Вояджеры — полёт длиною в жизнь. Миссия вояджер

Ровно 40 лет назад, 5 сентября 1977 года, в космос запустили аппарат «Вояджер 1» . Хотя «Вояджер 1» запустили позже его побратима «Вояджера 2», он обогнал его и первым в истории вылетел за пределы Солнечной системы.

В годовщину запуска «Вояджера 1» мы рассказываем удивительные факты про него.

«Вояджер 1» все еще летит

Умер Леонид Брежнев, а «Вояджер 1» летел. Распался СССР, а «Вояджер 1» летел. Пришел и ушел Борис Ельцин, пришел Владимир Путин, а «Вояджер 1» все еще летит. При том что основная миссия космического аппарата должна была продлиться всего пять лет — предполагалось, что он пролетит рядом с Юпитером, Сатурном и его спутником Титаном, и потом перестанет передавать сигналы на Землю.

«Вояджер 1» пролетел расстояние, которое не укладывается в голове

Сейчас он находится на расстоянии около 20 миллиардов километров от Земли. Это как почти три миллиона раз слетать в Нью-Йорк из Москвы. «Вояджер 1» летит со скоростью около 60 тысяч километров в час, то есть то же расстояние до Нью-Йорка он бы преодолел за восемь минут.

«Вояджер 1» стал первым аппаратом, покинувшим Солнечную систему

В августе 2012 года космический аппарат вышел в межзвездную среду. Приборы космического аппарата фиксировали, что Солнце по мере отдаления воздействовало на него все слабее и наблюдали рост воздействия частиц межзвездного происхождения. Где сейчас находится аппарат, можно посмотреть в отдельном приложении NASA.

Радиосигнал до аппарата идет 19 часов

Ученые продолжают поддерживать связь с «Вояджером 1». Сигнал до космического аппарата сейчас идет 19 часов 20 минут и 51 секунду, и это время постоянно увеличивается. «Вояджер 1» передает информацию с тех приборов, которые все еще включены: магнитометра и детекторов заряженных частиц и космических лучей.

Другие приборы, в том числе камеры, отключены либо из-за выхода из строя, либо для экономии энергии.

«Вояджер 1» сфотографировал Землю с рекордного расстояния

В феврале 1990 года «Вояджер 1» передал на Землю одни из последних фотографий. Наибольшую известность получила та, которую стали называть «Бледное голубое пятнышко». На этом снимке Земля сфотографирована с расстояния в шесть миллиардов километров камерой, при помощи которой можно с 800 метров разглядеть заголовок в газете.

Земля — это маленькая точка на коричневой полосе.

На борту «Вояджера 1» — послание инопланетянам

К корпусу «Вояджера» прикреплена позолоченная пластинка, на которой записано послание для инопланетных существ. В частности, на ней есть приветствие на 50 языках. Кроме того, там записана классическая музыка, музыка разных народов мира, звуки природы.

Также для инопланетян на пластинку в аналоговой форме записали фотографии людей, Земли из космоса, самолета, автомобилей, нот и так далее.

Когда-нибудь «Вояджер 1» долетит до звезд

По расчетам ученых, через 40 тысяч лет он пролетит на относительно небольшом расстоянии от звезды AC+79 3888 в созвездии Жирафа. «Относительно» — это в космических масштабах. В действительности, Вояджер 1" пролетит в более чем в одном световом годе от этой звезды.

О том, что использует орбитальный телескоп Hubble для исследования свойств межзвездной среды, в которую вышла станция Voyager 1. Этот самый быстро движущийся и самый удаленный от Земли аппарат, созданный человеком, вместе с Voyager 2, несмотря на свою технологическую, с современной точки зрения, простоту, уже в течение почти 40 лет изучает Солнечную систему. О последних результатах и будущем миссии рассказывает .

В настоящее время Voyager 1 в 138 астрономических единицах (около 21 миллиарда километров) от Земли. Это расстояние свет преодолевает чуть более чем за 19 часов. К рекордам первой станции приближается вторая - Voyager 2 находится на удалении более 114 астрономических единиц (примерно 17 миллиардов километров) от Земли. Свет проходит это расстояние за 16 часов. Скорость движения станций превышает 3,3 астрономической единицы в год.

Станции Voyager движутся почти в полтора раза быстрее запущенных еще в начале 1970-х аппаратов Pioneer, связь с которыми НАСА не поддерживает. Примерно через пару лет Voyager 2 удалится дальше от Солнца, чем Pioneer 10.

Миссии Voyager 1 и Voyager 2 отличаются траекторией полета - вторая станция пролетела мимо Юпитера, Сатурна, Урана и Нептуна, тогда как первый аппарат посетил только Юпитер и Сатурн.

Voyager 1 опередил не только Voyager 2, первым пролетев мимо Юпитера и Сатурна в конце 1970-х - начале 1980-х, но и Pioneer 11 - в 1998 году, на расстоянии около 70 астрономических единиц от Солнца. Pioneer 11 вместе с Pioneer 10 и двумя станциями Voyager - первые рукотворные объекты, покинувшие пределы пояса Койпера.

Технически Voyager 1 и Voyager 2 идентичны. Стартовая масса вместе с гидразином, который использовался для управления ориентацией аппаратов, составляла 815 килограммов. Каждая из станций целиком, с развернутыми антеннами, помещается в куб со стороной четыре метра. Оба аппарата запущены в 1977 году, второй - на 16 суток раньше.

Основной целью миссии Voyager являлось пролетное исследование газовых гигантов Солнечной системы, с чем две станции успешно справились.

Эта область Солнечной системы, представляющая собой скопление ледяных небесных тел, начинается за орбитой Нептуна, на расстоянии 30 астрономических единиц от звезды и заканчивается за орбитой Макемаке, третьей по величине карликовой планеты Солнечной системы, в 60 астрономических единицах от светила. В настоящее время в поясе Койпера находится только один рукотворный аппарат - зонд New Horizons, который в 2015 году пролетал мимо Плутона, крупнейшей известной карликовой планеты.

Станция Voyager 1 - первый рукотворный объект, вышедший в межзвездное пространство. В декабре 2011 года, через 35 лет после старта, аппарат покинул пределы гелиосферы - магнитного аналога атмосферы планет и оказался в районе гелиопаузы, отделяющей гелиосферу от межзвездного пространства.

Граница Солнечной системы, кроме гелиопаузы, также часто определяется сферой Хилла. Так называют область пространства, в котором определяющее гравитационное влияние оказывает центральное небесное тело. Для Солнца радиус сферы Хилла оценивается в один-два световых года. С этой точки зрения, станция Voyager 1 еще нескоро покинет пределы Солнечной системы.

В тот момент научные инструменты Voyager 1 зарегистрировали стократное увеличение количества высокоэнергетических электронов, летящих в сторону Солнца из межзвездного пространства, и сокращение числа низкоэнергетических частиц, прилетающих от светила. В первом полугодии 2012-го станция зафиксировала усиление интенсивности галактических космических лучей. В конце августа того же года аппарат, отметив практически полное угасание солнечного ветра, покинул гелиосферу и вышел в межзвездное пространство.

Однако нашлись ученые, заявившие, что Voyager 1 еще не преодолел гелиопаузу, где происходит торможение солнечного ветра межзвездными частицами. Они полагали, что такой переход должен сопровождаться значительным сдвигом в характеристиках магнитного поля, чего не наблюдалось. Кроме того, направление магнитного поля в районе пребывания Voyager 1 отклоняется на 40 градусов от ожидаемого.

Впоследствии эти аргументы были . Измерения, проведенные при помощи спутника IBEX (Interstellar Boundary Explorer), предназначенного для изучения границ Солнечной системы, показали, что фиксируемое аппаратом направление магнитных линий связано с возмущением, оказываемым Солнечной системой на глобальное галактическое магнитное поле. По расчетам, в 2025 году Voyager 1 покинет пределы возмущенного поля.

Что будет дальше с миссией Voyager? Три радиоизотопных термоэлектрических генератора, установленных на каждом из аппаратов, позволят им поддерживать связь с Землей еще примерно десять лет. За это время ученые надеются тщательнее исследовать межзвездное пространство, в частности структуру гелиопаузы, в том числе и с целью планирования миссий к альфе Центавра.

Как показали данные Hubble, окружающее Солнечную систему первое межзвездное газовое облако Voyager 2 покинет через две тысячи лет. Еще 90 тысяч лет станции потребуется, чтобы пройти второе облако и попасть в третье. Эти межзвездные структуры

Маловероятно, что вблизи Gliese 445 и Ross 248 существуют пригодные для жизни планеты. Эти звезды слишком малы, а Ross 248 еще и вспыхивающая - ее светимость может меняться нерегулярным образом сразу во всех диапазонах электромагнитного спектра. Интересно, что эта звезда, а не Проксима Центавра, через примерно 36 тысяч лет на короткое время, около 6 тысяч лет, станет ближайшим к Солнцу светилом.

В общем, станции Voyager, как и Pioneer, скорее всего, станут вечными странниками в межзвездном пространстве. Вряд ли установленные на станциях Voyager золотые пластины с указанием местонахождения Земли, а также несколькими изображениями и аудиозаписями, будут обнаружены возможными обитателями других миров и тем более правильно поняты ими.


"ВОЯДЖЕР-2" ИССЛЕДУЕТ УРАН

Борислав Славолюбов

20 августа 1977 года с космодрома космического центра им. Кеннеди был запущен космический аппарат "Вояджер-2". Первоначально станция стартовала к Юпитеру и Сатурну. Однако на рубеже 70-х и 80-х годов все планеты-гиганты удачно расположились в сравнительно узком секторе Солнечной системы ("парад планет"). Последний раз такое "собрание" проходило 180 лет назад. Использование гравитационного маневра сделало возможным дальнейший полет "Вояджера" - к Урану и Нептуну. Без такого маневра полет к Урану продолжался бы на 20 лет дольше, 30 лет вместо 9 - станция летела бы до сих пор.

После пролета мимо Сатурна под воздействием притяжения этой планеты "Вояджер-2" совершил пертурбационный маневр (разворот почти на 90°) и перешел на траекторию полета к Урану. В 1981 году вероятность выполнения научной программы у Урана оценивалась в 60-70%. Во время пролета системы Сатурна произошло заклинивание поворотной платформы аппарата. Для того, чтобы понять, в чем неисправность, в Лаборатории Реактивного Движения (JPL) были срочно изготовлены 86 (!) макетов силового привода платформы, на которых и провели всестороннее изучение нештатной ситуации. Удалось выяснить, что причиной заклинивания послужила большая нагрузка на платформу вблизи Сатурна, и неисправность можно устранить. Была разработана программа более аккуратного управления платформой. Как запасной вариант, было предусмотрено наведение приборов путем разворота всей станции с помощью двигателей микроориентации.

В 1986 году в южном полушарии Урана стояло полярное лето. К Солнцу (и к подлетающему "Вояджеру-2") был обращен южный полюс планеты. Из-за большого наклонения спутниковой системы Урана по отношению к эклиптике было решено совершить пролет вблизи лишь одного спутника. В 1984 году этим спутником была выбрана Миранда. Было принято решение о минимальном расстоянии до Миранды в 29 тысяч километров. Рассматривался вариант и более тесного сближения - до 15 тысяч километров, но в этом случае система компенсации сдвига изображения телевизионных камер не могла бы предотвратить смазывания получаемых снимков.
При пролете мимо Урана впервые для связи с "Вояждером-2" использовались новые 64-метровые антенны, установленные в США, Испании и Австралии. Из-за падения мощностей радиоизотопных батарей (до 400 Вт) приходилось ограничить научную программу и использовать приборы поочередно.
В период с 4 ноября 1985 г. по 10 января 1986 г. станция вела обзорные наблюдения Урана с использованием телевизионных камер, которые регистрировали образования в атмосфере планеты и движение ее спутников. На снимках, полученных 30 декабря, был обнаружен новый спутник - Пак, размером около 170 км. Примерно в это же время было сфотографировано главное кольцо и несколько других. По мере постепенного сближения с Ураном в течение января 1986 года были сфотографированы еще около десятка небольших внутренних спутников размером в несколько десятков километров.
Кроме ранее известных 9 колец было открыто еще 2 слабых кольца - 1986 U1R и 1986 U2R. Дополнительно, установленный на аппарате фотополяриметр обнаружил по крайней мере еще несколько неполных колец, лежащих за пределами кольца Эпсилон.

Также было обнаружено, что узкие кольца погружены в широкое, разреженное кольцо.

Был сделан вывод, что кольцо Эпсилон состоит из крупных частиц размером около 1 метра (точнее, от 10 см до 10 м).
За 6 дней до максимального сближения с Ураном произошел серьезный сбой в передаче данных. Выяснилось, что при переходе на более мощный алгоритм сжатия (Рида-Солона) при передаче данных изображения искажены сеткой черных и белых линий. Одна группа, не доверяя компьютеру, обработала вручную все пикселы. Результат оказался тот же. Другая группа подготовила новое задание аппарату: прочесть и передать на Землю все, что он записал в память. Прошло много часов, прежде чем был получен ответ. Сравнение показало, что среди многих килобайт программы в одном восьмиразрядном слове один из нулей замещен единицей. Запрос с Земли и ответ Вояджера-2 показали, что перевести эту ячейку в "нулевое" состояние не удается. Тогда программисты так переписали эту часть программы, чтобы дефектный триггер не вызывал искажений. За четыре дня до сближения программа была послана на борт. Телеметрическая информация стала поступать без искажений.
В атмосфере Урана наблюдалось гораздо меньше деталей, чем в атмосферах Сатурна и Юпитера. На полученных снимках видна коричневатая дымка над южной полярной областью, освещенной Солнцем, а также некоторые облачные образования на различных широтах, движущиеся с неодинаковой скоростью.

Были обнаружены ветры, направление которых совпадает с направлением вращения планеты, причем в высоких широтах циркуляция атмосферы происходит с большей скоростью, чем у экватора. В самых верхних слоях атмосферы температура высокая: 750 К на дневной и 1000 К на ночной стороне планеты. В нижней части атмосферы над обоими полюсами температура одинакова. Исследования температуры в функции широты показали, что в высоких широтах близ полюса и в низких широтах близ экватора она одинакова. Зарегистрирован холодный пояс шириной 10-15°, ось которого тянется примерно вдоль 40-й параллели. Температура атмосферы в этом поясе существенно ниже, чем в прилегающих областях. Станция обнаружила на Уране корону атомарного водорода над молекулярным водородом. Температура этой короны на дневной стороне 750 К, на ночной 1000 К.
Вояджер-2 открыл у Урана магнитосферу с напряженностью 0,25 Гс. Его полярность та же что и у Юпитера и Сатурна, и противоположна полярности магнитного поля Земли и Меркурия. Магнитометры станции показали, что в пределах магнитосферы планеты находятся орбиты спутников - Миранды, Ариэля и Умбриеля. Зарегистрированы возмущения магнитного поля этими тремя спутниками. Шлейф магнитосферы планеты простирается на большое расстояние. При проходе шлейфа зарегистрировано изменение направления поля на обратное, обусловленное наклоном магнитной оси Урана к оси вращения. Этот наклон составляет около 60 градусов, больше, чем у любой другой планеты Солнечной системы. При вращении Урана его магнитная ось перемещается в пространстве и увлекает за собой силовые линии магнитного поля, закручивая их.
Внутренняя магнитосфера Урана, по-видимому, представляет собой комбинацию горячих (100 000 К) и очень горячих (10 000 000 К) ионов. Горячие ионы обнаружены вблизи планеты, их плотность в 10 раз выше, чем плотность очень горячих ионов, которые обнаружены по обе стороны орбиты Миранды. Считают, что источником этих ионов является не солнечный ветер, а более удаленные от планеты спутники Урана. Генерируемые ими ионы (в основном протоны) при приближении к планете могут поглощаться Мирандой. Прибор для регистрации космического излучения обнаружил повышение интенсивности магнитного поля Урана внутри орбиты Миранды. Интенсивность поясов радиации Урана практически такая же, как у поясов Земли, и несколько меньше, чем у поясов Сатурна. В поясах Урана ниже содержание электронов высокой энергии, чем в поясах Земли.
Наблюдения магнитного поля Урана были важны еще и потому, что они позволили определить период вращения Урана вокруг оси и на основании этого - скорость ветров в атмосфере путем прослеживания движения облачных образований.
Зарегистрировано свечение Урана в УФ диапазоне, распространяющееся примерно на 50 тыс. км от планеты. На ночной стороне планеты обнаружены авроральные явления в районе магнитного полюса. Также зафиксировано интенсивное так называемое "электросвечение" атмосферы на дневной стороне планеты и радиоизлучение с ночной стороны. Плотность экзосферы достигает 100 штук в куб.см на уровне самого внешнего, кольца.

За несколько дней до пролета Урана станция начала подробную съемку крупнейших спутников:

В день пролета были получены беспрецедентные по разрешению снимки четырех крупнейших спутников. Наиболее близко от этих спутников станция пролетела от Ариэля - в 130 тысячах километров. В результате были получены снимки с разрешением до 2-3 километров на пиксель, показывающие геологически активную поверхность спутника. Для других спутников расстояние было гораздо выше: Умбриэль 557 тыс. км. (10 км на пиксель), Титания - 369 тыс. км. (13 км на пиксель) и Оберон - 660 тыс. км (12 км на пиксель).

Вояджер-2 прошел в 81200 км от облачного слоя Урана 24 января 1986 года. При проходе АМС через плоскость колец на расстоянии около 100 тысяч км от центра планеты прибор для изучения волн в плазме регистрировал приблизительно 30 слабых столкновений с частицами каждую секунду. Примерно в это же время АМС подошла к Миранде - до 30 тысяч километров от ее поверхности. Это позволило получить снимки с разрешением 560 метров на пиксель.

Но, к сожалению, все пять крупных спутников Урана были отсняты лишь с одного - подсолнечного полушария.
Через 3 часа АМС вошла в радиотень Урана и провела радиозондирование ее атмосферы. Съемка системы Урана продолжалась и после пролета планеты. Всего от АМС было получено около 6 тыс. снимков Урана, его спутников и колец.

Источники:
Ежегодник БСЭ за 1987 год
Л. В. Ксанфомалити. "Дальше - только звезды", "Земля и Вселенная" № 3 1990 г.
Фотожурнал NASA

Оценка 1 Оценка 2 Оценка 3 Оценка 4 Оценка 5

Покинуть Солнечную систему и улететь к звездам очень сложно. Сначала, истратив немало топлива, надо взлететь над Землей в космос. При этом ваша скорость относительно Земли может оказаться нулевой, но если вы взлетели вовремя и в нужном направлении, то относительно Солнца вы будете лететь вместе с Землей, с ее орбитальной скоростью относительно Солнца 30 км/с.

Вовремя включив дополнительный двигатель и увеличив скорость еще на 17 км/с относительно Земли, относительно Солнца вы получите скорость 30 + 17 = 47 км/с, которая называется третьей космической. Она достаточна, чтобы безвозвратно покинуть Солнечную систему. Но топливо для рывка в 17 км/с доставлять на орбиту дорого, и ни один космический аппарат до сих пор не развивал третью космическую скорость и не покидал Солнечную систему таким способом. Самый быстрый аппарат «Новые горизонты» полетел к Плутону, включив дополнительный двигатель на орбите Земли, но развил скорость только в 16,3 км/с.

Более дешевый способ покинуть Солнечную систему - разогнаться за счет планет, сближаясь с ними, используя их как буксиры и постепенно наращивая скорость около каждой. Для этого нужна определенная. конфигурация планет - по спирали - чтобы, расставаясь с очередной планетой, лететь именно к следующей. Из-за медлительности самых далеких Урана и Нептуна такая конфигурация возникает редко, примерно раз в 170 лет. Последний раз Юпитер, Сатурн, Уран и Нептун выстроились в спираль в 1970-е годы. Американские ученые воспользовались этим построением планет и отправили за пределы Солнечной системы космические аппараты: «Пионер-10» (Pioneer 10, стартовал 3 марта 1972 года), «Пионер-11» (Pioneer 11, стартовал 6 апреля 1973), «Вояджер-2» (Voyager 2, стартовал 20 августа 1977) и «Вояджер-1» (Voyager 1, стартовал 5 сентября 1977).

Все четыре аппарата к началу 2015 года удалились от Солнца на границу Солнечной системы. «Пионер-10» имеет скорость 12 км/с относительно Солнца и находится от него на расстоянии около 113 а. е. (астрономических единиц, средних расстояний от Солнца до Земли), что составляет приблизительно 17 млрд км. «Пионер-11» - со скоростью 11,4 км/с на расстоянии 92 а.е., или 13,8 млрд км. «Вояджер-1» - со скоростью около 17 км/с на расстоянии 130,3 а.е., или 19,5 млрд км (это самый далекий от Земли и Солнца объект, созданный людьми). «Вояджер-2» - со скоростью 15 км/с на расстоянии 107 а. е„ или 16 млрд км. Но до звезд этим аппаратам лететь еще очень далеко: соседняя звезда Проксима Центавра находится дальше аппарата «Вояджер-1» в 2 000 раз. И не забывайте, что звезды маленькие, а расстояния между ними большие. Поэтому все аппараты, не запущенные специально к конкретным звездам (а таких пока нет), вряд ли вообще когда-нибудь пролетят рядом со звездами. Конечно, по космическим меркам «сближениями» можно считать: пролет «Пионера-10» через 2 миллиона лет в будущем на расстоянии несколько световых лет от звезды Альдебаран, «Вояджера-1» - через 40 тысяч лет в будущем на расстоянии двух световых лет от звезды АС+79 3888 в созвездии Жирафа и «Вояджера-2» - через 40 тысяч лет в будущем на расстоянии двух световых лет от звезды Росс 248.

Важно знать:

Третья космическая скорость - минимальная скорость, которую надо придать объекту около Земли для того, чтобы он покинул Солнечную систему. Равна 17 км/с относительно Земли и 47 км/с относительно Солнца.

Солнечный ветер - поток энергичных протонов, электронов и других частиц от Солнца в космическое пространство.

Гелиосфера - область пространства около Солнца, где солнечный ветер, двигаясь со скоростью порядка 300 км/с, является наиболее энергичной составляющей космической среды.

Все, что мы знаем о космосе за пределами Солнечной системы, мы узнаем, анализируя излучение (свет) и гравитацию космических объектов. При этом приходится делать много допущений. Например, массу черной дыры мы определяем, предполагая массы кружащих вокруг нее звезд. Их массы предполагаем, считая, что эти звезды похожи на Солнце.

«Пионеры» и «Вояджеры» - единственные пока эксперименты безо всяких допущений, организованные нами на краю (а в будущем - и за пределами) Солнечной системы. Прямой эксперимент - это совсем другое дело! Мы знаем массы этих аппаратов - мы их изготовили, поэтому мы точно вычисляем массу любого объекта, который влияет на аппараты. Вы скажете: «Таких нет, аппараты летят в межпланетной и межзвездной пустоте». Но оказалось, что это не пустота: даже пылинки, стучащие по аппаратам, существенно меняют их траекторию. В уникальных экспериментах всегда много мистики, ее полно и в истории «Пионеров» и «Вояджеров».

Первая странность: 15 августа 1977 года, за несколько дней до запуска максимально далеких аппаратов, был пойман самый загадочный радиосигнал «Wow!». Может быть, с его помощью инопланетяне сообщили друг другу о важном событии - готовящемся выходе людей за пределы Солнечной системы?

Каких успехов достигли «Вояджер» и «Пионер» в пути на край Солнечной системы

По дороге на край Солнечной системы «Пионер-10» исследовал астероиды и стал первым аппаратом, пролетевшим около Юпитера. И сразу озадачил ученых: энергия, излучаемая Юпитером в космос, оказалась в 2,5 раза больше энергии, получаемой Юпитером от Солнца. А крупнейшие спутники Юпитера оказались состоящими не из камней, а преимущественно изо льда. После 2003 года связь с «Пионером-10» потеряна. «Пионер-11» также исследовал Юпитер, а затем стал первым космическим аппаратом, исследовавшим Сатурн. В 1995 году связь с «Пионером-11» потеряна.

Аппараты «Вояджер » работают до сих пор и сообщают ученым о состоянии космоса вокруг них. После 37 лет полета! Это также можно считать мистикой, поскольку никто не рассчитывал на столь долгую работу: пришлось даже перепрограммировать счет времени внутри бортовых компьютеров «Вояджеров» - он не был рассчитан на даты после 2007 года. Внутри аппаратов энергию вырабатывают радиоизотопные генераторы, использующие ядерную реакцию распада плутония-238 - как в атомных электростанциях. Этой энергии должно хватить еще на десятки лет.

Основная аппаратура оказалась надежнее, чем предполагали создатели. Главная проблема - угасание радиосигналов связи с удалением аппаратов. Сейчас сигнал от аппаратов до Земли идет (со скоростью света) более 16 часов! Но антенны дальней космической связи, гигантские «тарелки» размером почти с футбольное поле, умудряются ловить сигналы «Вояджеров». Мощность передатчика «Вояджера» 28 Вт, примерно в 100 раз мощнее мобильного телефона. А падает мощность сигнала пропорционально квадрату расстояния. Легко сосчитать, что слышать сигнал «Вояджеров» - это как слышать мобильник с Сатурна (безо всяких станций сотовой связи!).

По пути на край Солнечной системы «Вояджеры» пролетели мимо Юпитера и Сатурна и получили детальные снимки их спутников. «Вояджер-2» пролетел, кроме того, мимо Урана и Нептуна, став первым и единственным пока аппаратом, посетившим эти планеты. «Вояджеры» подтвердили загадки, открытые «Пионерами»: многие спутники Юпитера и Сатурна оказались не только ледяными, но и, видимо, содержащими водоемы подо льдом.

Граница Солнечной системы

Границу Солнечной системы можно определять по-разному. Гравитационная граница проходит там, где притяжение Солнца уравновешивается притяжением Галактики - на расстоянии примерно 0,5 парсека, или 100000 а.е. от Солнца. Но изменения начинаются гораздо ближе. Мы точно знаем, что дальше Нептуна нет больших планет, но есть множество карликовых, а также кометы и прочие малые тела Солнечной системы, состоящие в основном изо льда. Видимо, на расстоянии от 1000 до 100000 а.е. от Солнца Солнечную систему со всех сторон окружает рой комочков снега, комет - так называемое Облако Оорта . Возможно, оно простирается до соседних звезд. И вообще снежинки, пылинки и газы, водород и гелий, вероятно, являются типичными составляющими межзвездной среды. Это значит, что между звездами - не пусто!

Важно знать:

Граница ударной волны - граничная поверхность внутри гелиосферы вдали от Солнца, где происходит резкое замедление солнечного ветра из-за его столкновения с межзвездной средой.

Гелиопауза - граница, на которой солнечный ветер полностью тормозится галактическим звездным ветром и другими компонентами межзвездной среды.

Галактический звездный ветер (космические лучи) - аналогичные солнечному ветру потоки энергичных частиц (протонов, электронов и других), возникающие в звездах и пронизывающие нашу Галактику.

Еще одну границу определяет солнечный ветер, поток энергичных частиц от Солнца: область, где он господствует, называется гелиосферой. Такой ветер создают и другие звезды, поэтому где-то солнечный ветер должен встречаться с налетающим на Солнечную систему объединенным ветром звезд Галактики - галактическим звездным ветром, или по-другому космическими лучами. В столкновении с галактическим звездным ветром солнечный тормозится и теряет энергию. Куда она девается, не совсем ясно. В этом столкновении ветров должны возникать загадочные явления, с которыми в последние годы как раз встречаются аппараты «Вояджер» .

Как и ожидали ученые, на некотором расстоянии от Солнца солнечный ветер начал стихать - это так называемая граница ударной волны, граница гелиосферы. Аппарат «Вояджер-1» пересекал ее несколько раз, т.к. она оказалась очень запутанной. К декабрю 2010 года на расстоянии 17,4 млрд км от Солнца для «Вояджера-1» солнечный ветер стих совершенно. Вместо него почувствовалось мощное дуновение межзвездного, галактического ветра: к 2012 году в 100 раз возросло число электронов, сталкивающихся с аппаратом со стороны межзвездного пространства. Соответственно, проявился мощный электрический ток и создаваемое им магнитное поле. Видимо, «Вояджер-1» достиг гелиопаузы. Однако, вопреки ожиданиям, аппарат обнаруживает не четкую границу двух сталкивающихся потоков частиц, а хаотическое нагромождение огромных пузырей. Потоки частиц на их поверхностях создают мощные электрические токи и магнитные поля.

«Вояджер» и «Пионер» - послания инопланетянам

Все упомянутые аппараты несут послания для инопланетян. На борту «Пионеров» закреплены металлические пластины, на которых схематически изображены: сам аппарат; в том же масштабе - мужчина и женщина; два атома водорода как мера времени и длины; Солнце и планеты (еще включая Плутон); траектория аппарата с Земли мимо Юпитера и своеобразная космическая карта, на которой показаны направления с Земли, 14 пульсаров и центр Галактики. Пульсары, быстро вращающиеся нейтронные звезды, в Галактике довольно редки, а частота их излучения является уникальной характеристикой, своеобразным «паспортом» каждого из них. Эта частота закодирована на табличке «Пионеров». Следовательно, космическая карта с пульсарами однозначно покажет инопланетянам, где в Галактике находится Солнечная система. Более того, со временем частота пульсара меняется вполне закономерно, и, сверив текущую частоту с указанной на карте, инопланетяне смогут определить, сколько времени прошло с момента запуска найденного ими аппарата «Пионер».

На борту аппаратов «Вояджер» установлены золотые пластинки в футлярах. На пластинках записаны звуки Земли (ветер, гром, сверчки, птицы, поезд, трактор и т.д.), приветствия на разных языках (по-русски «Здравствуйте, приветствую вас»), музыка (Бах, Чак Берри, Моцарт, Луи Армстронг, Бетховен, Стравинский и фольклор) и 122 изображения (по математике, физике, химии, планетам, анатомии человека, жизни людей и т. д. - полный список можно найти на сайте НАСА http://уоуаеег.ipl.nasa.gov/spacecraft/goldenrec.html. Прилагается устройство для воспроизведения этих звуков и изображений. На футляре пластинок - рисунок, в котором закодированы: два атома водорода для масштаба времени и длины; та же космическая карта с пульсарами и объяснение, как воспроизвести звуки и изображения.

Аномалия «Пионеров»

В 1997 году, через несколько месяцев после исчезновения сигнала «Пионера-11», один из ученых, анализируя данные, вскочил с кресла с криком: «Нас не пускают за пределы Солнечной системы!». Он обнаружил торможение аппарата после пересечения им орбиты Юпитера. У «Пионера-10» и долетавших до Юпитера аппаратов «Улисс» (Ulysses) и «Галилео» (Galileo) нашли такое же торможение. Только «Вояджеры» торможения не испытывали, поскольку при малейшем отклонении от графика полета разгонялись двигателями. Особый ажиотаж вокруг торможения «Пионеров» поднялся, когда выяснилось, что оно равно постоянной Хаббла, умноженной на скорость света. Выходит, что аппараты теряют энергию (тормозятся) точно так же, как частицы излучения (фотоны). И версия № 1: если фотоны теряют энергию из-за расширения Вселенной, значит, и «Пионеры» по той же причине. Другие объяснения: 2) ученые не учли какой-то вполне прозаичный источник потерь энергии (тогда, правда, совпадение с постоянной Хаббла чисто случайное) или 3) Вселенная наполнена субстанцией, отнимающей энергию при движении сквозь нее как у «Пионеров», так и у фотонов.

По космическим меркам «торможение «Пионеров» - очень маленькая величина: 1/1 ООО ООО ООО м/с2. Каждые сутки аппарат пролетает на 1,5 километра меньше, чем положенный миллион километров! Чтобы это объяснить, ученые 15 лет пытались учесть все остальные потери энергии и вещества, все силы, действующие на аппараты. Но поиски объяснения № 2 провалились. Правда, американский ученый Слава Турищев обнаружил, что тепло рассеивается аппаратами преимущественно в сторону от Солнца, т.е. в тень,- это и является непосредственной причиной торможения «Пионеров». Частица теплового излучения (фотон) имеет импульс, следовательно, покидая объект, излучение создает реактивную тягу в противоположном направлении (на этом основаны проекты аннигиляционных фотонных двигателей для межзвездных ракет). Но загадкой осталось, ЧТО именно заставляет аппараты так рассеивать тепло? И главное - аппараты разной конструкции!

Анализируя, с чем вообще в, казалось бы, пустом космосе взаимодействуют аппараты, ученые обнаружили, что по ним довольно часто стучат космические пылинки и льдинки. Приборы смогли определять направление и силу этих ударов. Оказалось, что Солнечную систему пронизывают мелкие твердые частицы двух сортов: одни летят вокруг Солнца, другие - к Солнцу из межзвездных далей. Именно вторые тормозят космические аппараты. При ударе кинетическая энергия пылинки становится внутренней, т.е.- теплом. Если пылинка остановлена аппаратом (что логично), то весь ее импульс передается аппарату. А ее энергия рассеивается в направлении ее прилета, т.е. в направлении от Солнца. Аппараты зарегистрировали немало ударов сравнительно крупными пылинками - порядка 10 микрон. И для объяснения торможения «Пионеров» им достаточно стукаться о такие пылинки в среднем каждые 10 км пути. Именно такую плотность пыли в межзвездном космосе увидели современные инфракрасные телескопы.

Вообще внешние области Солнечной системы (за Сатурном) оказались запылены, заснежены и загазованы гораздо сильнее, чем внутренние. Около Солнца пылинки, снежинки и газ когда-то слиплись в планеты, спутники и астероиды. Немало вещества осело и на Солнце. Но большинство пылинок, льдинок и атомов газов было изгнано Солнцем на периферию системы. К тому же, на периферию проникает межзвездная пыль, рождающаяся в оболочках других звезд. Значит, за Нептуном и далее в межзвездном и межгалактическом пространстве пылинок, льдинок и газа должно быть еще больше. Вполне возможно, что межзвездная среда, равномерно заполняющая Вселенную, действительно отнимает энергию как у космических аппаратов, так и у фотонов. Основную роль при этом играют крупные (10 микрон) пылинки и льдинки, а также молекулы водорода, которые другим образом себя не проявляют.

Please enable JavaScript to view the

36 лет назад в космос был запущен космический аппарат “Вояджер-2”. И хотя в последние годы его более быстро летящий брат-близнец “Вояджер-1” куда больше на слуху (чего стоят одни споры насчет того, ), не стоит забывать что “Вояджер-2” по-прежнему удерживает уникальное достижение - еще ни одному космическому аппарату ни до, ни после него не удавалось изучить одним заходом четыре планеты Солнечной системы. Причем, если к Сатурну и Юпитеру позже запускались другие аппараты, то Уран и Нептун с тех пор больше никто не посещал. Так что неизвестно, сколько еще десятилетий нам придется довольствоваться той информацией, что передал “Вояджер-2”.

Замысел


А началось все в конце 60-х годов. Благодаря тому, что все планеты-гиганты удачно расположились в сравнительно узком секторе, образовав своего рода гигантскую "дугу" (такое событие бывает раз в 175 лет), инженеры NASA задумали миссию, которая смогла одним бы заходом изучить все четыре планеты за очень короткий промежуток времени используя их гравитационное поле для ускорения.


Один из авторов и бессменный руководитель программы "Вояджер" профессор Эд Стоун. Что интересно, большинство нынешних участников проекта родилось позже, чем были запущены сами аппараты.

Изначальный план состоял в том, чтобы отправить в космос четыре космических корабля - но из-за значительного урезания бюджета NASA в начале 70-х, деньги были выделены только на два зонда, которые должны были изучить Юпитер и Сатурн. К счастью, создателям аппарата удалось добиться плана полета, предусматривающего возможность продления миссии "Вояджера-2" для изучения Урана и Нептуна. Для этого требовалось, чтобы “Вояджер-1” полностью выполнил все поставленные перед им задачи. К счастью, “Вояджер-1” сработал безупречно.

Старт

В соответствии с практикой тех лет, всего было построено три аппарата с бортовыми номерами VGR 77-1, VGR 77-2 и VGR 77-3. Последний был резервным, на тот случай если на каком-то из основных аппаратов будут обнаружены неполадки. Эта практика полностью себя оправдала когда на испытаниях аппарата с номером VGR 77-2 возникли проблемы - и потому его пришлось заменить на VGR 77-3, который и был запущен 20 августа 1977 года и известен теперь как "Вояджер-2".

Через две недели, 5 сентября 1977 года стартовал "Вояджер-1". Кому-то может показаться странным, что аппарат с номером 2 стартует раньше чем номер 1 - но первый "Вояджер" шел по более быстрой и экономичной траектории, и потому вскоре обогнал своего “брата”. VGR 77-2 же остался на Земле и сейчас инженеры отрабатывают на нем все команды, перед тем как передать их непосредственно на сами аппараты.

Юпитер


Зонд достиг Юпитера в июле 1979 году. “Вояджер-2” более близко подошёл к Европе и Ганимеду, чем “Вояджер-1” - переданные им снимки позволили выдвинуть гипотезу о существовании жидкого океана под поверхностью Европы.




Слева направо и сверху вниз: Ио, Европа, Ганимед, Каллисто


Обследование самого крупного спутника в Солнечной системе Ганимеда, показало, что он покрыт корой "грязного" льда, а его поверхность значительно старше поверхности Европы. Кроме того, пролетая мимо спутника Юпитера Ио, "Вояджер-2" подтвердил его продолжающуюся вулканическую активность, которая по словам Эда Стоуна является его персонально самым любимым открытием, сделанным в ходе миссии.


Ио на фоне Юпитера

Сатурн


Август 1981 года. Аппарат пролетает вблизи Сатурна и передает подробные фотографии газового гиганта, его колец и спутников (в том числе, Тефии, Япета и Энцелада).


Энцелад и Япет



На фотографии справа изображен фрагмент колец Сатурна. На фотографии слева - прощальное фото навсегда покидавшего нашу систему "Вояджера-1".

Уран

В январе 1985 года "Вояджер-2" пролетел вблизи Урана, передав на Землю тысячи снимков планеты, его спутников и колец. Благодаря этим фотографиям, учёные обнаружили 10 новых спутников, два новых кольца и исследовали девять уже известных.


Кольца Урана

Сам Уран получился достаточно невыразительным на фотографиях в видимом спектре, но вот снимки его спутников, в частности Миранды, удивили исследователей.


Слева направо: Миранда, Ариэль, Умбриэль, Титания и Оберон

До этого считалось что маленькие спутники быстро охлаждаются после своего образования, и представляют собой однообразную пустыню, испещрённую кратерами. Однако выяснилось, что на поверхности Миранды пролегают долины и горные хребты, среди которых были заметны скалистые утёсы. Это говорит о том, что история луны богата тектоническими и термальными явлениями.



На фотографии слева - Титания. Справа - Миранда.


"Прошальное" фото Урана

Нептун


24 августа 1989 года аппарат пролетел в 48 тыс. км от поверхности Нептуна, который с 2008 года считается последней планеты Солнечной системы. Несмотря на то, что к тому моменту полет длился уже 12 лет, отклонение корабля от начального графика составило всего несколько минут.

Были получены красивые снимки Нептуна и его уникального путника Тритона. На Тритоне были обнаружен криовулканизм, что стало большой неожиданностью для всех участников проекта.


"Вояджер-2" покидает Нептун и Тритон. Одна из последних сделанных аппаратом фотографий

Технические проблемы и их решение

Поскольку полёт «Вояджера-2» продлился гораздо дольше, чем было запланировано, ученым сопровождавшим миссию, пришлось решить огромное количество технических проблем. Заложенные изначально правильные подходы к конструированию аппаратов позволили это сделать. К наиболее значимым и успешно решённым проблемам можно отнести:

*Выход из строя компенсатора частоты сигнала радиопередатчика. Это устройство должно было подстраивать несущую частоту радиопередатчика в связи с тем, что она, у двигающегося со скоростью порядка 11,5 км/с аппарата, испытывает значительное смещение Допплера. Проблема была решена созданием в максимально сжатые сроки земного аналога этого устройства, но уже для наземного приёмного комплекса, работающего до сих пор. Без него связь с аппаратом была бы невозможна.

*Выход из строя одной из ячеек оперативной памяти бортовой ЭВМ — программу удалось переписать и загрузить так, что этот бит перестал влиять на нее.

*На определённом участке полёта применявшаяся система кодирования управляющего сигнала уже переставала отвечать требованиям достаточной помехозащищённости из-за ухудшения отношения сигнал/шум. В бортовую ЭВМ была загружена новая программа, осуществлявшая кодирование гораздо более защищённым кодом (был применён двойной код Рида — Соломона). Самое интересное то, что в 1977 году этот способ кодировки еще не существовал.

*В 2010 году, получив искаженное сообщение от зонда, команда провела тщательный дамп памяти, используя один из резервных компьютеров, и выяснила, что один бит в программе изменился с 0 на 1. Перезагрузка программы все исправила.

*При пролёте плоскости колец Сатурна бортовая поворотная платформа с телекамерами была заклинена, возможно, частицей этих колец. Осторожные попытки поворота её несколько раз в противоположные стороны позволили, в конце концов, разблокировать платформу.

*Падение мощности питающих изотопных элементов потребовало составления сложных циклограмм работы бортового оборудования, часть которого начали время от времени отключать, чтобы предоставить другой части достаточно электроэнергии.

*Огромное удаление аппарата от Земли потребовало многократной модернизации наземного приёмо-передающего комплекса, чтобы принимать слабеющий сигнал.

Планета X

Данные полученные "Вояджером-2" позволили ученым положить конец почти вековой дискуссии о существовании т.н. Планеты X - гипотетического небесного тела, оказывающего необъяснимое влияние на орбиту Урана. Поиски этого тела в свое время привели к открытию Плутона - но когда выяснилось, что его масса составляет лишь 0,002% от земной, стало понятно, что он никак не может вызывать такие отклонения.

Точка в этой истории была поставлена в 1994 году, когда по результатам уточнения массы Нептуна, проведенного на основании анализа данных полученных “Вояджером-2”, выяснилось что она на 0,5% меньше расчетной (разница была сопоставима с массой Марса). В результате исчезли несоответствия в орбите Урана, а с ними и надобность в Планете X.

Настоящее и будущее

В настоящее время, "Вояджер-2" находится на расстоянии 102 а.е. от Солнца и продолжает удаляться от него еще на 3.2 а.е. в год (для сравнения - "Вояджер-1" находится на расстоянии 125 а.е. от Солнца). Данные полученные с зонда позволяют предположить что гелиосфера ("пузырь", в пределах которого Солнце, его магнитное поле и солнечный ветер доминируют над межзвёздной средой), имеет выпуклость, направленную наружу (в северном полушарии нашей системы), и впадину, направленную внутрь (в южном полушарии).


И так как "Вояджер-2" летит как раз в “южном” направлении, то это означает, что он может успеть выйти в межзвездное пространство еще до того, как иссякнут его радиоизотопные элементы, что случится между 2020 и 2025 годами.


После того как будет утеряна связь, аппарат отправится в бесконечной путешествие к звездам. Через 40 000 лет Вояджер-2 пройдет на расстоянии 1.7 световых года от звезды Росс 248, а еще через 256 000 лет подойдет на расстояние 4.3 световых года к Сириусу. На его борту каждого из “Вояджеров” находится золотая пластинка с нашим . Возможно, однажды какой-то другой разумный вид получит его и сможет расшифровать.