Рассматривается такая последовательность. Определение числовой последовательности. Что такое последовательности и где их предел

Рассмотрим некоторое множество (класс) множеств , каждое из которых содержит по одному элементу. Любое натуральное число – это характеристика класса равносильных конечных множеств, тогда поставим в соответствие этому классу натуральное число «единица» и обозначим его символом «1». Выберем из данного класса любое «единичное» множество, пусть , и добавим в это множество еще один элемент, получим новое множество . Если образовать класс конечных множеств, равносильных множеству , то новому классу поставим в соответствие натуральное число «два» и обозначим его символом «2». Дальнейшее продолжение этого бесконечного процесса образования новых конечных множеств и соответствующих им классов приводит к образованию двух бесконечных последовательностей:

(а) бесконечной последовательности множеств (1); каждое из этих множеств служит представителем соответствующего класса;

(b) бесконечной последовательности натуральных чисел 1;2;3;…r …(2), каждое из этих чисел являются характеристикой соответствующего класса.

Сравнение последовательностей (1) и (2) приводит к следующим выводам:

1). В (1) есть начальный элемент и в (2) есть начальный элемент 1;

2). В (1) за каждым множеством непосредственно следует единственное множество, в котором на один элемент больше, чем в множестве предыдущего класса, поэтому в (2) за каждым натуральным числом непосредственно следует только одно натуральное число, большее предыдущего на единицу.

3). В (1) каждый класс, кроме начального, непосредственно следует только за одним классом, поэтому в (2) каждое натуральное число, кроме единицы, непосредственно следует только за одним натуральным числом.

4). В (1) каждое множество данного класса является либо подмножеством любого множества следующего за ним класса, либо равносильно подмножеству любого множества следующего за ним класса, поэтому в (2) натуральные числа расположены так, что каждое из них меньше любого, следующего за ним: 1<2<3<…..<n <n+ 1<… (3).

Опираясь нам основные положения метода математической индукции, можно утверждать, что (2) – это последовательность натуральных чисел.

3. Использование последовательности натуральных чисел для определения численности конечного множества.

Определить численность конечного множества – это значит сосчитать количество элементов в этом множестве, для такого подсчета используется понятие отрезка .

Опр. 4. Отрезком последовательности (2) называется множество первых натуральных чисел последовательности (2), не превосходящих числа «n ».



Пример . .

Для определение численности, например, множества приведем последовательность его элементов во взаимно однозначное соответствие с элементами отрезка :

. Так как , то множеству К можно поставить в соответствие число «6», это число называют числом элементов множества K: n(K)=6, говорят, что число «6» выражает численность множества К.

Опр . 5. Счетом элементов множества называется процесс приведения во взаимно однозначное соответствие элементов множества К с элементами отрезка натурального ряда .

При пересчете элементов конечного множества натурального ряда чисел выясняется не только количество элементов множества, но и определяется порядок расположения элементов в множестве. В первом случае натуральное число «n» показывает, сколько элементов содержит множество, «n» - называется количественным числом. Во втором случае натуральное число «n» представляет собой порядковый номер некоторого элемента множества, оно называется порядковым числом.

4. Операция сложения чисел в множестве N .

В множестве N натуральных чисел, кроме отношений равенства и неравенства, вводятся ряд операций. Каждую из операций можно ввести теорию на основе теории множеств.

Опр .6 . Суммой двух данных натуральных чисел

называется натуральное число , где .

5) , - свойство монотонности суммы (при сложении неравных чисел получаем неравные числа того же смысла).

Последовательность

Последовательность - это набор элементов некоторого множества:

  • для каждого натурального числа можно указать элемент данного множества;
  • это число является номером элемента и обозначает позицию данного элемента в последовательности;
  • для любого элемента (члена) последовательности можно указать следующий за ним элемент последовательности.

Таким образом, последовательность оказывается результатом последовательного выбора элементов заданного множества. И, если любой набор элементов является конечным, и говорят о выборке конечного объёма, то последовательность оказывается выборкой бесконечного объёма.

Последовательность по своей природе - отображение, поэтому его не следует смешивать с множеством, которое «пробегает» последовательность.

В математике рассматривается множество различных последовательностей:

  • временные ряды как числовой, так и не числовой природы;
  • последовательности элементов метрического пространства
  • последовательности элементов функционального пространства
  • последовательности состояний систем управления и автоматов.

Целью изучения всевозможных последовательностей является поиск закономерностей, прогноз будущих состояний и генерация последовательностей.

Определение

Пусть задано некоторое множество элементов произвольной природы. | Всякое отображение множества натуральных чисел в заданное множество называется последовательностью (элементов множества ).

Образ натурального числа , а именно, элемент , называется -ым членом или элементом последовательности , а порядковый номер члена последовательности - её индексом.

Связанные определения

  • Если взять возрастающую последовательность натуральных чисел, то её можно рассматривать как последовательность индексов некоторой последовательности: если взять элементы исходной последовательности с соответствующими индексами (взятыми из возрастающей последовательности натуральных чисел), то можно снова получить последовательность, которая называется подпоследовательностью заданной последовательности.

Комментарии

  • В математическом анализе важным понятием является предел числовой последовательности .

Обозначения

Последовательности вида

принято компактно записывать при помощи круглых скобок:

или

иногда используются фигурные скобки:

Допуская некоторую вольность речи, можно рассматривать и конечные последовательности вида

,

которые представляют собой образ начального отрезка последовательности натуральных чисел.

См. также


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Последовательность" в других словарях:

    ПОСЛЕДОВАТЕЛЬНОСТЬ. У И. В. Киреевского в статье «Девятнадцатый век» (1830) читаем: «От самого падения Римской империи до наших времен просвещение Европы представляется нам в постепенном развитии и в беспрерывной последовательности» (т. 1, с.… … История слов

    ПОСЛЕДОВАТЕЛЬНОСТЬ, последовательности, мн. нет, жен. (книжн.). отвлеч. сущ. к последовательный. Последовательность каких нибудь явлений. Последовательность в смене приливов и отливов. Последовательность в рассуждениях. Толковый словарь Ушакова.… … Толковый словарь Ушакова

    Постоянство, преемственность, логичность; ряд, прогрессия, вывод, серия, вереница, череда, цепь, цепочка, каскад, эстафета; упорство, обоснованность, набор, методичность, расстановка, стройность, упорность, подпоследовательность, связь, очередь,… … Словарь синонимов

    ПОСЛЕДОВАТЕЛЬНОСТЬ, числа или элементы, расположенные в организованном порядке. Последовательности могут быть конечными (имеющие ограниченное число элементов) или бесконечными, как полная последовательность натуральных чисел 1, 2, 3, 4 ....… … Научно-технический энциклопедический словарь

    ПОСЛЕДОВАТЕЛЬНОСТЬ, совокупность чисел (математических выражений и т.п.; говорят: элементов любой природы), занумерованных натуральными числами. Последовательность записывается в виде x1, x2,..., xn,... или коротко {xi} … Современная энциклопедия

    Одно из основных понятий математики. Последовательность образуется элементами любой природы, занумерованными натуральными числами 1, 2, ..., n, ..., и записывается в виде x1, x2, ..., xn, ... или коротко {xn} … Большой Энциклопедический словарь

    Последовательность - ПОСЛЕДОВАТЕЛЬНОСТЬ, совокупность чисел (математических выражений и т.п.; говорят: элементов любой природы), занумерованных натуральными числами. Последовательность записывается в виде x1, x2, ..., xn, ... или коротко {xi}. … Иллюстрированный энциклопедический словарь

    ПОСЛЕДОВАТЕЛЬНОСТЬ, и, жен. 1. см. последовательный. 2. В математике: бесконечный упорядоченный набор чисел. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Англ. succession/sequence; нем. Konsequenz. 1. Порядок следования одного за другим. 2. Одно из основных понятий математики. 3. Качество правильного логического мышления, при к ром рассуждение свободно от внутренних противоречий по одному и тому… … Энциклопедия социологии

    Последовательность - «функция, определенная на множестве натуральных чисел, множество значений которой может состоять из элементов любой природы: чисел, точек, функций, векторов, множеств, случайных величин и др., занумерованных натуральными числами … Экономико-математический словарь

Книги

  • Выстраиваем последовательность. Котята. 2-3 года , . Игра "Котята" . Выстраиваем последовательность. 1 уровень. Серия" Дошкольное образование" . Весёлые котята решили позагорать на пляже! Но никак не могут поделить места. Помоги им…

Функция a n =f (n) натурального аргумента n (n=1; 2; 3; 4;...) называется числовой последовательностью.

Числа a 1 ; a 2 ; a 3 ; a 4 ;…, образующие последовательность, называются членами числовой последовательности. Так a 1 =f (1); a 2 =f (2); a 3 =f (3); a 4 =f (4);…

Итак, члены последовательности обозначаются буквами с указанием индексов — порядковых номеров их членов: a 1 ; a 2 ; a 3 ; a 4 ;…, следовательно, a 1 — первый член последовательности;

a 2 - второй член последовательности;

a 3 - третий член последовательности;

a 4 - четвертый член последовательности и т.д.

Кратко числовую последовательность записывают так: a n =f (n) или {a n }.

Существуют следующие способы задания числовой последовательности:

1) Словесный способ. Представляет собой закономерность или правило расположения членов последовательности, описанный словами.

Пример 1 . Написать последовательность всех неотрицательных чисел, кратных числу 5.

Решение. Так как на 5 делятся все числа, оканчивающиеся на 0 или на 5, то последовательность запишется так:

0; 5; 10; 15; 20; 25; ...

Пример 2. Дана последовательность: 1; 4; 9; 16; 25; 36; ... . Задайте ее словесным способом.

Решение. Замечаем, что 1=1 2 ; 4=2 2 ; 9=3 2 ; 16=4 2 ; 25=5 2 ; 36=6 2 ; … Делаем вывод: дана последовательность, состоящая из квадратов чисел натурального ряда.

2) Аналитический способ. Последовательность задается формулой n-го члена: a n =f (n). По этой формуле можно найти любой член последовательности.

Пример 3. Известно выражение k-го члена числовой последовательности: a k = 3+2·(k+1). Вычислите первые четыре члена этой последовательности.

a 1 =3+2∙(1+1)=3+4=7;

a 2 =3+2∙(2+1)=3+6=9;

a 3 =3+2∙(3+1)=3+8=11;

a 4 =3+2∙(4+1)=3+10=13.

Пример 4. Определите правило составления числовой последовательности по нескольким ее первым членам и выразите более простой формулой общий член последовательности: 1; 3; 5; 7; 9; ... .

Решение. Замечаем, что дана последовательность нечетных чисел. Любое нечетное число можно записать в виде: 2k-1, где k — натуральное число, т.е. k=1; 2; 3; 4; ... . Ответ: a k =2k-1.

3) Рекуррентный способ. Последовательность также задается формулой, но не формулой общего члена, зависящей только от номера члена. Задается формула, по которой каждый следующий член находят через предыдущие члены. В случае рекуррентного способа задания функции всегда дополнительно задается один или несколько первых членов последовательности.

Пример 5. Выписать первые четыре члена последовательности {a n },

если a 1 =7; a n+1 = 5+a n .

a 2 =5+a 1 =5+7=12;

a 3 =5+a 2 =5+12=17;

a 4 =5+a 3 =5+17=22. Ответ: 7; 12; 17; 22; ... .

Пример 6. Выписать первые пять членов последовательности {b n },

если b 1 = -2, b 2 = 3; b n+2 = 2b n +b n+1 .

b 3 = 2∙b 1 + b 2 = 2∙(-2) + 3 = -4+3=-1;

b 4 = 2∙b 2 + b 3 = 2∙3 +(-1) = 6 -1 = 5;

b 5 = 2∙b 3 + b 4 = 2∙(-1) + 5 = -2 +5 = 3. Ответ: -2; 3; -1; 5; 3; ... .

4) Графический способ. Числовая последовательность задается графиком, который представляет собой изолированные точки. Абсциссы этих точек — натуральные числа: n=1; 2; 3; 4; ... . Ординаты — значения членов последовательности: a 1 ; a 2 ; a 3 ; a 4 ;… .

Пример 7. Запишите все пять членов числовой последовательности, заданной графическим способом.

Каждая точки в этой координатной плоскости имеет координаты (n; a n). Выпишем координаты отмеченных точек по возрастанию абсциссы n .

Получаем: (1 ; -3), (2 ; 1), (3 ; 4), (4 ; 6), (5 ; 7).

Следовательно, a 1 = -3; a 2 =1; a 3 =4; a 4 =6; a 5 =7.

Ответ: -3; 1; 4; 6; 7.

Рассмотренная числовая последовательность в качестве функции (в примере 7) задана на множестве первых пяти натуральных чисел (n=1; 2; 3; 4; 5), поэтому, является конечной числовой последовательностью (состоит из пяти членов).

Если числовая последовательность в качестве функции будет задана на всем множестве натуральных чисел, то такая последовательность будет бесконечной числовой последовательностью.

Числовую последовательность называют возрастающей , если ее члены возрастают (a n+1 >a n) и убывающей, если ее члены убывают (a n+1

Возрастающая или убывающая числовые последовательности называются монотонными .

Если каждому натуральному числу n поставлено в соответствие некоторое действительное число x n , то говорят, что задана числовая последовательность

x 1 , x 2 , … x n , …

Число x 1 называют членом последовательности с номером 1 или первым членом последовательности , число x 2 - членом последовательности с номером 2 или вторым членом последовательности, и т.д. Число x n называют членом последовательности с номером n .

Существуют два способа задания числовых последовательностей – с помощью и с помощью рекуррентной формулы .

Задание последовательности с помощью формулы общего члена последовательности – это задание последовательности

x 1 , x 2 , … x n , …

с помощью формулы, выражающей зависимость члена x n от его номера n .

Пример 1 . Числовая последовательность

1, 4, 9, … n 2 , …

задана с помощью формулы общего члена

x n = n 2 , n = 1, 2, 3, …

Задание последовательности с помощью формулы, выражающей член последовательности x n через члены последовательности с предшествующими номерами, называют заданием последовательности с помощью рекуррентной формулы .

x 1 , x 2 , … x n , …

называют возрастающей последовательностью, больше предшествующего члена.

Другими словами, для всех n

x n + 1 > x n

Пример 3 . Последовательность натуральных чисел

1, 2, 3, … n , …

является возрастающей последовательностью .

Определение 2. Числовую последовательность

x 1 , x 2 , … x n , …

называют убывающей последовательностью, если каждый член этой последовательности меньше предшествующего члена.

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

x n + 1 < x n

Пример 4 . Последовательность

заданная формулой

является убывающей последовательностью .

Пример 5 . Числовая последовательность

1, - 1, 1, - 1, …

заданная формулой

x n = (- 1) n , n = 1, 2, 3, …

не является ни возрастающей, ни убывающей последовательностью.

Определение 3. Возрастающие и убывающие числовые последовательности называют монотонными последовательностями .

Ограниченные и неограниченные последовательности

Определение 4. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной сверху, если существует такое число M, что каждый член этой последовательности меньше числа M .

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

Определение 5. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной снизу, если существует такое число m, что каждый член этой последовательности больше числа m .

Другими словами, для всех n = 1, 2, 3, … выполнено неравенство

Определение 6. Числовую последовательность

x 1 , x 2 , … x n , …

называют ограниченной, если она ограничена и сверху, и снизу.

Другими словами, существуют такие числа M и m, что для всех n = 1, 2, 3, … выполнено неравенство

m < x n < M

Определение 7. Числовые последовательности, которые не являются ограниченными , называют неограниченными последовательностями .

Пример 6 . Числовая последовательность

1, 4, 9, … n 2 , …

заданная формулой

x n = n 2 , n = 1, 2, 3, … ,

ограничена снизу , например, числом 0. Однако эта последовательность неограничена сверху .

Пример 7 . Последовательность

заданная формулой

является ограниченной последовательностью , поскольку для всех n = 1, 2, 3, … выполнено неравенство

На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике .

Для школьников, желающих хорошо подготовиться и сдать ЕГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

подготовительные курсы для школьников 10 и 11 классов

Приводится определение числовой последовательности. Рассмотрены примеры неограниченно возрастающих, сходящихся и расходящихся последовательностей. Рассмотрена последовательность, содержащая все рациональные числа.

Определение .
Числовой последовательностью { x n } называется закон (правило), согласно которому, каждому натуральному числу n = 1, 2, 3, . . . ставится в соответствие некоторое число x n .
Элемент x n называют n-м членом или элементом последовательности.

Последовательность обозначается в виде n -го члена, заключенного в фигурные скобки: . Также возможны следующие обозначения: . В них явно указывается, что индекс n принадлежит множеству натуральных чисел и сама последовательность имеет бесконечное число членов. Вот несколько примеров последовательностей:
, , .

Другими словами числовая последовательность - это функция, областью определения которой является множество натуральных чисел. Число элементов последовательности бесконечно. Среди элементов могут встречаться и члены, имеющие одинаковые значения. Также последовательность можно рассматривать как нумерованное множество чисел, состоящее из бесконечного числа членов.

Главным образом нас будет интересовать вопрос - как ведут себя последовательности, при n стремящемся к бесконечности: . Этот материал излагается в разделе Предел последовательности – основные теоремы и свойства . А здесь мы рассмотрим несколько примеров последовательностей.

Примеры последовательностей

Примеры неограниченно возрастающих последовательностей

Рассмотрим последовательность . Общий член этой последовательности . Выпишем несколько первых членов:
.
Видно, что с ростом номера n , элементы неограниченно возрастают в сторону положительных значений. Можно сказать, что эта последовательность стремится к : при .

Теперь рассмотрим последовательность с общим членом . Вот ее несколько первых членов:
.
С ростом номера n , элементы этой последовательности неограниченно возрастают по абсолютной величине, но не имеют постоянного знака. То есть эта последовательность стремится к : при .

Примеры последовательностей, сходящихся к конечному числу

Рассмотрим последовательность . Ее общий член . Первые члены имеют следующий вид:
.
Видно, что с ростом номера n , элементы этой последовательности приближаются к своему предельному значению a = 0 : при . Так что каждый последующий член ближе к нулю, чем предыдущий. В каком-то смысле можно считать, что есть приближенное значение для числа a = 0 с погрешностью . Ясно, что с ростом n эта погрешность стремится к нулю, то есть выбором n , погрешность можно сделать сколь угодно малой. Причем для любой заданной погрешности ε > 0 можно указать такой номер N , что для всех элементов с номерами большими чем N : , отклонение числа от предельного значения a не превзойдет погрешности ε : .

Далее рассмотрим последовательность . Ее общий член . Вот несколько ее первых членов:
.
В этой последовательности члены с четными номерами равны нулю. Члены с нечетными n равны . Поэтому, с ростом n , их величины приближаются к предельному значению a = 0 . Это следует также из того, что
.
Также как и в предыдущем примере, мы можем указать сколь угодно малую погрешность ε > 0 , для которой можно найти такой номер N , что элементы, с номерами большими чем N , будут отклоняться от предельного значения a = 0 на величину, не превышающую заданной погрешности. Поэтому эта последовательность сходится к значению a = 0 : при .

Примеры расходящихся последовательностей

Рассмотрим последовательность со следующим общим членом:

Вот ее первые члены:


.
Видно, что члены с четными номерами:
,
сходятся к значению a 1 = 0 . Члены с нечетными номерами:
,
сходятся к значению a 2 = 2 . Сама же последовательность, с ростом n , не сходится ни к какому значению.

Последовательность с членами, распределенными в интервале (0;1)

Теперь рассмотрим более интересную последовательность. На числовой прямой возьмем отрезок . Поделим его пополам. Получим два отрезка. Пусть
.
Каждый из отрезков снова поделим пополам. Получим четыре отрезка. Пусть
.
Каждый отрезок снова поделим пополам. Возьмем


.
И так далее.

В результате получим последовательность, элементы которой распределены в открытом интервале (0; 1) . Какую бы мы ни взяли точку из закрытого интервала , мы всегда можем найти члены последовательности, которые окажутся сколь угодно близко к этой точке, или совпадают с ней.

Тогда из исходной последовательности можно выделить такую подпоследовательность, которая будет сходиться к произвольной точке из интервала . То есть с ростом номера n , члены подпоследовательности будут все ближе подходить к наперед выбранной точке.

Например, для точки a = 0 можно выбрать следующую подпоследовательность:
.
= 0 .

Для точки a = 1 выберем такую подпоследовательность:
.
Члены этой подпоследовательности сходятся к значению a = 1 .

Поскольку существуют подпоследовательности, сходящиеся к различным значениям, то сама исходная последовательность не сходится ни к какому числу.

Последовательность, содержащая все рациональные числа

Теперь построим последовательность, которая содержит все рациональные числа. Причем каждое рациональное число будет входить в такую последовательность бесконечное число раз.

Рациональное число r можно представить в следующем виде:
,
где - целое; - натуральное.
Нам нужно каждому натуральному числу n поставить в соответствие пару чисел p и q так, чтобы любая пара p и q входила в нашу последовательность.

Для этого на плоскости проводим оси p и q . Проводим линии сетки через целые значения p и q . Тогда каждый узел этой сетки с будет соответствовать рациональному числу. Все множество рациональных чисел будет представлено множеством узлов. Нам нужно найти способ пронумеровать все узлы, чтобы не пропустить ни один узел. Это легко сделать, если нумеровать узлы по квадратам, центры которых расположены в точке (0; 0) (см. рисунок). При этом нижние части квадратов с q < 1 нам не нужны. Поэтому они не отображены на рисунке.


Итак, для верхней стороны первого квадрата имеем:
.
Далее нумеруем верхнюю часть следующего квадрата:

.
Нумеруем верхнюю часть следующего квадрата:

.
И так далее.

Таким способом мы получаем последовательность, содержащую все рациональные числа. Можно заметить, что любое рациональное число входит в эту последовательность бесконечное число раз. Действительно, наряду с узлом , в эту последовательность также будут входить узлы , где - натуральное число. Но все эти узлы соответствуют одному и тому же рациональному числу .

Тогда из построенной нами последовательности, мы можем выделить подпоследовательность (имеющую бесконечное число элементов), все элементы которой равны наперед заданному рациональному числу. Поскольку построенная нами последовательность имеет подпоследовательности, сходящиеся к различным числам, то последовательность не сходится ни к какому числу.

Заключение

Здесь мы дали точное определение числовой последовательности. Также мы затронули вопрос о ее сходимости, основываясь на интуитивных представлениях. Точное определение сходимости рассматривается на странице Определение предела последовательности . Связанные с этим свойства и теоремы изложены на странице