Получение вольфрама. Вольфрам - что за металл? Свойства и сферы применения

Еще в 16 веке был известен минерал вольфрамит, который в переводе с немецкого (Wolf Rahm ) означает «волчьи сливки». Такое название минерал получил в связи со своими особенностями. Дело в том, что вольфрам, который сопровождал оловянные руды, во время выплавки олова превращал его просто в пену шлаков, поэтому и говорили: «пожирает олово, как волк овцу». Спустя время, именно от вольфрамита и было унаследовано 74 химическим элементом периодической системы название вольфрам.

Характеристики вольфрама

Вольфрам является переходным металлом светло-серого цвета. Имеет внешнее сходство со сталью. В связи с обладанием достаточно уникальными свойствами, данный элемент является очень ценным и редким материалом, чистый вид которого в природе отсутствует. Вольфрам обладает:

  • достаточно высокой плотностью, которая приравнивается к 19,3 г/см 3 ;
  • высокой температурой плавления, составляющей 3422 0 С;
  • достаточным электросопротивлением - 5,5 мкОм*см;
  • нормальным показателем коэффициента параметра линейного расширения, равняющегося 4,32;
  • наивысшей среди всех металлов температурой кипения, равняющейся 5555 0 С;
  • низкой скоростью испарения, даже не смотря на температуры, превышающие 200 0 С;
  • относительно низкой электропроводностью. Однако, это не мешает вольфраму оставаться хорошим проводником.
Таблица 1. Свойства вольфрама
Характеристика Значение
Свойства атома
Название, символ, номер Вольфра́м / Wolframium (W), 74
Атомная масса (молярная масса) 183,84(1) а. е. м. (г/моль)
Электронная конфигурация 4f14 5d4 6s2
Радиус атома 141 пм
Химические свойства
Ковалентный радиус 170 пм
Радиус иона (+6e) 62 (+4e) 70 пм
Электроотрицательность 2,3 (шкала Полинга)
Электродный потенциал W ← W3+ 0,11 ВW ← W6+ 0,68 В
Степени окисления 6, 5, 4, 3, 2, 0
Энергия ионизации (первый электрон) 769,7 (7,98) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 19,25 г/см³
Температура плавления 3695 K (3422 °C, 6192 °F)
Температура кипения 5828 K (5555 °C, 10031 °F)
Уд. теплота плавления

285,3 кДж/кг

52,31 кДж/моль

Уд. теплота испарения 4482 кДж/кг 824 кДж/моль
Молярная теплоёмкость 24,27 Дж/(K·моль)
Молярный объём 9,53 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая объёмноцентрированная
Параметры решётки 3,160 Å
Температура Дебая 310 K
Прочие характеристики
Теплопроводность (300 K) 162,8 Вт/(м·К)
Номер CAS 7440-33-7

Все это делает вольфрам очень прочным металлом, который не поддается механическим повреждениям. Но наличие таких уникальных свойств не исключает присутствие недостатков, которые также есть у вольфрама. К ним относятся:

  • высокая ломкость при воздействии на него очень низких температур;
  • высокая плотность, что затрудняет процесс его обработки;
  • низкая сопротивляемость кислотам при низких температурах.

Получение вольфрама

Вольфрам, наряду с молибденом, рубидием и рядом других веществ, входит в группу редких металлов, которые характеризуются очень малым распространением в природе. В связи с этим, его нельзя добыть традиционным способом, как многие полезные ископаемые. Таким образом, промышленное получение вольфрама состоит из следующих этапов:

  • добычи руды, в составе которой содержится определенная доля вольфрама;
  • организации надлежащих условий, в которых можно выделить металл от перерабатываемой массы;
  • концентрации вещества в виде раствора или осадка;
  • очистки получившегося в результате предыдущего этапа химического соединения;
  • выделении чистого вольфрама.

Таким образом, чистое вещество из добытой руды, содержащей вольфрам, можно выделить несколькими способами.

  1. В результате обогащения вольфрамовой руды гравитацией, флотацией, магнитной или электрической сепарацией. В процессе этого образуется вольфрамовый концентрат, на 55-65% состоящий из ангидрида (трехокиси) вольфрама WO 3 . В концентратах данного металла ведется контроль за содержанием примесей, в качестве которых могут выступать фосфор, сера, мышьяк, олово, медь, сурьма и висмут.
  2. Как известно, трехокись вольфрама WO 3 является основным материалом для выделения металлического вольфрама или карбида вольфрама. Получение WO 3-- происходит в результате разложения концентратов, выщелачивания сплава или спека и др. В таком случае, на выходе образуется материал на 99,9% состоящий из WO 3 .
  3. Из ангидрида вольфрама WO 3 . Именно путем восстановления данного вещества водородом или углеродом получают вольфрамовый порошок. Применения второго компонента для восстановительной реакции применяют реже. Это связано с насыщением в процессе реакции WO 3 карбидами, в результате чего металл теряет свою прочность и его становится тяжелее обработать. Вольфрамовый порошок получают особыми способами, благодаря которым становится возможным проводить контроль его химического состава, размеров и формы зерен, а также гранулометрического состава. Так, фракцию частиц порошка можно увеличить путем быстрого нарастания температуры или низкой скоростью подачи водорода.
  4. Производство компактного вольфрама, который имеет вид штабиков или слитков и представляет собой заготовку для дальнейшего изготовления полуфабрикатов - проволоки, прутков, ленты и др.

Последний способ, в свою очередь, включает в себя два возможных варианта. Один из них связан с методами порошковой металлургии, а другой - с плавкой в электрических дуговых печах с расходуемым электродом.

Метод порошковой металлургии

В силу того, что благодаря данному способу можно равномернее распределить присадки, наделяющие вольфрам особыми его свойствами, он более популярен.

Он включает несколько этапов:

  1. Металлический порошок прессуется в штабики;
  2. Заготовки подвергаются спеканию при низких температурах (так называемое, предварительное спекание);
  3. Сваривание заготовок;
  4. Получение полуфабрикатов путем обработки заготовок. Реализация данного этапа осуществляется ковкой или механической обработкой (шлифовка, полировка). Стоит отметить, что механическая обработка вольфрама становится возможной только под воздействием высоких температур, в противном случае, его обработать невозможно.

При этом, порошок должен быть хорошо очищен с максимально допустимым процентным содержанием примесей до 0,05%.

Данный метод позволяет получить вольфрамовые штабики, имеющие квадратное сечение от 8х8 до 40х40 мм и длину в 280-650 мм. Стоит отметить, что в условиях комнатных температур они достаточно прочны, однако имеют повышенную хрупкость.

Плавка

Данный способ применяется, если необходимо получить вольфрамовые заготовки достаточно крупных габаритов - от 200 кг до 3000 кг. Такие заготовки, как правило, необходимы для проката, вытяжки труб, изготовления изделий путем литья. Для плавки необходимо создание специальных условий - вакуум или разреженная атмосфера водорода. На выходе образуются слитки вольфрама, обладающие крупнокристаллической структурой, а также высокой хрупкостью в связи с наличием большого количества примесей. Содержание примесей можно снизить за счет предварительной плавки вольфрама в электронно-лучевой печи. Однако, структура при этом остается неизменной. В связи с чем, для уменьшения размера зерна происходит дальнейшая плавка слитков, но уже в электрической дуговой печи. При этом, в процессе плавки к слиткам добавляются легирующие вещества, наделяющие вольфрам особыми свойствами.

Чтобы получить вольфрамовые слитки, имеющие мелкозернистую структуру, используют дуговую гарниссажную плавку с разливкой металла в изложницу.

Способ получения металла определяет наличие в нем присадок и примесей. Таким образом, сегодня производится несколько марок вольфрама.

Марки вольфрама

  1. ВЧ - чистый вольфрам, в котором отсутствуют какие-либо присадки;
  2. ВА - металл, имеющий в своем составе алюминиевую и кремнещелоную присадку, которые наделяют его дополнительными свойствами;
  3. ВМ - металл, имеющий в своем составе ториевую и кремнещелочную присадку;
  4. ВТ - вольфрам, в составе которого содержится оксид тория в качестве присадки, что существенно повышает эмиссионные свойства металла;
  5. ВИ - металл, содержащий оксид иттрия;
  6. ВЛ - вольфрам с окисью лантана, что также повышает эмиссионные свойства;
  7. ВР - сплав рения и вольфрама;
  8. ВРН - какие-либо присадки в металле отсутствуют, однако могут присутствовать примеси в больших объемах;
  9. МВ - сплав вольфрама с молибденом, что существенно повышает прочность после отжига, сохраняя при этом пластичность.

Где применяется вольфрам?

Благодаря своим уникальным свойствам, 74 химический элемент стал незаменимым во многих промышленных отраслях.

  1. Основное применение вольфрама - в качестве основы для производства тугоплавких материалов в металлургии.
  2. С обязательным участием вольфрама производятся нити накаливания, являющиеся главным элементом приборов освещения, кинескопов, а также иных вакуумных труб.
  3. Также данный металл лежит в основе производства тяжелых сплавов, используемых в качестве противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий.
  4. Вольфрам является электродами при аргонно-дуговой сварке;
  5. Его сплавы отличаются высокой устойчивостью к воздействиям различных температур, кислой среде, а также твердостью и устойчивостью к истиранию, в связи с чем применяются при производстве хирургических инструментов, брони танков, торпедных и снарядных оболочек, деталей самолетов и двигателей, а также контейнеров для хранения ядерных отходов;
  6. Вакуумные печи сопротивления, температура в которых достигает предельно высоких величин, оборудованы нагревательными элементами, произведенными также из вольфрама;
  7. Использование вольфрама популярно для обеспечения защиты от ионизирующего излучения.
  8. Соединения вольфрама используются в качестве легирующих элементов, высокотемпературных смазок, катализаторов, пигментов, а также для преобразования тепловой энергии в электрическую (дителлурид вольфрама).

Применение чистого металла и вольфрамсодержащих сплавов основано, главным образом, на их тугоплавкости, твердости и химической стойкости. Чистый вольфрам используется для изготовления нитей электрических ламп накаливания и электронно-лучевых трубок, в производстве тиглей для испарения металлов, в контактах автомобильных распределителей зажигания, в мишенях рентгеновских трубок; в качестве обмоток и нагревательных элементов электрических печей и как конструкционный материал для космических и других аппаратов, эксплуатируемых при высоких температурах. Быстрорежущие стали (17,5-18,5% вольфрама), стеллит (на основе кобальта с добавлением Cr, W, С), хасталлой (нержавеющая сталь на основе Ni) и многие другие сплавы содержат вольфрам. Основой при производстве инструментальных и жаропрочных сплавов является ферровольфрам (68-86% W, до 7% Mo и железо), легко получающийся прямым восстановлением вольфрамитового или шеелитового концентратов. «Победит» - очень твердый сплав, содержащий 80-87% вольфрама, 6-15% кобальта, 5-7% углерода, незаменим в обработке металлов, в горной и нефтедобывающей промышленности.

Вольфраматы кальция и магния широко используются во флуоресцентных устройствах, другие соли вольфрама используются в химической и дубильной промышленности. Дисульфид вольфрама представляет собой сухую высокотемпературную смазку, стабильную до 500° С. Вольфрамовые бронзы и другие соединения элемента применяются в изготовлении красок. Многие соединения вольфрама являются отличными катализаторами.

Долгие годы с момента открытия вольфрам оставался лабораторной редкостью, лишь в 1847 Оксланд получил патент на производство вольфрамата натрия, вольфрамовой кислоты и вольфрама из касситерита (оловянного камня). Второй патент, полученный Оксландом в 1857, описывал производство железо-вольфрамовых сплавов, которые составляют основу современных быстрорежущих сталей.

В середине 19 в. предпринимались первые попытки использовать вольфрам в производстве стали, однако долгое время не удавалось внедрить эти разработки в промышленность из-за высокой цены на металл. Возросшая потребность в легированных и высокопрочных сталях привела к запуску производства быстрорежущих сталей на фирме «Вифлеемская Сталь» (Bethlehem Steel). Образцы этих сплавов были впервые представлены в 1900 на Всемирной выставке в Париже.

Технология изготовления вольфрамовых нитей и ее история.

Объемы производства вольфрамовой проволоки имеют небольшую долю среди всех отраслей применения вольфрама, но развитие технологии ее получения сыграло ключевую роль в развитии порошковой металлургии тугоплавких соединений.

С 1878, когда Свон продемонстрировал в Ньюкастле изобретенные им восьми- и шестнадцатисвечевые угольные лампы, шел поиск более подходящего материала для изготовления нитей накаливания. Первая угольная лампа обладала эффективностью всего 1 люмен/ватт, которая была увеличена в следующие 20 лет модификацией методов обработки угля в два с половиной раза. К 1898 светоотдача таких лампочек составляла 3 люмен/ватт. Угольные нити в те времена нагревались пропусканием электрического тока в атмосфере паров тяжелых углеводородов. При пиролизе последних образующийся углерод заполнял поры и неровности нити, придавая ей яркий металлический блеск.

В конце 19 в. фон Вельсбах впервые изготовил металлическую нить для ламп накаливания. Он сделал ее из осмия (Т пл = 2700° С). Осмиевые нити обладали эффективностью 6 люмен/ватт, однако, осмий - редкий и чрезвычайно дорогой элемент платиновой группы, поэтому широкого применения в изготовлении бытовых устройств не нашел. Тантал с температурой плавления 2996° С широко использовался в виде вытянутой проволоки с 1903 по 1911 благодаря работам фон Болтона из фирмы Сименс и Хальске. Эффективность танталовых ламп составляла 7 люмен/ватт.

Вольфрам начал применяться в лампах накаливания в 1904 и вытеснил в этом качестве все остальные металлы к 1911. Обычная лампа накаливания с вольфрамовой нитью обладает свечением 12 люмен/ватт, а лампы, работающие под высоким напряжением - 22 люмен/ватт. Современные флуоресцентные лампы с вольфрамовым катодом имеют эффективность порядка 50 люмен/ватт.

В 1904 на фирме «Сименс-Хальске» попытались применить разработанный для тантала процесс волочения проволоки для более тугоплавких металлов, таких как вольфрам и торий. Жесткость и недостаток ковкости вольфрама не позволили гладко провести процесс. Тем не менее, позже, в 1913-1914, было показано, что расплавленный вольфрам может быть раскатан и вытянут с использованием процедуры частичного восстановления. Электрическую дугу пропускали между вольфрамовым стержнем и частично расплавленной вольфрамовой капелькой, помещенной в графитовый тигель, покрытый изнутри вольфрамовым порошком и находящийся в атмосфере водорода. Тем самым были получены небольшие капли расплавленного вольфрама, около 10 мм в диаметре и 20-30 мм в длину. Хотя и с трудом, но с ними уже можно было работать.

В те же годы Юст и Ханнаман запатентовали процесс изготовления вольфрамовых нитей. Тонкий металлический порошок смешивался с органическим связующим, полученная паста пропускалась через фильеры и нагревалась в специальной атмосфере для удаления связующего, при этом получалась тонкая нить чистого вольфрама.

В 1906-1907 был разработан хорошо известный процесс экструзии, применявшийся до начала 1910-х. Черный вольфрамовый порошок очень тонкого помола смешивался с декстрином или крахмалом до образования пластичной массы. Гидравлическим давлением эта масса продавливалась через тонкие алмазные сита. Получающаяся таким образом нить оказывалась достаточно прочной для того, чтобы быть намотанной на катушки и высушенной. Далее нити разрезались на «шпильки», которые нагревались в атмосфере инертного газа до температуры красного каления для удаления остатков влаги и легких углеводородов. Каждая «шпилька» закреплялась в зажиме и нагревалась в атмосфере водорода до яркого свечения пропусканием электрического тока. Это приводило к окончательному удалению нежелательных примесей. При высоких температурах отдельные маленькие частицы вольфрама сплавляются и образуют однородную твердую металлическую нить. Эти нити эластичны, хотя и хрупки.

В начале 20 в. Юст и Ханнаман разработали другой процесс, отличающийся своей оригинальностью. Угольная нить диаметром 0,02 мм покрывалась вольфрамом путем накаливания в атмосфере водорода и паров гексахлорида вольфрама. Покрытая таким образом нить нагревалась до яркого свечения в водороде при пониженном давлении. При этом вольфрамовая оболочка и углеродное ядро полностью сплавлялись друг с другом, образуя карбид вольфрама. Получающаяся нить имела белый цвет и была хрупкой. Далее нить нагревалась в токе водорода, который взаимодействовал с углеродом, оставляя компактную нить из чистого вольфрама. Нити обладали теми же характеристиками, что и полученные в процессе экструзии.

В 1909 американцу Кулиджу удалось получить ковкий вольфрам без применения наполнителей, а лишь с помощью разумной температурной и механической обработки. Основная проблема в получении вольфрамовой проволоки заключалась в быстром окислении вольфрама при высоких температурах и наличии зернистой структуры в получающемся вольфраме, которая приводила к его хрупкости.

Современное производство вольфрамовой проволоки является сложным и точным технологическим процессом. Исходным сырьем служит порошковый вольфрам, получаемый восстановлением паравольфрамата аммония.

Вольфрамовый порошок, применяемый для производства проволоки, должен иметь высокую чистоту. Обычно смешивают порошки вольфрама различного происхождения, чтобы усреднить качество металла. Смешиваются они в мельницах и во избежание окисления нагретого трением металла в камеру пропускают поток азота. Затем порошок прессуется в стальных пресс-формах на гидравлических или пневматических прессах (5-25 кг/мм 2). В случае использования загрязненных порошков, прессовка получается хрупкой, и для устранения этого эффекта добавляется полностью окисляемое органическое связующее. На следующей стадии производится предварительное спекание штабиков. При нагревании и охлаждении прессовок в потоке водорода их механические свойства улучшаются. Прессовки еще остаются достаточно хрупкими, и их плотность составляет 60-70% от плотности вольфрама, поэтому штабики подвергают высокотемпературному спеканию. Штабик зажимается между контактами, охлаждаемыми водой, и в атмосфере сухого водорода через него пропускается ток для нагрева его почти до температуры плавления. За счет нагревания вольфрам спекается и его плотность возрастает до 85-95% от кристаллического, в то же время увеличиваются размеры зерен, растут кристаллы вольфрама. Затем следует ковка при высокой (1200-1500° С) температуре. В специальном аппарате штабики пропускаются через камеру, которая сдавливается молотом. За одно пропускание диаметр штабика уменьшается на 12%. При ковке кристаллы вольфрама удлиняются, создается фибриллярная структура. После ковки следует протяжка проволоки. Стержни смазываются и пропускаются через сита из алмаза или карбида вольфрама. Степень вытяжки зависит от назначения получаемых изделий. Диаметр получаемой проволоки составляет около 13 мкм.

Химия

Элемент № 74 вольфрам причисляют обычно к редким металлам: его содержание в земной коре оценивается в 0,0055%; его нет в морской воде, его не удалось обнаружить в солнечном спектре. Однако по популярности онможет поспорить со многими отнюдь не редкими металлами, а его минералы были известны задолго до открытия самого элемента. Так, еще в XVII в. во многих европейских странах знали «вольфрам» и «тунгстен» - так называли тогда наиболее распространенные минералы вольфрама - вольфрамит и шеелит. А элементарный вольфрам был открыт в последней четверти XVIII в .

Вольфрамовая руда

Очень скоро этот металл получил практическое значение - как легирующая добавка. А после Всемирной выставки 1900 г. в Париже, на которой демонстрировались образцы быстрорежущей вольфрамовой стали, элемент № 74 стали применять металлурги во всех более или менее промышленно развитых странах. Главная особенность вольфрама как легирующей добавки заключается в том, что он придает стали красностойкость - позволяет сохранить твердость и прочность при высокой температуре. Более того, большинство сталей при охлаждении на воздухе (после выдержки при температуре, близкой к температуре красного каления) теряют твердость. А вольфрамовые - нет.
Инструмент, изготовленный из вольфрамовой стали, выдерживает огромные скорости самых интенсивных процессов металлообработки. Скорость резания таким инструментом измеряется десятками метров в секунду.
Современные быстрорежущие стали содержат до 18% вольфрама (или вольфрама с молибденом), 2-7% хрома и небольшое количество кобальта. Они сохраняют твердость при 700-800° С, в то время как обычная сталь начинает размягчаться при нагреве всего до 200° С. Еще большей твердостью обладают «стеллиты» - сплавы
вольфрам а с хромом и кобальтом (без железа) и особенно карбиды вольфрама - его соединения с углеродом. Сплав «видна» (карбид вольфрама, 5-15% кобальта и небольшая примесь карбида титана) в 1,3 раза тверже обычной вольфрамовой стали и сохраняет твердость до 1000- 1100° С. Резцами из этого сплава можно снимать за минуту до 1500-2000 м железной стружки. Ими можно быстро и точно обрабатывать «капризные» материалы: бронзу и фарфор, стекло и эбонит; при этом сам инструмент изнашивается совсем незначительно.
В начале XX в. вольфрамовую нить стали применять в электрических лампочках: она позволяет доводить накал до 2200° С и обладает большой светоотдачей. И в этом качестве вольфрам совершенно незаменим до наших дней. Очевидно, поэтому электрическая лампочка названа в одной популярной песне «глазком вольфрамовым».

Минералы и руды вольфрама

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисыо вольфрама WO 3 и окислами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Наиболее распространенный минерал, вольфрамит, представляет собой твердый раствор вольфраматов (солей вольфрамовой кислоты) железа и марганца (mFeW0 4 *nMnW0 4). Этот раствор - тяжелые и твердые кристаллы коричневого или черного цвета, в зависимости от того, какое соединение преобладает в их составе. Если больше побнерита (соединения марганца), кристаллы черные, если же преобладает железосодержащий ферберит - коричневые. Вольфрамит парамагнитен и хорошо проводит электрический ток.
Из других минералов вольфрама промышленное значение имеет шеелит - вольфрамат кальция CaW04. Он образует блестящие, как стекло, кристаллы светло-желтого, иногда почти белого цвета. Шеелит немагнитен, но он обладает другой характерной особенностью - способностью к люминесценции. Если его осветить ультрафиолетовыми лучами, он флуоресцирует в темноте ярко-синим цветом. Примесь молибдена меняет окраску свечения шеелита: она становится бледно-синей, а иногда даже кремовой. Это свойство шеелита, используемое в геологической разведке, служит поисковым признаком, позволяющим обнаружить залежи минерала.
Месторождения вольфрамовых руд теологически связаны с областями распространения гранитов . Крупнейшие зарубежные месторождения вольфрамита и шеелита находятся в Китае, Бирме, США, Боливии и Португалии. Наша страна тоже располагает значительными запасами минералов вольфрама, главные их месторождения находятся на Урале, Кавказе и в Забайкалье.
Крупные кристаллы вольфрамита или шеелита - большая редкость. Обычно вольфрамовые минералы лишь вкраплены в древние гранитные породы - средняя концентрация вольфрама в итоге оказывается в лучшем случае 1-2%. Поэтому извлечь вольфрам из руд очень трудно.


Как получают вольфрам

Первая стадия - обогащение руды, отделение ценных компонентов от основной массы - пустой породы. Методы обогащения - обычные для тяжелых руд и металлов: измельчение и флотация с последующими операциями - магнитной сепарацией (для вольфрамитиых руд) и окислительным обжигом.
Полученный концентрат чаще всего спекают с избытком соды, чтобы перевести вольфрам в растворимое соединение - вольфрамат натрия. Другой способ получения этого вещества - выщелачивание; вольфрам извлекают содовым раствором под давлением и при повышенной температуре (процесс идет в автоклаве) с последующей нейтрализацией и осаждением в виде искусственного шеелита, т. е. вольфрамата кальция. Стремление получить именно вольфрамат объясняется тем, что из него сравнительно просто, всего в две стадии:
CaW0 4 → H 2 W0 4 или (NH 4) 2 W0 4 → WO 3 , можно выделить очищенную от большей части примесей окись вольфрама.
Есть еще один способ получения окиси вольфрама - через хлориды. Вольфрамовый концентрат при повышенной температуре обрабатывают газообразным хлором. Образовавшиеся хлориды вольфрама довольно легко отделить от хлоридов других металлов методом возгонки, используя разницу температур, при которых эти вещества переходят в парообразное состояние. Полученные хлориды вольфрама можно превратить в окисел, а можно пустить непосредственно на переработку в элементарный металл.


Превращение окислов или хлоридов в металл - следующая стадия производства вольфрама. Лучший восстановитель окиси вольфрама - водород. При восстановлении водородом получается наиболее чистый металлический вольфрам. Процесс восстановления происходит в трубчатых печах, нагретых таким образом, что по мере продвижения по трубе «лодочка» с W0 3 проходит через несколько температурных зон. Навстречу ей идет поток сухого водорода. Восстановление происходит и в «холодных» (450-600° С) и в «горячих» (750-1100° С) зонах; в «холодных» - до низшего окисла W0 2 , дальше - до элементарного металла. В зависимости от температуры и длительности реакции в «горячей» зоне меняются чистота и размеры зерен выделяющегося на стенках «лодочки» порошкообразного вольфрама.
Восстановление может идти не только под действием водорода. На практике часто используется уголь. Применение твердого восстановителя несколько упрощает производство, однако в этом случае требуется более высокая температура - до 1300-1400° С. Кроме того, уголь и примеси, которые он всегда содержит, вступают в реакции с вольфрамом, образуя карбиды и другие соединения. Это приводит к загрязнению металла. Между тем электротехнике нужен весьма чистый вольфрам. Всего 0,1% железа делает вольфрам хрупким и малопригодным для изготовления тончайшей проволоки.
Получение вольфрама из хлоридов основано на процессе пиролиза. Вольфрам образует с хлором несколько соединений. С помощью избытка хлора все их можно перевести в высший хлорид - WCl 6 , который разлагается на вольфрам и хлор при 1600° С. В присутствии водорода этот процесс идет уже при 1000° С.
Так получают металлический вольфрам, но не компактный, а в виде порошка, который затем прессуют в токе водорода при высокой температуре. На первой стадии прессования (при нагреве до 1100-1300° С) образуется пористый ломкий слиток. Прессование продолжается при еще более высокой температуре, едва не достигающей под конец температуры плавления вольфрама. В этих условиях металл постепенно становится сплошным, приобретает волокнистую структуру, а с ней - пластичность и ковкость.

Главные свойства

Вольфрам отличается от всех остальных металлов особой тяжестью, твердостью и тугоплавкостью. Давно известно выражение: «Тяжелый, как свинец». Правильнее было бы говорить: «Тяжелый, как вольфрам». Плотность вольфрама почти вдвое больше, чем свинца, точнее - в 1,7 раза. При этом атомная масса его несколько ниже: 184 против 207.


По тугоплавкости и твердости вольфрам и его сплавы занимают высшие места среди металлов. Технически чистый вольфрам плавится при 3410° С, а кипит лишь при 6690° С. Такая температура - на поверхности Солнца!
А выглядит «король тугоплавкости» довольно заурядно. Цвет вольфрама в значительной мере зависит от способа получения. Сплавленный вольфрам - блестящий серый металл, больше всего напоминающий платину. Вольфрамовый порошок - серый, темно-серый и даже черный (чем мельче зернение, тем темнее).

Химическая активность

Природный вольфрам состоит из пяти стабильных изотопов с массовыми числами от 180 до 186. Кроме того, в атомных реакторах в результате различных ядерных реакций образуются еще 8 радиоактивных изотопов вольфрама с массовыми числами от 176 до 188; все они сравнительно недолговечны: их периоды полураспада - от нескольких часов до нескольких месяцев.
Семьдесят четыре электрона атома вольфрама расположены вокруг ядра таким образом, что шесть из них находятся на внешних орбитах и могут быть отделены сравнительно легко. Поэтому максимальная валентность вольфрама равна шести. Однако строение этих внешних орбит особое - они состоят как бы из двух «ярусов»: четыре электрона принадлежат предпоследнему уровню -d, который оказывается, таким образом, заполненным меньше чем наполовину. (Известно, что число электронов в заполненном уровне d равно десяти.) Эти четыре электрона (очевидно, неспарепные) способны легко образовывать химическую связь. Что же касается двух «самых наружных» электронов, то их оторвать совсем легко.
Именно особенностями строения электронной оболочки объясняется высокая химическая активность вольфрама. В соединениях он бывает не только шестивалентным, но и пяти-, четырех-, трех-, двух- и нульвалентным. (Неизвестны лишь соединения одновалентного вольфрама).
Активность вольфрама проявляется в том, что он вступает в реакции с подавляющим болишинстом элементов, образуя множество простых и сложных соединений. Даже в сплавах вольфрам часто оказывается химически связанным. А с кислородом и другими окислителями он взаимодействует легче, чем большинство тяжелых металлов.
Реакция вольфрама с кислородом идет при нагревании, особенно легко - в присутствии паров воды. Если вольфрам нагревать на воздухе, то при 400-500° С на поверхности металла образуется устойчивый низший окисел W0 2 ; вся поверхность затягивается коричневой пленкой. При более высокой температуре сначала получается промежуточный окисел W 4 O 11 синего цвета, а затем лимонножелтая трехокись вольфрама W0 3 , которая возгоняется при 923° С.


Сухой фтор соединяется с тонкоизмельченным вольфрамом уже при небольшом нагревании. При этом образуется гексафторид WF6 - вещество, которое плавится при 2,5° С и кипит при 19,5° С. Аналогичное соединение - WCl 6 - получается при реакции с хлором, но лишь при 600° С. Сине-стального цвета кристаллы WCl 6 плавятся при 275° С и кипят при 347° С. С бромом и йодом вольфрам образует малоустойчивые соединения: пента- и дибромид, тетра- и дииоднд.
При высокой температуре вольфрам соединяется с серой, селеном и теллуром, с азотом и бором, с углеродом и кремнием. Некоторые из этих соединений отличаются большой твердостью и другими замечательными свойствами.
Очень интересен карбонил W(CO) 6 . Здесь вольфрам соединен с окисью углерода и, следовательно, обладает нулевой валентностью. Карбонил вольфрама неустойчив; его получают в специальных условиях. При 0° он выделяется из соответствующего раствора в виде бесцветных кристаллов, при 50° С возгоняется, а при 100° С полностью разлагается. Но именно это соединение позволяет получить тонкие и плотные покрытия из чистого вольфрама.
Не только сам вольфрам, но и многие его соединения весьма активны. В частности, окись вольфрама WO 3 способна к полимеризации. В результате образуются так называемые изополисоединения и гетерополисоединения: молекулы последних могут содержать более 50 атомов.


Сплавы

Почти со всеми металлами вольфрам образует сплавы, однако получить их не так-то просто. Дело в том, что общепринятые методы сплавления в данном случае, как правило, неприменимы. При температуре плавления вольфрама большинство других металлов уже превращается в газы пли весьма летучие жидкости. Поэтому сплавы, содержащие вольфрам, обычно получают методами порошковой металлургии.
Во избежание окисления все операции проводят в вакууме или в атмосфере аргона. Делается это так. Сначала смесь металлических порошков прессуют, затем спекают и подвергают дуговой плавке в электрических печах. Иногда прессуют и спекают один вольфрамовый порошок, а полученную таким путем пористую заготовку пропитывают жидким расплавом другого металла: получаются так называемые псевдосплавы. Этим методом пользуются, когда нужно получить сплав вольфрама с медью и серебром.


С хромом и молибденом, ниобием и танталом вольфрам дает обычные (гомогенные) сплавы при любых соотношениях. Уже небольшие добавки вольфрама повышают твердость этих металлов и их устойчивость к окислению.
Сплавы с железом, никелем и кобальтом более сложны. Здесь, в зависимости от соотношения компонентов, образуются либо твердые растворы, либо интерметаллические соединения (химические соединения металлов), а в присутствии углерода (который всегда имеется в стали) - смешанные карбиды вольфрама и железа, придающие металлу еще большую твердость.
Очень сложные соединения образуются при сплавлении вольфрама с алюминием, бериллием и титаном: в них на один атом вольфрама приходится от 2 до 12 атомов легкого металла. Эти сплавы отличаются жаропрочностью и устойчивостью к окислению при высокой температуре.
На практике чаще всего применяются сплавы вольфрама не с одним каким-либо металлом, а с несколькими. Таковы, в частности, кислотостойкие сплавы вольфрама с хромом и кобальтом или никелем (амалой); из них делают хирургические инструменты. Лучшие марки магнитной стали содержат вольфрам, железо и кобальт. А в специальных жаропрочных сплавах, кроме вольфрама, имеются хром, никель и алюминий.
Из всех сплавов вольфрама наибольшее значение приобрели вольфрамсодержащие стали. Они устойчивы к истиранию, не дают трещин, сохраняют твердость вплоть до температуры красного каления. Инструмент из них не только позволяет резко интенсифицировать процессы металлообработки (скорость обработки металлических изделий повышается в 10-15 раз), но и служит намного дольше, чем тот же инструмент из другой стали.
Вольфрамовые сплавы не только жаропрочны, но и жаростойки. Они не корродируют при высокой температуре под действием воздуха, влаги и различных химических реагентов. В частности, 10% вольфрама, введенного в никель, достаточно, чтобы повысить коррозионную устойчивость последнего в 12 раз! А карбиды вольфрама с добавкой карбидов тантала и титана, сцементированные кобальтом, устойчивы к действию многих кислот - азотной, серной и соляной - даже при кипячении. Им опасна только смесь плавиковой и азотной кислот. Мировое производство вольфрама - примерно 32 тыс. т в год. С начала нашего века оно не раз испытывало резкие взлеты и столь же крутые спады. На диаграмме видно, что пики на кривой производства в точности отвечают кульминационным моментам первой и второй мировых войн. И сейчас вольфрам является сугубо стратегическим металлом

Диаграмма мирового производства вольфрама (в тыс. т) в первой половине XX в.
Из вольфрамовой стали и других сплавов, содержащих вольфрам или его карбиды, изготовляют танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей.

Вольфрам - непременная составная часть лучших марок инструментальной стали. В целом металлургия поглощает почти 95% всего добываемого вольфрама. (Характерно, что она широко использует не только чистый вольфрам, но главным образом более дешевый ферровольфрам - сплав, содержащий 80% W и около 20% Fe; получают его в электродуговых печах).

Вольфрамовые сплавы обладают многими замечательными качествами. Так называемый тяжелый металл (из вольфрама, никеля и меди) служит для изготовления контейнеров, в которых хранят радиоактивные вещества. Его защитное действие на 40% выше, чем у свинца. Этот сплав применяют и при радиотерапии, так как он создает достаточную защиту при сравнительно небольшой толщине экрана.

Сплав карбида вольфрама с 16% кобальта настолько тверд, что может частично заменить алмаз при бурении скважин.

Псевдосплавы вольфрама с медью и серебром - превосходный материал для рубильников и выключателей электрического тока высокого напряжения: они служат в шесть раз дольше обычных медных контактов.

О применении вольфрама в волосках электроламп говорилось в начале статьи. Незаменимость вольфрама в этой области объясняется не только его тугоплавкостью, но и пластичностью. Из одного килограмма вольфрама вытягивается проволока длиной 3,5 км, т.е. этого килограмма достаточно для изготовления нитей накаливания 23 тыс. 60-ваттных лампочек. Именно благодаря этому свойству мировая электротехническая промышленность потребляет всего около 100 т вольфрама в год.

В последние годы важное практическое значение приобрели химические соединения вольфрама. В частности, фосфорно-вольфрамовая гетерополикислота применяется для производства лаков и ярких, устойчивых на свету красок. Раствор вольфрамата натрия Na2WO4 придает тканям огнестойкость и водонепроницаемость, а вольфраматы щелочноземельных металлов, кадмия и редкоземельных элементов применяются при изготовлении лазеров и светящихся красок.

Прошлое и настоящее вольфрама дают все основания считать его металлом-тружеником.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

СЕВЕРСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ – филиал

федерального государственного автономного образовательного учреждения

высшего профессионального образования

«Национальный исследовательский ядерный университет «МИФИ»

Кафедра ХиТМСЭ

ВОЛЬФРАМ

реферат по дисциплине

«Избранные главы по химии элементов»

Студент гр. Д- 143

Андросов В. О.

«____»___________ 2014 г.

Проверил

доцент кафедры ХиТМСЭ

Безрукова С.А.

«____»_________ 2014 г.

Северск 2014

Введение

    История происхождения названия

    Получение

    Физические свойства

    Химические свойства

  1. Применение

    1. Металлический вольфрам

      Соединения вольфрама

  2. Биологическая роль

Заключение

Список литературы

Введение

Вольфра́м - химический элемент с атомным номером 74 в Периодической системе химических элементов Д. И. Менделеева, обозначается символом W (лат. Wolframium). При нормальных условиях представляет собой твёрдый блестящий серебристо-серый переходный металл.

Вольфрам - самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент - углерод. При стандартных условиях химически стоек.

История происхождения названия

Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием «волчья пена» - «Spuma lupi» на латыни, или «Wolf Rahm» по-немецки. Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»).

В настоящее время в США, Великобритании и Франции для вольфрама используют название «tungsten» (швед. tung sten - «тяжелый камень»).

В 1781 году знаменитый шведский химик Шееле, обрабатывая азотной кислотой минерал шеелит, получил жёлтый «тяжёлый камень» (триоксид вольфрама). В 1783 году испанские химики братья Элюар сообщили о получении из саксонского минерала вольфрамита как растворимой в аммиаке жёлтой окиси нового металла, так и самого металла. При этом один из братьев, Фаусто, был в Швеции в 1781 году и общался с Шееле. Шееле не претендовал на открытие вольфрама, а братья Элюар не настаивали на своём приоритете.

Получение

Сырьём для получения Вольфрама служат вольфрамитовые и шеелитовые концентраты (50-60% WO 3).

Из концентратов непосредственно выплавляют ферровольфрам (сплав железа с 65-80% Вольфрама), используемый в производстве стали; для получения Вольфрама, его сплавов и соединений из концентрата выделяют вольфрамовый ангидрид.

В промышленности применяют несколько способов получения WО 3:

1. Шеелитовые концентраты разлагают в автоклавах раствором соды при 180-200°С (получают технический раствор вольфрамата натрия) или соляной кислотой (получают техническую вольфрамовую кислоту):

1. CaWO 4 (тв) +Na 2 CO 3 (ж) = Na 2 WO 4 (ж) + CaCO 3 (тв)

2. CaWO 4 (тв) + 2 НCl(ж) = H 2 WO 4 (тв) +СаCl 2 (р-р).

Вольфрамитовые концентраты разлагают либо спеканием с содой при 800-900°С с последующим выщелачиванием Na 2 WO 4 водой, либо обработкой при нагревании раствором едкого натра. При разложении щелочными агентами (содой или едким натром) образуется раствор Na 2 WO 4 , загрязнённый примесями. После их отделения из раствора выделяют H 2 WO 4 . Для получения более грубых, легко фильтруемых и отмываемых осадков вначале из раствора Na 2 WO 4 осаждают CaWO 4 , который затем разлагают соляной кислотой. Высушенная H 2 WO 4 содержит 0,2 - 0,3% примесей.

Прокаливанием H 2 WO 4 при 700-800°С получают WO 3 , а уже из него - твёрдые сплавы.

2. Для производства металлического Вольфрама H 2 WO 4 дополнительно очищают аммиачным способом - растворением в аммиаке и кристаллизацией паравольфрамата аммония 5(NH 4) 2 O·12WO 3 ·nH 2 O. Прокаливание этой соли даёт чистый WO 3 .

3. Порошок Вольфрама получают восстановлением WO 3 водородом (а в производстве твёрдых сплавов - также и углеродом) в трубчатых электрических печах при 700-850°С. Компактный металл получают из порошка металлокерамическим методом, то есть прессованием в стальных пресс-формах под давлением 3000-5000 (кг*с/см 2)и термической обработкой спрессованных заготовок - штабиков. Последнюю стадию термической обработки - нагрев примерно до 3000°С проводят в специальных аппаратах непосредственно пропусканием электрического тока через штабик в атмосфере водорода. В результате получают Вольфрам, хорошо поддающийся обработке давлением (ковке, волочению, прокатке и т. д.) при нагревании.

Физические свойства

Вольфрам - блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя - время существования сиборгия очень мало). Температура плавления - 3695 K (3422 °C), кипит при 5828 K (5555 °C). Плотность чистого вольфрама составляет 19,25 г/см³. Обладает парамагнитными свойствами. Твёрдость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C - 55·10−9 Ом·м, при 2700 °C - 904·10−9 Ом·м. Хорошо поддаётся ковке и может быть вытянут в тонкую нить.

Химические свойства

Имеет валентность II, III и VI. Наиболее устойчив VI валентный вольфрам. II, III валентные соединения вольфрама неустойчивы и практического значения не имеют.

В обычных условиях Вольфрам химически стоек. При 400-500°С окисляется на воздухе до WO 3 . Пары воды интенсивно окисляют его выше 600°С до WO 3 . Галогены, сера, углерод, кремний, бор взаимодействуют с Вольфрамом при высоких температурах (фтор с порошкообразным вольфрамом - при комнатной). С водородом Вольфрам не реагирует вплоть до температуры плавления; с азотом выше 1500°С образует нитрид. При обычных условиях Вольфрам стоек к соляной, серной, азотной и плавиковой кислотам, а также к царской водке; при 100°С слабо взаимодействует с ними; быстро растворяется в смеси плавиковой и азотной кислот.

В растворах щелочей при нагревании Вольфрам растворяется слегка, а в расплавленных щелочах при доступе воздуха или в присутствии окислителей - быстро; при этом образуются вольфраматы.

Вольфрам образует четыре оксида:

    высший - WO 3 (вольфрамовый ангидрид),

    низший - WO 2 и

    два промежуточных W 10 О 29 и W 4 O 11 .

Вольфрамовый ангидрид - кристаллический порошок лимонно-жёлтого цвета, растворяющийся в растворах щелочей с образованием вольфраматов. При его восстановлении водородом последовательно образуются низшие оксиды и вольфрам.

Вольфрамовому ангидриду соответствует вольфрамовая кислота H 2 WO 4 - желтый порошок, практически не растворимый в воде и в кислотах. При ее взаимодействии с растворами щелочей и аммиака образуются растворы вольфраматов. При 188°С Н 2 WО 4 разлагается с образованием WO 3 и воды.

С хлором вольфрам образует ряд хлоридов и оксихлоридов. Наиболее важные из них: WCl 6 (tпл 275°С, tкип 348°C) и WO 2 Cl 2 (tпл 266°С, выше 300°С сублимирует), получаются при действии хлора на вольфрамовый ангидрид в присутствии угля.

С серой вольфрам образует два сульфида WS 2 и WS 3 .

Карбиды вольфрама WC (tпл2900°C) и W 2 C (tпл 2750°С) - твердые тугоплавкие соединения; получаются при взаимодействии Вольфрама с углеродом при 1000-1500°С

Изотопы

Природный вольфрам состоит из пяти изотопов (180 W, 182 W, 183 W, 184 W и 186 W). Искусственно созданы и идентифицированы ещё 30 радионуклидов (таблица 1). В 2003 открыта чрезвычайно слабая радиоактивность природного вольфрама (примерно два распада на грамм элемента в год), обусловленная α-активностью 180 W, имеющего период полураспада 1,8×10 18 лет

Таблица 1.

Символ нуклида

Масса изотопа (а. е. м.)

Период полураспада(T 1/2 )

Спини чётность ядра

Энергия возбуждения

1,2·10 18 лет

стабилен

стабилен

стабилен

стабилен

Применение

Вольфрам долгое время не находил практического применения. И только в конце XIX века замечательные свойства этого металла стали использоваться в промышленности. В настоящее время около 80% добываемого вольфрама применяется в вольфрамовых сталях, около 15% вольфрама используют для производства твёрдых сплавов. Важной областью применения чистого вольфрама и чистых сплавов из него - является электротехническая промышленность, где он используется при изготовлении нитей накаливания электрических ламп, для деталей радиоламп и рентгеновских трубок, автомобильного и тракторного электрооборудования, электродов для контактной, атомно-водородной и аргоно-дуговой сварки, нагревателей для электропечей и др. Соединения вольфрама нашли применение в производстве огнестойких, водоустойчивых и утяжелённых тканей, как катализаторы в химической промышленности.

Металлический вольфрам

Ценность вольфрама особенно повышает его способность образовывать сплавы с различными металлами - железом, никелем, хромом, кобальтом, молибденом, которые в различных количествах входят в состав стали. Вольфрам, добавленный в небольших количествах к стали, вступает в реакции с содержащимися в ней вредными примесями серы, фосфора, мышьяка и нейтрализует их отрицательное влияние. В результате сталь с добавкой вольфрама получает высокую твёрдость, тугоплавкость, упругость и устойчивость против кислот.

Всем известно высокое качество клинков из дамасской стали, в которой содержится несколько процентов примеси вольфрама. Ещё в. 1882 году вольфрам стали использовать при изготовлении пуль. В орудийной стали, бронебойных снарядах также содержится вольфрам.

Сталь с присадкой вольфрама идёт на изготовление прочных рессор автомобилей и железнодорожных вагонов, пружин и ответственных деталей различных механизмов. Рельсы, изготовленные из вольфрамовой стали, выдерживают большие нагрузки, и срок их службы значительно дольше, чем рельсов из обычных сортов стали. Замечательным свойством стали с добавкой 91.8% вольфрама является её способность к самозакаливанию, то есть при увеличении нагрузок и температуры эта сталь становится ещё прочнее. Это свойство явилось основанием для изготовления целой серии инструментов из так называемой «быстрорежущей инструментальной стали». Применение резцов из неё позволило в своё время в несколько раз увеличить скорость обработки деталей на металлорежущих станках.

И все же инструменты, изготовленные из быстрорежущей стали, по скорости резания в 35 раз уступают инструментам из твёрдых сплавов. К их числу относятся соединения вольфрама с углеродом (карбиды) и бором (бориды). Эти сплавы по твёрдости близки к алмазам. Если условная твёрдость самого твёрдого из всех веществ – алмаза, выражается 10 баллами (по шкале Мооса), то твёрдость карбида вольфрама - 9,8. К числу сверхтвёрдых сплавов относится и широко известный сплав углерода с вольфрамом и добавкой кобальта - победит. Сам победит вышел из употребления, но это название сохранилось применительно к целой группе твёрдых сплавов. В машиностроительной промышленности из твёрдых сплавов изготавливают также штампы для кузнечных прессов. Они изнашиваются примерно в тысячу раз медленнее стальных.

Особенно важной и интересной областью применения вольфрама является изготовление элементов накала (нитей) электрических ламп накаливания. Для изготовления нитей электроламп используют чистый вольфрам. Свет, излучаемый раскалённой нитью вольфрама, близок к дневному. А количество света, излучаемое лампой с вольфрамовой нитью, в несколько раз превышает излучение ламп из нитей, изготовленных из других металлов (осмия, тантала). Световое излучение (световая отдача) электроламп с вольфрамовой нитью в 10 раз выше, чем у ранее применявшихся ламп с угольной нитью. Яркость свечения, долговечность, экономичность в потреблении электроэнергии, небольшие затраты металла и простота изготовления электрических ламп с вольфрамовой нитью обеспечили им самое широкое применение при освещении.

Широкие возможности применения вольфрама обнаружились в результате открытия, сделанного известным американским физиком Робертом Уильямсом Вудом. В одном из опытов Р. Вуд обратил внимание на то, что свечение вольфрамовой нити с торцовой части катодной трубки его конструкции продолжается и после отключения электродов от аккумулятора. Это настолько поразило его современников, что Р. Вуда стали называть чародеем. Исследования показали, что вокруг нагретой вольфрамовой нити происходит термическая диссоциация молекул водорода они распадаются на отдельные атомы. После отключения энергии атомы водорода снова соединяются в молекулы, и при этом выделяется большое количество тепловой энергии, достаточное, чтобы раскалить тонкую вольфрамовую нить и вызвать её свечение. На этом эффекте разработан новый вид сварки металлов - атомно-водородный, давший возможность сваривать различные стали, алюминий, медь и латунь в тонких листах с получением чистого и ровного шва. Металлический вольфрам при этом используется в качестве электродов. Вольфрамовые электроды применяются также и при более широко распространённой аргоно-дуговой сварке.

В химической промышленности вольфрамовая проволока, очень стойкая против кислот и щелочей, применяется для изготовления сеток различных фильтров. Вольфрам нашёл применение также как катализатор, с его помощью изменяют скорость химических реакций в технологическом процессе. Группа вольфрамовых соединений в промышленности и лабораторных условиях используется как реактивы для определения белка и других органических и неорганических соединений.

Соединения вольфрама

Триоксид вольфрама (WO 3) применяется для получения карбидов и галогенидов вольфрама, как жёлтый пигмент при окраске изделий из стекла и керамики. Является катализатором гидрогенизации и крекинга углеводородов.

Вольфрамовая кислота (H 2 WO 4) применяется как протрава и краситель в текстильной промышленности. Вольфрамовая кислота является промежуточным продуктом в производстве вольфрама.

Карбид вольфрама (WC) активно применяется в технике для изготовления инструментов, требующих высокой твёрдости и коррозионной стойкости, а также для износостойкой наплавки деталей, работающих в условиях интенсивного абразивного изнашивания с умеренными ударными нагрузками. Этот материал находит применение в изготовлении различных резцов, абразивных дисков, свёрл, фрез, долот для бурения и другого режущего инструмента. Марка твёрдого сплава, известная как «победит», на 90% состоит из карбида вольфрама.