Приведите пример словесной заданной функции. Понятие функции Способы задания функции

>>Математика: Способы задания функции

Способы задания функции

Приводя в предыдущем параграфе различные примеры функций, мы несколько обеднили само понятие функции .

Ведь задать функцию - это значит указать правило, которое позволяет по произвольно выбранному значению х из Б(0 вычислить соответствующее значение у. Чаще всего это правило связано с формулой или с несколькими формулами - такой способ задания функции обычно называют аналитическим. Все функции, рассмотренные в § 7, были заданы аналитически. Между тем есть другие способы задания функции, о них и пойдет речь в настоящем параграфе.

Если функция была задана аналитически и нам удалось построить график функции, то мы фактически перешли от аналитического способа задания функции к графическому. Обратный же переход удается осуществить далеко не всегда. Как правило, это довольно трудная, но интересная задача.

Не всякая линия на координатной плоскости может рассматриваться как график некоторой функции. Например, окружность , заданная уравнением х 2 + у 2 - 9 (рис. 51), не является графиком функции, поскольку любая прямая х = а, где | а | <3, пересекает эту линию в д в у х точках (а для задания функции таких точек должно быть не более одной, т.е. прямая х = а должна пересекать линию F только в одной точке либо вообще не должна ее пересекать).

В то же время если эту окружность разрезать на две части - верхнюю полуокружность (рис. 52) и нижнюю полуокружность (рис. 53), - то каждую из полуокружностей можно считать графиком некоторой функции, причем в обоих случаях несложно от графического способа задания функции перейти к аналитическому.

Из уравнения х 2 + у 2 = 9 находим у 2 = 9 - х 2 и далее Графиком функции является верхняя полуокружность окружности х 2 + у 2 =9 (рис. 52), а графиком функции является нижняя полуокружность окружности х 2 + у 2 = 9 (рис. 53).


Этот пример позволяет обратить внимание на одно существенное обстоятельство. Посмотрите на график функции (рис. 52). Сразу ясно, что D(f) = [-3, 3]. А если бы речь шла об отыскании области определения аналитически заданной функции Тогда пришлось бы, как мы это делали в § 7, тратить время и силы на решение неравенства Потому-то обычно и стараются работать одновременно и с аналитическим, и с графическим способами задания функций. Впрочем, за два года изучения курса алгебры в школе вы к этому уже привыкли.

Кроме аналитического и графического, на практике применяют табличный способ задания функции. При этом способе приводится таблица, в которой указаны значения функции (иногда точные, иногда приближенные) для конечного множества значений аргумента. Примерами табличного задания функции могут служить таблицы квадратов чисел, кубов чисел, квадратных корней и т.д.

Во многих случаях табличное задание функции является удобным. Оно позволяет найти значение функции для имеющихся в таблице значений аргумента без всяких вычислений.

Аналитический, графический, табличный - наитабличный, более простые, а потому наиболее популярные словесный задания функции, для наших нужд этих способов вполне достаточно. На самом деле в математике имеется довольно много различных способов задания функции, но мы познакомим вас еще только с одним способом, который используется в весьма своеобразных ситуациях. Речь идет о словесном способе, когда правило задания функции описывается словами. Приведем примеры.

Пример 1.

Функция у = f(х) задана на множестве всех неотрицательных чисел с помощью следующего правила: каждому числу х > 0 ставится в соответствие первый знак после запятой в десятичной записи числа х. Если, скажем, х = 2,534, то f(х) = 5 (первый знак после запятой - цифра 5); если х = 13,002, то f(х) = 0; если то, записав в виде бесконечной десятичной дроби 0,6666..., находим f(х) = 6. А чему равно значение f(15)? Оно равно 0, так как 15 = 15,000... , и мы видим, что первый десятичный знак после запятой есть 0 (вообще-то верно и равенство 15 = 14,999... , но математики договорились не рассматривать бесконечные периодические десятичные дроби с периодом 9).

Любое неотрицательное число х можно записать в виде десятичной дроби (конечной или бесконечной), а потому для каждого значения х можно найти определенное значение первого знака после запятой, так что мы можем говорить о функции, хотя и несколько необычной. У этой функции
Пример 2.

Функция у = f(х) задана на множестве всех действительных чисел с помощью следующего правила: каждому числу х ставится в соответствие наибольшее из всех целых чисел, которые не превосходят х. Иными словами, функция у = f(х) определяется следующими условиями:

а) f(х) - целое число;
б) f(х) < х (поскольку f(х) не превосходит х);
в) f(х) + 1 > х (поскольку f(х) - наибольшее целое число, не превосходящее х, значит, f(х) + 1 уже больше, чем г). Если, скажем, х = 2,534, то f(х) = 2, поскольку, во-первых, 2 - целое число, во-вторых, 2 < 2,534 и, в-третьих, следующее целое число 3 уже больше, чем 2,534. Если х = 47, то /(х) = 47, поскольку, во-первых, 47 - целое число, во-вторых, 47< 47 (точнее, 47 = 47) и, в-третьих, следующее за числом 47 целое число 48 уже больше, чем 47. А чему равно значение f(-0,(23))? Оно равно -1. Проверяйте: -1 - наибольшее из всех целых чисел, которые не превосходят числа -0,232323....

У этой функции (множество целых чисел).

Функцию, о которой шла речь в примере 2, называют целой частью числа; для целой части числа х используют обозначение [х]. Например, = 2, = 47, [-0,(23)] = -1. Очень своеобразно выглядит график функции у = [х] (рис. 54).


Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Аналитическое задание функции

Функция %%y = f(x), x \in X%% задана явным аналитическим способом , если дана формула, указывающая последовательность математических действий, которые надо выполнить с аргументом %%x%%, чтобы получить значение %%f(x)%% этой функции.

Пример

  • %% y = 2 x^2 + 3x + 5, x \in \mathbb{R}%%;
  • %% y = \frac{1}{x - 5}, x \neq 5%%;
  • %% y = \sqrt{x}, x \geq 0%%.

Так, например, в физике при равноускоренном прямолинейном движении скорость тела определяется формулой %%v = v_0 + a t%%, а формула для перемещения %%s%% тела при равномерно ускоренном движении на промежутке времени от %%0%% до %%t%% записывается в виде: %% s = s_0 + v_0 t + \frac{a t^2}{2} %%.

Кусочно-заданные функции

Иногда рассматриваемая функция может быть задана несколькими формулами, действующими на различных участках области ее определения, в которой изменяется аргумент функции. Например: $$ y = \begin{cases} x ^ 2,~ если~x < 0, \\ \sqrt{x},~ если~x \geq 0. \end{cases} $$

Функции такого вида иногда называют составными или кусочно-заданными . Примером такой функции является %%y = |x|%%

Область определения функции

Если функция задана явным аналитическим способом с помощью формулы, но область определения функции в виде множества %%D%% не указана, то под %%D%% будем всегда подразумевать множество значений аргумента %%x%%, при которых данная формула имеет смысл. Так для функции %%y = x^2%% областью определения служит множество %%D = \mathbb{R} = (-\infty, +\infty)%%, поскольку аргумент %%x%% может принимать любые значения на числовой прямой . А для функции %%y = \frac{1}{\sqrt{1 - x^2}}%% областью определения будет множество значений %%x%% удовлетворяющих неравенству %%1 - x^2 > 0%%, т.е. %%D = (-1, 1)%%.

Преимущества явного аналитического задания функции

Отметим, что явный аналитический способ задания функции достаточно компактен (формула, как правило, занимает немного места), легко воспроизводим (формулу нетрудно записать) и наиболее приспособлен к выполнению над функциями математических действий и преобразований.

Некоторые из этих действий - алгебраические (сложение, умножение и др.) - хорошо известны из школьного курса математики, другие (дифференцирование, интегрирование) будем изучать в дальнейшем. Однако этот способ не всегда нагляден, так как не всегда четок характер зависимости функции от аргумента, а для нахождения значений функции (если они необходимы) требуются иногда громоздкие вычисления.

Неявное задание функции

Функция %%y = f(x)%% задана неявным аналитическим способом , если дано соотношение $$F(x,y) = 0, ~~~~~~~~~~(1)$$ связывающее значения функции %%y%% и аргумента %%x%%. Если задавать значения аргумента, то для нахождения значения %%y%%, соответствующего конкретному значению %%x%%, необходимо решить уравнение %%(1)%% относительно %%y%% при этом конкретном значении %%x%%.

При заданном значении %%x%% уравнение %%(1)%% может не иметь решения или иметь более одного решения. В первом случае заданное значение %%x%% не принадлежит области определения неявно заданной функции, а во втором случае задает многозначную функцию , имеющую при данном значении аргумента более одного значения.

Отметим, что если уравнение %%(1)%% удается явно разрешить относительно %%y = f(x)%%, то получаем ту же функцию, но уже заданную явным аналитическим способом. Так, уравнение %%x + y^5 - 1 = 0%%

и равенство %%y = \sqrt{1 - x}%% определяют одну и ту же функцию.

Параметрическое задание функции

Когда зависимость %%y%% от %%x%% не задана непосредственно, а вместо этого даны зависимости обоих переменных %%x%% и %%y%% от некоторой третьей вспомогательной переменной %%t%% в виде

$$ \begin{cases} x = \varphi(t),\\ y = \psi(t), \end{cases} ~~~t \in T \subseteq \mathbb{R}, ~~~~~~~~~~(2) $$то говорят о параметрическом способе задания функции;

тогда вспомогательную переменную %%t%% называют параметром.

Если из уравнений %%(2)%% удается исключить параметр %%t%%, то приходят к функции, заданной явной или неявной аналитической зависимостью %%y%% от %%x%%. Например, из соотношений $$ \begin{cases} x = 2 t + 5, \\ y = 4 t + 12, \end{cases}, ~~~t \in \mathbb{R}, $$ исключением параметра %%t%% получим зависимость %%y = 2 x + 2%%, которая задает в плоскости %%xOy%% прямую.

Графический способ

Пример графического задания функции

Приведенные выше примеры показывают, что аналитическому способу задания функции соответствует ее графическое изображение , которое можно рассматривать как удобную и наглядную форму описания функции. Иногда используют графический способ задания функции, когда зависимость %%y%% от %%x%% задают линией на плоскости %%xOy%%. Однако при всей наглядности он проигрывает в точности, поскольку значения аргумента и соответствующие им значения функции можно получить из графика лишь приближенно. Возникающая при этом погрешность зависит от масштаба и точности измерения абсциссы и ординаты отдельных точек графика. В дальнейшем графику функции отведем роль только иллюстрации поведения функции и поэтому будем ограничиваться построением «эскизов» графиков, отражающих основные особенности функций.

Табличный способ

Отметим табличный способ задания функции, когда некоторые значения аргумента и соответствующие им значения функции в определенном порядке размещаются в таблице. Так построены известные таблицы тригонометрических функций, таблицы логарифмов и т.п. В виде таблицы обычно представляют зависимость между величинами, измеряемыми при экспериментальных исследованиях, наблюдениях, испытаниях.

Недостаток этого способа состоит в невозможности непосредственного определения значений функции для значений аргумента, не входящих в таблицу. Если есть уверенность, что непредставленные в таблице значения аргумента принадлежат области определения рассматриваемой функции, то соответствующие им значения функции могут быть вычислены приближенно при помощи интерполяции и экстраполяции.

Пример

x 3 5.1 10 12.5
y 9 23 80 110

Алгоритмический и словесный способы задания функций

Функцию можно задать алгоритмическим (или программным ) способом, который широко используют при вычислениях на ЭВМ.

Наконец, можно отметить описательный (или словесный ) способ задания функции, когда правило соответствия значений функции значениям аргумента выражено словами.

Например, функцию %%[x] = m~\forall {x \in

Теперь всё, как надо. Тройка не включается в ответ, т.к. исходное неравенство строгое. А шестёрка включается, т.к. и функция при шестёрке существует, и условие неравенства выполняется. Мы успешно решили неравенство, которого (в привычной форме) нету...

Вот так некоторые знания и элементарная логика спасают в нестандартных случаях.)


Различные способы задания функции Аналитический, графический, табличный – наиболее простые, а потому наиболее популярные способы задания функции, для наших нужд этих способов вполне достаточно. Аналитическийграфическийтабличный На самом деле в математике имеется довольно много различных способов задания функции и один из них – словесный, который используется в весьма своеобразных ситуациях.


Словесный способ задания функции Функция может быть задана и словесно, т. е. описательно. Например, так называемая функция Дирихле задается следующим образом: функция у равна 0 для всех рациональных и 1 для всех иррациональных значений аргумента х. Такая функция не может быть задана таблицей, так как она определяется на всей числовой оси и множество значений ее аргумента бесконечно. Графически данная функция также не может быть задана. Аналитическое выражение для этой функции было, все же найдено, но оно так сложно, что не имеет практического значения. Словесный же способ дает краткое и ясное ее определение.


Пример 1 Функция y = f (x) задана на множестве всех неотрицательных чисел с помощью следующего правила: каждому числу х 0 ставится в соответствии первый знак после запятой в десятичной записи числа x. Если, скажем, х = 2,534, то f(х) = 5 (первый знак после запятой – цифра 5); если х = 13,002, то f(х) = 0; если х = 2/3, то, записав 2/3 в виде бесконечной десятичной дроби 0,6666…, находим f(x) = 6. А чему равно значение f(15)? Оно равно 0, так как 15 = 15,000…, и мы видим, что первый десятичный знак после запятой есть 0 (вообще – то верно равенство 15 = 14,999…, но математики договорились не рассматривать бесконечные периодические десятичные дроби с периодом 9).


Любое неотрицательное число х можно записать в виде десятичной дроби (конечной или бесконечной), а потому для каждого значения х можно найти определенное число значений первого знака после запятой, так что мы можем говорить о функции, хотя и несколько необычной. D (f) = . = 2 [" title="Функцию, которая определяется условиями: f (x) – целое число; f (x) x;x; f + 1 > x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 [" class="link_thumb"> 7 Функцию, которая определяется условиями: f (x) – целое число; f (x) x;x; f + 1 > x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 = 47 [ - 0,23] = - 1 x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 ["> x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 = 47 [ - 0,23] = - 1"> x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 [" title="Функцию, которая определяется условиями: f (x) – целое число; f (x) x;x; f + 1 > x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 ["> title="Функцию, которая определяется условиями: f (x) – целое число; f (x) x;x; f + 1 > x,x, целой частью числа называют целой частью числа. D (f) = (-;+), E (f) = Z (множество целых чисел) Для целой части числа х используют обозначение [ x ]. = 2 [">


Из всех указанных способов задания функции наибольшие возможности для применения аппарата математического анализа дает аналитический способ, а н нн наибольшей наглядностью обладает г гг графический. Вот почему математический анализ основывается на глубоком синтезе аналитических и геометрических методов. Исследование функций, заданных аналитически, проводится гораздо легче и становится наглядным, если параллельно рассматривать и графики этих функций.





Х у=х


Великий математик - Дирихле В профессор Берлинского, с 1855 Гёттингенского университетов. Основные труды по теории чисел и математическому анализу. В области математического анализа Дирихле впервые точно сформулировал и исследовал понятие условной сходимости ряда, установил признак сходимости ряда (т.н. признак Дирихле, 1862), дал (1829) строгое доказательство возможности разложения в ряд Фурье функции, имеющей конечное число максимумов и минимумов. Значительные работы Дирихле посвящены механике и математической физике (принцип Дирихле в теории гармонической функции). Дирихле Петер Густав Лежён () Немецкий математик, иностранный чл.-корр. Петербургской АН (с), член Лондонского королевского общества (1855), Парижской АН (1854), Берлинской АН. Дирихле доказал теорему о существовании бесконечно большого числа простых чисел во всякой арифметической прогрессии из целых чисел, первый член и разность которой - числа взаимно простые и изучал (1837) закон распределения простых чисел в арифметических прогрессиях, в связи с чем ввел функциональные ряды особого вида (т.н. ряды Дирихле).



Приводятся основные способы задания функций: явный аналитический; интервальный; параметрический; неявный; задание функции с помощью ряда; табличный; графический. Примеры применения этих способов

Существуют следующие способы задания функции y = f(x) :

  1. Явный аналитический способ по формуле вида y = f(x) .
  2. Интервальный.
  3. Параметрический: x = x(t) , y = y(t) .
  4. Неявный, как решение уравнения F(x, y) = 0 .
  5. В виде ряда, составленного из известных функций.
  6. Табличный.
  7. Графический.

Явный способ задания функции

При явном способе , значение функции определяется по формуле, представляющем собой уравнение y = f(x) . В левой части этого уравнения стоит зависимая переменная y , а в правой - выражение, составленное из независимой переменной x , постоянных, известных функций и операций сложения, вычитания, умножения и деления. Известными функциями являются элементарные функции и специальные функции, значения которых можно вычислить, используя средства вычислительной техники.

Вот несколько примеров явного задания функции с независимой переменной x и зависимой переменной y :
;
;
.

Интервальный способ задания функции

При интервальном способе задания функции , область определения разбивается на несколько интервалов, и функция задается отдельно для каждого интервала.

Вот несколько примеров интервального способа задания функции:


Параметрический способ задания функции

При параметрическом способе , вводится новая переменная, которую называют параметром. Далее задают значения x и y как функции от параметра, используя явный способ задания:
(1)

Вот примеры параметрического способа задания функции, используя параметр t :


Преимущество параметрического способа заключается в том, что одну и ту же функцию можно задать бесконечным числом способов. Например, функцию можно задать так:

А можно и так:

Такая свобода выбора, в некоторых случаях, позволяет применять этот способ для решения уравнений (см. «Дифференциальные уравнения, не содержащие одну из переменных »). Суть применения заключается в том, что мы подставляем в уравнение вместо переменных x и y две функции и . Затем задаем одну из них по собственному усмотрению, чтобы из получившегося уравнения можно было определить другую.

Также этот способ применяется для упрощения расчетов. Например, зависимость координат точек эллипса с полуосями a и b можно представить так:
.
В параметрическом виде этой зависимости можно придать более простую форму:
.

Уравнения (1) - это не единственный способ параметрического задания функции. Можно вводить не один, а несколько параметров, связав их дополнительными уравнениями. Например можно ввести два параметра и . Тогда задание функции будет выглядеть так:

Здесь появляется дополнительное уравнение , связывающее параметры. Если число параметров равно n , то должно быть n - 1 дополнительных уравнений.

Пример применения нескольких параметров изложен на странице «Дифференциальное уравнение Якоби ». Там решение ищется в следующем виде:
(2) .
В результате получается система уравнений. Чтобы ее решить, вводят четвертый параметр t . После решения системы получается три уравнения, связывающие четыре параметра и .

Неявный способ задания функции

При неявном способе , значения функции определяется из решения уравнения .

Например, уравнение эллипса имеет вид:
(3) .
Это простое уравнение. Если мы рассматриваем только верхнюю часть эллипса, , то можно выразить переменную y как функцию от x явным способом:
(4) .
Но даже если можно свести (3) к явному способу задания функции (4), последней формулой не всегда удобно пользоваться. Например, чтобы найти производную , удобно дифференцировать уравнение (3), а не (4):
;
.

Задание функции рядом

Исключительно важным способом задания функции является ее представление в виде ряда , составленного из известных функций. Этот способ позволяет исследовать функцию математическими методами и вычислять ее значения для прикладных задач.

Самым распространенным представлением является задание функции с помощью степенного ряда. При этом используется ряд степенных функций:
.
Также применяется ряд и с отрицательными степенями:
.
Например, функция синус имеет следующее разложение:
(5) .
Подобные разложения широко применяются в вычислительной технике для вычисления значений функций, поскольку они позволяют свести вычисления к арифметическим операциям.

В качестве иллюстрации, вычислим значение синуса от 30°, используя разложение (5).
Переводим градусы в радианы:
.
Подставляем в (5):



.

В математике, на ряду со степенными рядами, широко применяются разложения в тригонометрические ряды по функциям и , а также по другим специальным функциям. С помощью рядов можно производить приближенные вычисления интегралов, уравнений (дифференциальных, интегральных, в частных производных) и исследовать их решения.

Табличный способ задания функции

При табличном способе задания функции мы имеем таблицу, которая содержит значения независимой переменной x и соответствующие им значения зависимой переменной y . Независимая и зависимая переменные могут иметь разные обозначения, но мы здесь используем x и y . Чтобы определить значение функции при заданном значении x , мы по таблице, находим значение x , наиболее близкое к нашему значению. После этого определяем соответствующее значение зависимой переменной y .

Для более точного определения значения функции, мы считаем, что функция между двумя соседними значениями x линейна, то есть имеет следующий вид:
.
Здесь - значения функции, найденные из таблицы, при соответствующих им значениях аргументов .
Рассмотрим пример. Пусть нам нужно найти значение функции при . Из таблицы находим:
.
Тогда

.
Точное значение:
.
Из этого примера видно, что применение линейной аппроксимации привело к повышению точности в определении значения функции.

Табличный способ применяется в прикладных науках. До развития вычислительной техники, он широко применялся в инженерных и других расчетах. Сейчас табличный способ применяется в статистике и экспериментальных науках для сбора и анализа экспериментальных данных.

Графический способ задания функции

При графическом способе , значение функции определяется из графика, по оси абсцисс которого откладываются значения независимой переменной, а по оси ординат - зависимой.

Графический способ дает наглядное представление о поведении функции. Результаты исследования функции часто иллюстрируют ее графиком. Из графика можно определить приближенное значение функции. Это позволяет использовать графический способ в прикладных и инженерных науках.