Понятие синапса и его строение. Нервные синапсы. Учебное видео - строение синапса

передают информацию , вы-деляя химические вещества — нейромедиаторы и нейромодуляторы. Они высвобождаются из окончаний нервных клеток строго в специальные места контакта с другими клетками , называемые синапсами . Это либо участок соседнего нейрона, либо мышечная клетка. Число синапсов чрезвычайно велико, что обеспечивает большую площадь для передачи информации. Кроме того, между двумя клетками синап-тический контакт в свою очередь может соответствовать тысячам со-единений.

Различают несколько типов синапсов: химический , электрический и нервно-мышечный , который часто называют нервно-мышечным со-единением .

Химический синапс

Химический синапс имеет следующее строение. На нерв-ном окончании есть вздутие наподобие луковицы, которое называют синаптической бляшкой. В цитоплазме бляшек находятся митохонд-рии , некоторые другие органоиды клеток , но главным образом синап-тические пузырьки. В них содержится нейромедиатор, то самое веще-ство, с помощью которого нервный сигнал передается через синапс. Мембрана синаптической бляшки в месте синапса уплотняется и становится толстой, образуя пресинаптическую мембрану. Мембрана дендрита в области синапса тоже утолщена и образует постсинаптическую мембрану (рис. 34). Между двумя мембранами имеется промежуток шириной около 20 нм — синаптическая щель. В синапти-ческих пузырьках накапливаются нейромедиаторы, в частности ацетилхолин, которые затем выходят в синаптическую щель. Потенциал действия вызывает одновременный выброс нейромедиатора из множе-ства пузырьков. Постсинаптическая мембрана содержит белковые мо-лекулы, которые выполняют функцию рецепторов медиаторов, а так-же каналы, через которые в постсинаптический нейрон могут посту-пать ионы.

Электрический си-напс

Нервно-мышечный синапс (соеди-нение)

Особый вид синапса представляет собой нервно-мышечное соеди-нение . Это специализированное соединение между окончанием мо-торного нейрона и мышечным волокном (рис. 36). Аксоны моторного нейрона разветвляются на мышечной мембране. Последняя, так назы-ваемая сарколемма , образует многочисленные постсинаптические складки. Окончания мотонейрона секретируют цитоплазму, сходную с содержимым синаптической бляшки, и во время стимуляции из нее высвобождается медиатор — ацетилхолин. Проницаемость поверхно-сти сарколеммы для ионов натрия и калия изменяется и в результате происходит местная деполяризация. Она достаточна для возникнове-ния потенциала действия, который и вызывает сокращение мышцы.

Синапс представляет собой место функционального, а не физического контакта между нейронами; в нем происходит передача информации от одной клетки к другой. Обычно встречаются синапсы между концевыми веточками аксона одного нейрона и дендритами (аксодендритные синапсы) или телом (аксосоматические синапсы) другого нейрона. Число синапсов, как правило, очень велико, что обеспечивает большую площадь для передачи информации. Например, на дендритах и телах отдельных мотонейронов спинного мозга находится свыше 1000 синапсов. Некоторые клетки головного мозга могут иметь до 10000 синапсов (рис. 16.8).

Существуют два типа синапсов - электрические и химические - в зависимости от природы проходящих через них сигналов. Между окончаниями двигательного нейрона и поверхностью мышечного волокна существует нервно-мышечное соединение , отличающееся по строению от межнейронных синапсов, но сходное с ними в функциональном отношении. Структурные и физиологические различия между обычным синапсом и нервно-мышечным соединением будут описаны несколько позже.

Строение химического синапса

Химические синапсы - наиболее распространенный тип синапса у позвоночных. Это луковицеобразные утолщения нервных окончаний, называемые синаптическими бляшками и расположенные в непосредственной близости от окончания дендрита. Цитоплазма синаптической бляшки содержит митохондрии, гладкий эндоплазматический ретикулум, микрофиламенты и многочисленные синаптические пузырьки . Каждый пузырек имеет в диаметре около 50 нм и содержит медиатор - вещество, с помощью которого нервный сигнал передается через синапс. Мембрана синаптической бляшки в области самого синапса утолщена в результате уплотнения цитоплазмы и образует пресинаптическую мембрану . Мембрана дендрита в области синапса также утолщена и образует постсинаптическую мембрану . Эти мембраны разделены промежутком - синаптической щелью шириной около 20 нм. Пресинаптическая мембрана устроена таким образом, что к ней могут прикрепляться синаптические пузырьки и выделяться в синаптическую щель медиаторы. Постсинаптическая мембрана содержит крупные белковые молекулы, действующие как рецепторы медиаторов, и многочисленные каналы и поры (обычно закрытые), через которые в постсинаптический нейрон могут поступать ионы (см. рис. 16.10, А).

Синаптические пузырьки содержат медиатор, который образуется либо в теле нейрона (и попадает в синаптическую бляшку, пройдя через весь аксон), либо непосредственно в синаптической бляшке. В обоих случаях для синтеза медиатора нужны ферменты, образующиеся в теле клетки на рибосомах. В синаптической бляшке молекулы медиатора "упаковываются" в пузырьки, в которых они хранятся до момента высвобождения. Основные медиаторы нервной системы позвоночных - ацетилхолин и норадреналин , но существуют и другие медиаторы, которые будут рассмотрены позже.

Ацетилхолин - аммонийное производное, формула которого приведена на рис. 16.9. Это первый из известных медиаторов; в 1920 г. Отто Леви выделил его из окончаний парасимпатических нейронов блуждающего нерва в сердце лягушки (разд. 16.2). Структура норадреналина подробно рассматривается в разд. 16.6.6. Нейроны, высвобождающие ацетилхолин, называются холинэргическими , а высвобождающие норадреналин - адренэргическими .

Механизмы синаптической передачи

Как полагают, прибытие нервного импульса в синаптическую бляшку вызывает деполяризацию пресинаптической мембраны и повышение ее проницаемости для ионов Са 2+ . Входящие в синаптическую бляшку ионы Са 2+ вызывают слияние синаптических пузырьков с пресинаптической мембраной и выход их содержимого из клетки (экзоцитоз) , в результате чего оно попадает в синаптическую щель. Весь этот процесс называют электросекреторным сопряжением . После высвобождения медиатора материал пузырьков используется для образования новых пузырьков, заполняемых молекулами медиатора. Каждый пузырек содержит около 3000 молекул ацетилхолина.

Молекулы медиатора диффундируют через синаптическую щель (этот процесс занимает около 0,5 мс) и связываются с находящимися на постсинаптической мембране рецепторами, способными узнавать молекулярную структуру ацетилхолина. При связывании молекулы рецептора с медиатором ее конфигурация меняется, что приводит к открытию ионных каналов и поступлению в постсинаптическую клетку ионов, вызывающих деполяризацию или гиперполяризацию (рис. 16.4,А) ее мембраны в зависимости от природы высвобождаемого медиатора и строения молекулы рецептора. Молекулы медиатора, вызвавшие изменение проницаемости постсинаптической мембраны, сразу же удаляются из синаптической щели либо путем их реабсорбции пресинаптической мембраной, либо путем диффузии из щели или ферментативного гидролиза. В случае холинэргических синапсов находящийся в синаптической щели ацетилхолин гидролизуется ферментом ацетилхолинэстеразой , локализованным на постсинаптической мембране. В результате гидролиза образуется холин, он всасывается обратно в синаптическую бляшку и вновь превращается там в ацетилхолин, который хранится в пузырьках (рис. 16.10).

В возбуждающих синапсах под действием ацетилхолина открываются специфические натриевые и калиевые каналы, и ионы Na + входят в клетку, а ионы К + выходят из нее в соответствии с их концентрационными градиентами. В результате происходит деполяризация постсинаптической мембраны. Эту деполяризацию называют возбудительным постсинаптическим потенциалом (ВПСП). Амплитуда ВПСП обычно невелика, но продолжительность его больше, чем у потенциала действия. Амплитуда ВПСП меняется ступенчатым образом, и это позволяет предполагать, что медиатор освобождается порциями, или "квантами", а не в виде отдельных молекул. По-видимому, каждый квант соответствует освобождению медиатора из одного синаптического пузырька. Одиночный ВПСП не способен, как правило, вызвать деполяризацию пороговой величины, необходимой для возникновения потенциала действия. Но деполяризующие эффекты нескольких ВПСП складываются, и это явление носит название суммации . Два или больше ВПСП, возникших одновременно в разных синапсах одного и того же нейрона, могут сообща вызвать деполяризацию, достаточную для возбуждения потенциала действия в постсинаптическом нейроне. Это называют пространственной суммацией . Быстро повторяющееся высвобождение медиатора из пузырьков одной и той же синаптической бляшки под действием интенсивного стимула вызывает отдельные ВПСП, которые следуют так часто один за другим во времени, что их эффекты тоже суммируются и вызывают в постсинаптическом нейроне потенциал действия. Это называется временной суммацией . Таким образом, импульсы могут возникать в одиночном постсинаптическом нейроне либо как результат слабой стимуляции нескольких связанных с ним пресинаптических нейронов, либо как результат повторной стимуляции одного из его пресинаптических нейронов. В тормозных синапсах высвобождение медиатора повышает проницаемость постсинаптической мембраны за счет открытия специфических каналов для ионов К + и Сl - . Перемещаясь по концентрационным градиентам, эти ионы вызывают гиперполяризацию мембраны, называемую тормозным постсинаптическим потенциалом (ТПСП).

Медиаторы сами по себе не обладают возбуждающими или тормозящими свойствами. Например, ацетилхолин оказывает возбуждающее действие в большинстве нервно-мышечных соединений и других синапсов, но вызывает торможение в нервно-мышечных соединениях сердца и висцеральной мускулатуры. Эти противоположные эффекты обусловлены теми событиями, которые развертываются на постсинаптической мембране. От молекулярных свойств рецептора зависит, какие ионы будут входить в постсинаптический нейрон, а эти ионы в свою очередь определяют характер изменения постсинаптических потенциалов, как описано выше.

Электрические синапсы

У многих животных, в том числе у кишечнополостных и позвоночных, передача импульсов через некоторые синапсы осуществляется путем прохождения электрического тока между пре- и постсинаптическими нейронами. Ширина щели между этими нейронами составляет всего лишь 2 нм, и суммарное сопротивление току со стороны мембран и жидкости, заполняющей щель, очень мало. Импульсы проходят через синапсы без задержки, и на их передачу не действуют лекарственные вещества или другие химические препараты.

Нервно-мышечное соединение

Нервно-мышечное соединение представляет собой специализированный вид синапса между окончаниями двигательного нейрона (мотонейрона) и эндомизием мышечных волокон (разд. 17.4.2). Каждое мышечное волокно имеет специализированный участок - двигательную концевую пластинку , где аксон моторного нейрона (мотонейрона) разветвляется, образуя немиелинизированные веточки толщиной около 100 нм, проходящие в неглубоких желобках по поверхности мышечной мембраны. Мембрана мышечной клетки - сарколемма - образует множество глубоких складок, называемых постсинаптическими складками (рис. 16.11). Цитоплазма окончаний мотонейрона сходна с содержимым синаптической бляшки и во время стимуляции освобождает ацетилхолин с помощью того же механизма, о котором говорилось выше. Изменения конфигурации молекул - рецепторов, находящихся на поверхности сарколеммы, ведут к изменению ее проницаемости для Na + и К + , и в результате происходит местная деполяризация, называемая потенциалом концевой пластинки (ПКП). Эта деполяризация по величине вполне достаточна для возникновения потенциала действия, который распространяется по сарколемме в глубь волокна по системе поперечных трубочек (Т-системе ) (разд. 17.4.7) и вызывает сокращение мышцы.

Функции синапсов и нервно-мышечных соединений

Основная функция межнейронных синапсов и нервно-мышечных соединений состоит в передаче сигнала от рецепторов к эффекторам. Кроме того, строение и организация этих участков химической секреции обусловливают ряд важных особенностей проведения нервного импульса, которые можно резюмировать следующим образом:

1. Однонаправленность передачи. Высвобождение медиатора из пресинаптической мембраны и локализация рецепторов на постсинаптической мембране допускают передачу нервных сигналов по данному пути только в одном направлении, что обеспечивает надежность работы нервной системы.

2. Усиление. Каждый нервный импульс вызывает освобождение в нервно-мышечном синапсе достаточного количества ацетилхолина, чтобы вызвать распространяющийся ответ в мышечном волокне. Благодаря этому нервные импульсы, приходящие к нервно-мышечному соединению, как бы они ни были слабы, могут вызвать реакцию эффектора, и это повышает чувствительность системы.

3. Адаптация, или аккомодация. При непрерывной стимуляции количество освобождающегося в синапсе медиатора постепенно уменьшается до тех пор, пока запасы медиатора не будут истощены; тогда говорят, что синапс утомлен, и дальнейшая передача им сигналов тормозится. Адаптивное значение утомления состоит в том, что оно предотвращает повреждение эффектора вследствие перевозбуждения. Адаптация имеет место также на уровне рецепторов. (См. описание в разд. 16.4.2.)

4. Интеграция. Постсинаптический нейрон может получать сигналы от большого числа возбуждающих и тормозных пресинаптических нейронов (синаптическая конвергенция); при этом постсинаптический нейрон способен суммировать сигналы от всех пресинаптических нейронов. Благодаря пространственной суммации нейрон интегрирует сигналы, поступающие из многих источников, и выдает координированный ответ. В некоторых синапсах имеет место облегчение, состоящее в том, что после каждого стимула синапс становится более чувствительным к следующему стимулу. Поэтому следующие друг за другом слабые стимулы могут вызывать ответ, и это явление используется для повышения чувствительности определенных синапсов. Облегчение нельзя рассматривать как временную суммацию: здесь происходит химическое изменение постсинаптической мембраны, а не электрическая суммация постсинаптических мембранных потенциалов.

5. Дискриминация. Временная суммация в синапсе позволяет отфильтровывать слабые фоновые импульсы, прежде чем они достигнут мозга. Например, экстероцепторы кожи, глаз и ушей постоянно получают из окружающей среды сигналы, не имеющие особого значения для нервной системы: для нее важны лишь изменения интенсивности стимулов, приводящие к увеличению частоты импульсов, которое обеспечивает их передачу через синапс и надлежащую реакцию.

6. Торможение. Передача сигналов через синапсы и нервно-мышечные соединения может затормаживаться определенными блокирующими агентами, воздействующими на постсинаптическую мембрану (см. ниже). Возможно и пресинаптическое торможение, если на окончании аксона чуть выше данного синапса оканчивается другой аксон, образующий здесь тормозный синапс. При стимуляции такого тормозного синапса уменьшается число синаптических пузырьков, разряжающихся в первом, возбуждающем синапсе. Такое устройство позволяет изменять воздействие данного пресинаптического нейрона с помощью сигналов, приходящих от другого нейрона.

Химические воздействия на синапс и нервно-мышечное соединение

Химические вещества выполняют в нервной системе множество различных функций. Воздействия одних веществ широко распространены и хорошо изучены (как, например, возбуждающее действие ацетилхолина и адреналина), тогда как эффекты других носят локальный характер и пока еще недостаточно ясны. Некоторые вещества и их функции приведены в табл. 16.2.

Полагают, что некоторые лекарственные препараты, используемые при таких психических нарушениях, как тревожность и депрессия, воздействуют на химическую передачу в синапсах. Многие транквилизаторы и седативные средства (трициклический антидепрессант имипрамин, резерпин, ингибиторы моноаминоксидазы и др.) оказывают свой лечебный эффект, взаимодействуя с медиаторами, их рецепторами или отдельными ферментами. Так, например, ингибиторы моноаминоксидазы подавляют фермент, участвующий в расщеплении адреналина и норадреналина, и скорее всего оказывают свой лечебный эффект при депрессии, увеличивая продолжительность действия этих медиаторов. Галлюциногены типа диэтиламида лизерговой кислоты и мескалина , воспроизводят действие каких-то природных медиаторов мозга или же подавляют действие других медиаторов.

Проводившееся недавно изучение действия некоторых болеутоляющих веществ - опиатов героина и морфина - показало, что в мозгу млекопитающих присутствуют природные (эндогенные) вещества, вызывающие сходный эффект. Все эти вещества, взаимодействующие с опиатными рецепторами, получили общее название эндорфинов . К настоящему времени открыто много таких соединений; из них лучше всего изучена группа относительно небольших пептидов, называемых энкефалинами (мет-энкефалин, β-эндорфин и др.). Считается, что они подавляют болевые ощущения, влияют на эмоции и имеют отношение к некоторым психическим заболеваниям.

Все это открыло новые пути для изучения функций мозга и биохимических механизмов, лежащих в основе воздействия на боль и лечения с помощью таких различных методов, как внушение, гипно? и акупунктура. Предстоит выделить еще много других веществ типа эндорфинов, установить их строение и функции. С их помощью можно будет получить более полное представление о работе мозга, и это лишь вопрос времени, так как методы выделения и анализа веществ, присутствующих в столь малых количествах, непрерывно совершенствуются.

Мышечную и железистую клетку передается посредством специального структурного образования — синапса.

Синапс — структура, обеспечивающая проведение сигнала от одной к другой. Термин был введен английским физиологом Ч. Шеррингтоном в 1897 г.

Строение синапса

Синапсы состоят из трех основных элементов: пресинаптической мембраны, постсинаптической мембраны и синаптической щели (рис. 1).

Рис. 1. Строение синапса: 1 — микротрубочки; 2 — митохондрии; 3 — синаптические пузырьки с медиатором; 4 — пресинаптическая мембрана; 5 — постсинаптическая мембрана; 6 — рецепторы; 7 -синаптическая щель

Некоторые элементы синапсов могут иметь и другие названия. Например, синаптическая бляшка — это синапс между , концевая пластинка — постсинаптическая мембрана , моторная бляшка — пресинаптическое окончание аксона на мышечном волокне.

Пресинаптическая мембрана покрывает расширенное нервное окончание, которое представляет собой нейросекреторный аппарат. В пресинаптической части находятся пузырьки и митохондрии, обеспечивающие синтез медиатора. Медиаторы депонируются в гранулах (пузырьках).

Постсинаптическая мембрана - утолщенная часть мембраны клетки, с которой контактирует пресинаптическая мембрана. Она имеет ионные каналы и способна к генерации потенциала действия. Кроме того, на ней расположены специальные белковые структуры — рецепторы, воспринимающие действие медиаторов.

Синаптическая щель представляет собой пространство между пресинаптической и постсинаптической мембранами, заполненное жидкостью, близкой по составу к .

Рис. Строение синапса и процессы, осуществляемые в ходе синаптической передачи сигнала

Виды синапсов

Синапсы классифицируются по местоположению, характеру действия, способу передачи сигнала.

По месту положения выделяют нервно-мышечные синапсы, нервно-железистые и нейро-нейрональные; последние, в свою очередь, делятся на аксо-аксональные, аксо-дендритические, аксо-соматические, дендро-соматические, дендро-дендротические.

По характеру действия на воспринимающую структуру синапсы могут быть возбуждающими и тормозящими.

По способу передачи сигнала синапсы делятся на электрические, химические, смешанные.

Таблица 1. Классификация и виды синапсов

Классификация синапсов и механизм передачи возбуждения

Синапсы классифицируют следующим образом:

  • по местоположению — периферические и центральные;
  • по характеру их действия — возбуждающие и тормозящие;
  • по способу передачи сигналов — химические, электрические, смешанные;
  • по медиатору, с помощью которого осуществляется передача, — холинергические, адренергические, серотонинергические и т.д.

В возбуждение передается с помощью медиаторов (посредников).

Медиаторы — молекулы химических веществ, которые обеспечивают передачу возбуждения в синапсах. Другими словами химические вещества, участвующие в передаче возбуждения или торможения от одной возбудимой клетки к другой.

Свойства медиаторов

  • Синтезируются в нейроне
  • Накапливаются в окончании клетки
  • Выделяются при появлении иона Са2+ в пресинаптическом окончании
  • Оказывают специфическое действие на постсинаптическую мембрану

По химическому строению медиаторы можно подразделить на амины (норадреналин, дофамин, серотонин), аминокислоты (глицин, гамма-аминомасляная кислота) и полипептиды (эндорфины, энкефалины). Ацетилхолин известен в основном как возбуждающий медиатор и содержится в различных отделах ЦНС. Медиатор находится в пузырьках пресинаптического утолщения (синаптической бляшки). Медиатор синтезируется в клетках нейрона и может ресинтезироваться из метаболитов его расщепления в синаптической щели.

При возбуждении терминалей аксона происходит деполяризация мембраны синаптической бляшки, вызывающая поступление ионов кальция из внеклеточной среды внутрь нервного окончания через кальциевые каналы. Ионы кальция стимулируют перемещение синаптических пузырьков к пресинаптической мембране, их слияние с ней и последующий выход медиатора в синаптическую щель. После проникновения в щель медиатор диффундирует к постсинаптической мембране, содержащей на своей поверхности рецепторы. Взаимодействие медиатора с рецепторами вызывает открытие натриевых каналов, что способствует деполяризации постсинаптической мембраны и возникновению возбуждающего постсинаптического потенциала. В нервно-мышечном синапсе этот потенциал называется потенциалом концевой пластинки. Между деполяризованной постсинаптической мембраной и соседними с ней поляризованными участками этой же мембраны возникают местные токи, которые деполяризуют мембрану до критического уровня с последующей генерацией потенциала действия. Потенциал действия распространяется по всем мембранам, например, мышечного волокна и вызывает его сокращение.

Выделившийся в синаптическую щель медиатор связывается с рецепторами постсинаптической мембраны и подвергается расщеплению соответствующим ферментом. Так, холинэстераза разрушает медиатор ацетилхолин. После этого некоторое количество продуктов расщепления медиатора поступает в синаптическую бляшку, где из них снова ресинтезируется ацетилхолин.

В организме имеются не только возбуждающие, но и тормозные синапсы. По механизму передачи возбуждения они сходны с синапсами возбуждающего действия. В тормозных синапсах медиатор (например, гамма-аминомасляная кислота) связывается с рецепторами постсинаптической мембраны и способствует открытию в ней . При этом активизируется проникновение этих ионов внутрь клетки и развивается гиперполяризация постсинаптической мембраны, обусловливающая возникновение тормозного постсинаптического потенциала.

В настоящее время выяснено, что один медиатор может связываться с несколькими различными рецепторами и индуцировать различные реакции.

Химические синапсы

Физиологические свойства химических синапсов

Синапсы с химической передачей возбуждения обладают определенными свойствами:

  • возбуждение проводится в одном направлении, так как медиатор выделяется только из синаптической бляшки и взаимодействует с рецепторами на постсинаптической мембраны;
  • распространение возбуждения через синапсы происходит медленнее, чем по нервному волокну (синаптическая задержка);
  • передача возбуждения осуществляется с помощью специфических медиаторов;
  • в синапсах изменяется ритм возбуждения;
  • синапсы способны утомляться;
  • синапсы обладают высокой чувствительностью к различным химическим веществам и гипоксии.

Одностороннее проведение сигнала. Сигнал передается только от пресинаптической мембраны к постсинаптической. Это вытекает из особенностей строения и свойств синаптических структур.

Замедленная передача сигнала. Обусловлена синаптической задержкой в передаче сигнала с одной клетки на другую. Задержка вызывается временными затратами на процессы выброса медиатора, его диффузии к постсинаптической мембране, связывания с рецепторами постсинаптической мембраны, деполяризации и преобразования постсинаптического потенциала в ПД (потенциал действия). Длительность синаптической задержки колеблется от 0,5 до 2 мс.

Способность к суммации эффекта от приходящих к синапсу сигналов. Такая суммация проявляется, если последующий сигнал приходит к синапсу через короткое время (1- 10 мс) после предыдущего. В таких случаях амплитуда ВПСП возрастает и на постсинаптическом нейроне может генерироваться большая частота ПД.

Трансформация ритма возбуждении. Частота нервных импульсов, приходящих к пресинаптической мембране, обычно не соответствует частоте ПД, генерируемых постсинаптическим нейроном. Исключение составляют синапсы, передающие возбуждение с нервного волокна на скелетную мышцу.

Низкая лабильность и высокая утомляемость синапсов. Синапсы могут проводить 50-100 нервных импульсов в секунду. Это в 5-10 раз меньше, чем максимальная частота ПД, которую могут воспроизводить нервные волокна при их электростимуляции. Если нервные волокна считаются практически неутомляемыми, то в синапсах утомление развивается весьма быстро. Это происходит из-за истощения запасов медиатора, энергетических ресурсов, развития стойкой деполяризации постсинаптической мембраны и т.д.

Высокая чувствительность синапсов к действию биологически активных веществ, лекарственных препаратов и ядов. Например, яд стрихнин блокирует функцию тормозных синапсов ЦНС, связываясь с рецепторами, чувствительными к медиатору глицину. Столбнячный токсин блокирует тормозные синапсы, нарушая выделение медиатора из пресинаптической терминали. В обоих случаях развиваются опасные для жизни организма явления. Примеры действия биологически активных веществ и ядов на передачу сигналов в нервно-мышечных синапсах рассмотрены выше.

Свойства облегчения и депрессии синоптической передачи. Облегчение синаптической передачи имеет место, когда нервные импульсы поступают к синапсу через короткое время (10-50 мс) друг за другом, т.е. достаточно часто. При этом в течение некоторого промежутка времени каждый последующий ПД, приходящий к пресинаптической мембране, вызывает увеличение содержания медиатора в синаптической щели, возрастание амплитуды ВПСП и увеличение эффективности синаптической передачи.

Одним из механизмов облегчения является накопление ионов Са 2 в пресинаптической терминали. Для удаления кальциевым насосом порции кальция, вошедшей в синаптическую терминаль при поступлении ПД, необходимо несколько десятков миллисекунд. Если в это время приходит новый потенциал действия, то новая порция кальция входит в терминаль и ее эффект на высвобождение нейромедиатора складывается с остаточным количеством кальция, которое кальциевый насос не успел удалить из нейроплазмы терминали.

Имеются и другие механизмы развития облегчения. Этот феномен в классических руководствах по физиологии называют также посттетанической потенциацией. Облегчение синаптической передачи имеет значение в функционировании механизмов памяти, для образования условных рефлексов и обучения. Облегчение передачи сигналов лежит в основе развития пластичности синапсов и улучшения их функций при частой активации.

Депрессия (угнетение) передачи сигналов в синапсах развивается при поступлении очень частых (для нервно-мышечного синапса более 100 Гц) нервных импульсов к пресинаптической мембране. В механизмах развития явления депрессии имеют значение истощение запасов медиатора в пресинаптической терминали, снижение чувствительности рецепторов постсинаптической мембраны к медиатору, развитие стойкой деполяризации постсинаптической мембраны, затрудняющих генерацию ПД на мембране постсинаптической клетки.

Электрические синапсы

Кроме синапсов с химической передачей возбуждения в организме есть синапсы с электрической передачей. Эти синапсы имеют очень узкую синаптическую щель и пониженное электрическое сопротивление между двумя мембранами. Благодаря наличию поперечных каналов между мембранами и низкому сопротивлению, электрический импульс легко проходит через мембраны. Электрические синапсы обычно характерны для однотипных клеток.

В результате воздействия раздражителя пресинаптический потенциал действия раздражает постсинаптическую мембрану, где возникает распространяющийся потенциал действия.

Характеризуются большей скоростью проведения возбуждения по сравнению с химическими синапсами и низкой чувствительностью к воздействию химических веществ.

Электрические синапсы бывают с одно- и двусторонней передачей возбуждения.

В организме встречаются и электрические тормозные синапсы. Тормозное влияние развивается за счет действия тока, который вызывает гиперполяризацию постсинаптической мембраны.

В смешанных синапсах может происходить передача возбуждения с помощью как электрических импульсов, так и медиаторов.

Синапс – структурно-функциональное образование, которое обеспечивает переда-

чу возбуждения с нейрона на иннервируемую им клетку (нервную, железистую, мышеч-

ную). Синапсы можно разделить на следующие виды:

1) по способу передачи возбуждения – электрические, химические ;

2) по локализации – центральные, периферические ;

3) по функциональному признаку – возбуждающие, тормозные ;

4) по структурно-функциональным особенностям рецепторов постсинаптической

мембраны – холинергические, адренергические, серотонинергические и др .

2. Строение мионеврального синапса

Мионевральный синапс состоит из:

а) пресинаптической мембраны;

б) постсинаптической мембраны;

в) синаптической щели.

Пресинаптическая мембрана – это электрогенная мембрана пресинаптиче-

ских терминалей (окончаний нервного волокна). В пресинаптических терминалях

образуются и накапливаются в пузырьках (везикулах) медиаторы (трансмиттеры)

ацетилхолин, норадреналин, гистамин, серотонин, гамма-аминомаслянная кислота

и другие.

Постсинаптическая мембрана – это часть мембраны иннервируемой клет-

ки, в которой располагаются хемочувствительные ионные каналы. Кроме того, на

постсинаптической мембране локализованы рецепторы к тому или иному медиато-

ру и ферменты, их разрушаюшие, например, холинорецепторы и холинэстераза.

Синаптическая щель – заполненная межклеточной жидкостью, располага-

ется между пре- и постсинаптической мембранами.

3. Механизм проведения возбуждения через мионевральный синапс

Мионевральный синапс образован аксоном мотонейрона на поперечно-полосатом

мышечном волокне. Возбуждение через мионевральный синапс передается с помощью

ацетилхолина. Под влиянием нервных импульсов пресинаптическая мембрана деполяри-

зуется. Ацетилхолин освобождается из пузырьков и поступает в синаптическую щель.

Освобождение медиатора происходит порциями – квантами. Ацетилхолин диффундирует

через синаптическую щель к постсинаптической мембране. На постсинаптической мем-

бране медиатор взаимодействует с холинорецептором. Вследствие этого повышается ее

проницаемость для ионов натрия и калия и возникает потенциал концевой пластинки

(ПКП) или возбуждающий постсинаптический потенциал (ВПСП). По механизму круго-

вых токов под его влиянием возникает потенциал действия в участках мембраны мышеч-

ного волокна, прилегающих к постсинаптической мембране.

Связь ацетилхолина с холинорецептором непрочная. Медиатор разрушается холи-

нэстеразой. Электрическое состояние постсинаптической мембраны при этом восстанав-

ливается.

4. Физиологические свойства синапсов

Синапсы обладают следующими физиологическими свойствами:


а) одностороннее проведение возбуждения (клапанное свойство) – обусловлено

особенностями строения синапса;

б) синаптическая задержка – связана с тем, что требуется определенное время на

проведение возбуждения через синапс;

в) потенциация (облегчение) проведения последующих нервных импульсов –

происходит потому, что на каждый последующий импульс выделяется больше ме-

г) низкая лабильность – обусловлена особенностями обменных и физико-

химических процессов;

д) относительно легкое возникновение торможения и быстрое развитие утомле-

ния – объясняется низкой лабильностью.

е) десенситизация – снижение чувствительности холинорецептора к ацетилхоли-

Спинной мозг, особенности его строения. Виды нейронов. Функциональное различие передних и задних корешков спинного мозга. Закон Белла-Мажанди. Физиологическое значение спинного мозга. «Законы» рефлекторной деятельности спинного мозга.

В спинном мозге находятся: 1. мотонейроны (эффекторные, двигательные нервные

клетки, из 3%), 2. вставочные нейроны (интернейроны, промежуточные, их 97%).

Мотонейроны делятся на три вида:

1) α – мотонейроны, иннервируют скелетные мышцы;

2) γ – мотонейроны, иннервируют проприорецепторы мышц;

3) нейроны вегетативной нервной системы, аксоны которых иннервируют нерв-

ные клетки, расположенные в вегетативных ганглиях, а через них внутренние

органы, сосуды и железы.

2. Функциональное значение передних и задних корешков спинного мозга

(закон Белла-Мажанди)

Закон Белла-Мажанди: «Все афферентные нервные импульсы поступают в спин-

ной мозг через задние корешки (чувствительные), а все эфферентные нервные импульсы

покидают (выходят) спинной мозг через передние корешки (двигательные)».

3. Функции спинного мозга

Спинной мозг выполняет две функции: 1) рефлекторную , 2) проводниковую .

За счет рефлекторной деятельности спинного мозга осуществляется ряд простых и

сложных безусловных рефлексов. Простые рефлексы имеют двухнейронные рефлектор-

ные дуги, сложные – трех и более нейронные рефлекторные дуги.

Рефлекторную деятельность спинного мозга можно изучить на «спинальных живот-

ных» - животных, у которых удален головной мозг и сохранен спинной мозг.

4. Нервные центры спинного мозга.

В пояснично-крестцовом отделе спинного мозга находятся: 1. центр мочеиспуска-

ния , 2. центр акта дефекации , 3. рефлекторные центры половой деятельности.

В боковых рогах грудного и поясничного отделов спинного мозга располагаются:

1) спинальные сосудодвигательные центры , 2) спинальные центры потоотделения .

В передних рогах спинного мозга располагаются на разных уровнях центры дви-

гательных рефлексов (центры экстеро- и проприоцептивных рефлексов).

5. Проводящие пути спинного мозга

Различают следующие проводщящие пути спинного мозга: 1) восходящие (аффе-

рентные) и 2) нисходящие (эфферентные).

Восходящие пути связывают рецепторы организма (проприо-, тактильные, боле-

вые) с различными отделами головного мозга.

Нисходящие пути спинного мозга: 1) пирамидный , 2) экстрапирамидный . Пира-

мидный путь – от нейронов передней центральной извилины коры головного мозга до

спинного мозга, не прерывается. Экстрапирамидный путь – также начинается от нейро-

нов передней центральной извилины и заканчивается в спинном мозге. Этот путь много-

нейронный, он прерывается в: 1) подкорковых ядрах; 2) промежуточном мозге;

3) среднем мозге; 4) продолговатом мозге.

Регуляция сосудистого тонуса. Местная регуляция (ауторегуляция). Нервная регуляция тонуса сосудов (сосудосуживающие и сосудорасширяющие нервы). Гуморальная регуляция сосудистого тонуса. Показатели артериального давления у детей.

Существуют два вида сосудистого тонуса:

Базальный (миогенный);

Неврогенный.

Базальный тонус.

Если денервировать сосуд и устранить источники гуморальных воздействий, можно выявить базальный тонус сосудов.

Различают:

а) электрогенный компонент - обусловлен спонтанной электрической активностью миоцитов сосудистой стенки. Наибольшая автоматия - у прекапиллярных сфинктеров и артериол;

б) неэлектрогенный компонент (пластический) - обусловлен растяжением мышечной стенки из-за давления на нее крови.

Показано, что автоматия гладкомышечных клеток усиливается под влиянием их растяжения. Возрастает также и их механическая (сократительная) активность (т.е. наблюдается положительная обратная связь: между величиной АД и сосудистым тонусом).

Местная гуморальная регуляция.

1. Сосудорасширяющие:

а) неспецифические метаболиты - непрерывно образуются в тканях, и в месте образования они всегда препятствуют сужению сосудов, а также вызывают их расширение (метаболическая регуляция).

К ним относятся - СО2, угольная кислота, Н+, молочная кислота, закисление (накопление кислых продуктов), снижение напряжения О2 увеличение осмотического давления вследствие накопления низкомолекулярных продуктов, ок сид азота (N0) (продукт инкреции эндотелия сосудов).

б) БАВ (при действии в месте выделения) - образуются специализированными клетками, которые входят в состав сосудистого окружения.

1. Сосудорасширяющие БАВ (в месте выделения) -

ацетилхолин, гистамин, брадикинин, некоторые простагландины, простациклин, секретируемый эндотелием, может опосредовать свой эффект через оксид азота.

2. Сосудосуживающие БАВ (при действии в месте выделения) - образуются специализированными клетками, которые входят в состав сосудистого окружения - катехоламины, серотонин, некоторые простагландины, эндотелии 1-пептид, 21-на аминокислота, продукт инкреции эндотелия сосудов, а также тромбоксан А2, выделяемый тромбоцитами при агрегации.

Роль БАВ в дистантной регуляции сосудистого тонуса.

Наряду с нервными влияниями важную роль в регуляции сосудистого тонуса играют различные БАВ, обладаю- щие дистантным, сосудодвигательным действием:

Гормоны (вазопрессин, адреналин); парагормоны (серотонин, брадикинин, ангиотензин, гистамин, опиатные пептиды), эндорфины и энкефалины.

В основном эти БАВ обладают прямым действием, так как большинство сосудов гладкой мускулатуры имеет специфические рецепторы к этим БАВ.

Одни БАВ вызывают повышение сосудистого тонуса, другие уменьшают его.

Функции эндотелия мелких кровеносных сосудов и их роль в регуляции процессов гемодинамики, гемостаза, иммунитета:

1. Самообеспечение структуры (саморегуляция клеточного роста и восстановления).

2. Образование вазоактивных веществ, а также активация и инактивация БАВ, циркулирующих в крови.

3. Местная регуляция гладкомышечного тонуса: синтез и секреция простагландинов, простациклина, эндотелинов и NO.

4. Передача вазомоторных сигналов от капилляров и артериол более крупным сосудам (креаторные связи).

5. Поддержание антикоагулянтных свойств поверхности (выделение веществ, препятствующих различным видам гемостаза, обеспечение зеркальности поверхности, ее несмачиваемости).

6. Реализация защитных (фагоцитоз) и иммунных (связывание иммунных комплексов) реакций.

7. Образование вазоактивных веществ, а также активация и инактивация БАВ, циркулирующих в крови.

8. Местная регуляция гладкомышечного тонуса: синтез и секреция простагландинов, простациклина, эндотелинов и NO.

9. Передача вазомоторных сигналов от капилляров и артериол более крупным сосудам (креаторные связи).

10. Поддержание антикоагулянтных свойств поверхности (выделение веществ, препятствующих различным видам гемостаза, обеспечение зеркальности поверхности, ее несмачиваемости).

11. Реализация защитных (фагоцитоз) и иммунных (связывание иммунных комплексов) реакций.

Неврогенный тонус обусловлен деятельностью сосудодвигательного центра (СДЦ) в продолговатом мозге, на дне IV желудочка (В.Ф. Овсянников, 1871 г., открыт методом перерезки ствола мозга на различных уровнях), представлен двумя отделами (прессорный и депрессорный).

Синапс (греч. σύναψις, от συνάπτειν - обнимать, обхватывать, пожимать руку) - место контакта между двумянейронами или между и получающей сигнал эффекторной клеткой. Служит для передачи между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться.

Термин был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном.

Структура синапса

Типичный синапс - аксо-дендритический химический. Такой синапс состоит из двух частей: пресинаптической , образованной булавовидным расширением окончаниемаксона передающей клетки и постсинаптической , представленной контактирующим участком цитолеммы воспринимающей клетки (в данном случае - участком дендрита). Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток, к которым подходят нервные окончания. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

Между обеими частями имеется синаптическая щель - промежуток шириной 10-50нм между постсинаптической и пресинаптической мембранами, края которой укреплены межклеточными контактами.

Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели, называется пресинаптической мембраной . Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной , в химических синапсах она рельефна и содержит многочисленные .

В синаптическом расширении имеются мелкие везикулы, так называемые синаптические пузырьки , содержащие либо медиатор (вещество-посредник в передаче ), либо фермент, разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

Классификация синапсов

В зависимости от механизма передачи нервного импульса различают

  • химические;
  • электрические - клетки соединяются высокопроницаемыми контактами с помощью особых коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе - 3,5 нм (обычное межклеточное - 20 нм)

Так как сопротивление внеклеточной жидкости мало(в данном случае), импульсы проходят не задерживаясь через синапс. Электрические синапсы обычно бывают возбуждающими.

Открыты два механизма высвобождения: с полным слиянием везикулы с плазмалеммой и так называемый «поцеловал и убежал» (англ. kiss-and-run ), когда везикула соединяется с мембраной, и из неё в синаптическую щель выходят небольшие молекулы, а крупные остаются в везикуле. Второй механизм, предположительно, быстрее первого, с помощью него происходит синаптическая передача при высоком содержании ионов кальция в синаптической бляшке.

Следствием такой структуры синапса является одностороннее проведение нервного импульса. Существует так называемая синаптическая задержка - время, нужное для передачи нервного импульса. Её длительность составляет около - 0,5 мс.

Так называемый «принцип Дейла» (один - один медиатор) признан ошибочным. Или, как иногда считают, он уточнён: из одного окончания клетки может выделяться не один, а несколько медиаторов, причём их набор постоянен для данной клетки.

История открытия

  • В 1897 году Шеррингтон сформулировал представление о синапсах.
  • За исследования нервной системы, в том числе синаптической передачи, в 1906 году Нобелевскую премию получили Гольджи и Рамон-и-Кахаль.
  • В 1921 австрийский учёный О. Лёви (О. Loewi) установил химическую природу передачи возбуждения через синапсы и роль в ней ацетилхолина. Получил Нобелевскую премию в 1936 г. совместно с Г. Дейлом (Н. Dale).
  • В 1933 советский учёный А. В. Кибяков установил роль адреналина в синаптической передаче.
  • 1970 - Б. Кац (В. Katz, Великобритания), У. фон Эйлер (U. v. Euler, Швеция) и Дж. Аксельрод (J. Axelrod, США) получили Нобелевскую премию за открытие ролинорадреналина в синаптической передаче.