводят к поднятию области проявления складкобразования и возникновению нередко горных сооружений. Орогенические движения протекают значительно быстрее, чем колебательные.

Они сопровождаются активными эффузивным и интрузивным магматизмом, а также метаморфизмом. В последние десятилетия эти движения объясняют столкновением крупных литосферных плит, которые перемещаются в горизонтальном направлении по астеносферному слою верхней мантии.

ТИПЫ ТЕКТОНИЧЕСКИХ НАРУШЕНИЙ

Виды тектонических нарушений:

а – складчатые (пликатпвные) формы;

В большинстве случаев образование их связано с уплотнением или сжатием вещества Земли. Складчатые нарушения морфологически подразделяются на два основных типа: выпуклые и вогнутые. В случае горизонтального среза в ядре выпуклой складки располагаются более древние по возрасту пласты, а на крыльях – более молодые. Вогнутые изгибы, наоборот, имеют в ядре более молодые отложения. В складках выпуклые крылья обычно наклонены в стороны от осевой поверхности.

б – разрывные (дизъюнктивные) формы

Разрывными тектоническими нарушениями называют такие изменения, при которых нарушается сплошность (целостность) горных пород.

Разрывные нарушения разделяются на две группы: разрывы без смещения разделенных ими пород относительно друг друга и разрывы со смещением. Первые называются тектоническими трещинами, или диаклазами, вторые – параклазами

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Белоусов В.В. Очерки истории геологии. У истоков науки о Земле (геология до конца ХVIII в.). – М., – 1993.

Вернадский В.И. Избранные труды по истории науки. – М.: Наука, – 1981.

Поваренных А.С., Оноприенко В.И. Минералогия: прошлое, настоящее, будущее. – Киев: Наукова Думка, – 1985.

Современные идеи теоретической геологии. – Л.: Недра, – 1984.

Хаин В.Е. Основные проблемы современной геологии (геология на пороге ХХI века). – М.: Научный мир, 2003..

Хаин В.Е., Рябухин А.Г. История и методология геологических наук. – М.: МГУ, – 1996.

Хэллем А. Великие геологические споры. М.: Мир,1985.