Кто является автором современной теории биохимической эволюции. Современные теории. Минусы теории Опарина-Холдейна

Теория биохимической эволюции представила зарождение жизни на Земле как процесс последовательного усложнения химических веществ: от неорганических соединений ‒ к органическим, от органических ‒ к биологическим. Ее автором явился советский ученый академик Александр Иванович Опарин (1894 – 1980). В 1924 году он опубликовал книгу «Происхождение жизни», в которой изложил новую гипотезу происхождения жизни на Земле. Книга, выпущенная в стране, где господствовали материализм и атеизм, могла описывать происхождение жизни только как процесс, происходивший под влиянием исключительно естественных причин, т.е. без участия Божественных Сил. Хотя и не следует сомневаться в искренности замечательного ученого. По мнению Опарина, происходило постепенное усложнение химических веществ – химическая эволюция. Она привела к появлению таких сложных веществ, которые явились носителями жизни. Иными словами, химическая эволюция постепенно перешла в биологическую. Такой процесс называется в науке абиогенным, т.е. происходящим без участия живых организмов. Опарин предположил, что принцип Реди справедлив лишь для современной эпохи существования Земли. Таким образом, согласно его гипотезе, зарождение жизни на Земле ‒ процесс эволюции живой материи из неживой.

Биогенез ‒ процесс возникновения и эволюции живых систем.

Опарин считал, что в древние времена природные условия Земли существенно отличались от современных. Первичная атмосфера не содержала свободного кислорода. В современной атмосфере он содержится в количестве 21% по объему. В такой атмосфере могли содержаться аммиак (NH 3), двуокись углерода (CO 2), метан (CH 4) и водяной пар. Этой первичной атмосферы уже нет. На ее месте образовалась вторичная атмосфера ‒ продукт развития жизни на Земле.

Отсутствие кислорода в первичной атмосфере привело к важнейшему следствию. Она не содержала озонового слоя. В современной атмосфере он находится на высоте около 20 км над поверхностью Земли и поглощает 99% ультрафиолетового излучения Солнца, которое губительно действует на живые ткани. Поэтому первые организмы должны были защищаться от него под слоем воды.

Первый этап возникновения жизни ‒ образование органических веществ из неорганических.

Разделение мира на живой и неживой принадлежит Аристотелю. На раннем этапе развития химии, храня верность аристотелевской традиции, химики разделили все вещества на неорганические и органические ‒ принадлежащие царству минералов и царству растений и животных. С точки зрения химического состава, к органическим веществам относятся, за редчайшим исключением, соединения углерода.

Второй этап возникновения жизни – появление из отдельных органических молекул белков и нуклеиновых кислот.

Соединения углерода образовали «первичный бульон», из которого формировались биополимеры ‒ аминокислоты и нуклеотиды, составляющие основу белков и нуклеиновых кислот. Но в ходе реакций, которые вели к образованию биополимеров, должны были соединяться вещества сравнительно высокой концентрации. Органические вещества могли образовывать на поверхности океана тонкую пленку, и под действием волн и ветра она толстыми слоями собиралась у берега. Причем, этим процессам способствовали высокая температура атмосферы, грозовые разряды, мощное ультрафиолетовое излучение. Важно и то, что сложные органические соединения являются более устойчивыми к разрушающему действию ультрафиолетового излучения, чем простые соединения.

Согласно гипотезе Опарина, предками современных клеток были органические образования, способные на обмен веществ с окружающей средой. Процесс накопления в среде органических молекул в небольшие комплексы называется коацервацией, а сами такие комплексы ‒ коацерватами. Они состояли из сотен тысяч и миллионов мономеров. Такие комплексы легко получить искусственно, смешивая растворы разных белков. Они способны погло­щать из окружающей среды разные вещества и увеличиваться в раз­мере. В коацерватах могут происходить процессы распада и выделения продуктов распада. Однако они еще не являлись живыми системами, поскольку не были способны к самовоспроизведению и саморегуляции синтеза ор­ганических веществ. Но предпосылки возникновения живого в них уже были.

Живые существа в виде клеток не могли возникнуть до того, как появились клеточные мембраны и катализаторы ‒ вещества, ускоряющие биохимические реакции. Вокруг коацерватов, богатых органическими соединениями, стали возникать слои липидов – жироподобных веществ, которые отделяли коацерваты от окружающей водной среды. В процессе биохимической эволюции эти слои липидов трансформировались в наружную клеточную мембрану. В «первичном бульоне» накапливались также различные катализаторы.

Согласно теории биохимической эволюции, коацерваты представляли собой предбиологические системы.

Третий этап возникновения жизни – начало действия естественного отбора.

Коацерваты могли поглощать из окружающей среды другие вещества. Если вещество было вредным, коацерват распадался. Если вещество усваивалось, коацерват увеличивался в размерах, изменял структуру. Иными словами, происходил отбор наиболее устойчивых коацерватов. Он шел многие миллионы лет. Сохранилась лишь малая часть коацерватов. Однако сохранившиеся обладали способностью к первичному обмену веществ. Достигнув определенных размеров, материнская капля могла распадаться на дочерние, которые сохраняли материнскую структуру. Поэтому можно говорить, что коацерваты постепенно приобретали свойство самовоспроизведения. В сущности, коацерваты, в конце концов, превратились в простейшие живые организмы.



Внутри коацерватов свойства молекул разделялись. Белки регулировали ход химических реакций, которые приводили к появлению новых органических веществ. Нуклеотидные цепи стали удваиваться. Эволюция этих свойств привела к появлению наследственного генетического кода, несущего информацию о строении белковых молекул. Так появились примитивные прокариотические клетки, не имеющие клеточного ядра.

Прокариотические клетки – клетки, не имеющие клеточного ядра, генетический материал которых находится в цитоплазме.

Таким образом, эволюция коацерватов привела к появлению первичных клеток. Это произошло более 4 млрд. лет назад.

Прокариоты ‒ организмы, состоящие из прокариотических клеток, ‒ живут и сегодня. Это бактерии и сине-зеленые водоросли.

Прокариоты существовали в атмосфере, не имеющей кислорода. Поэтому их метаболизм ‒ обмен веществ ‒ был анаэробным.

Анаэробный метаболизм – обмен веществ и энергии, протекающий в отсутствие атмосферного кислорода.

Продолжительность существования первичной бескислородной атмосферы в геологических масштабах была невелика. Первичные клетки быстро размножались и довольно скоро исчерпали запасы питательных органических веществ. Поэтому им оставалось либо погибнуть от голода, либо перейти к иному способу питания. И они нашли его. У некоторых клеток появилась способность к фотосинтезу. Иными словами, для синтеза органических веществ из неорганических они научились использовать солнечную энергию.

Фотосинтез – процесс преобразования солнечной энергии в энергию химических связей органических веществ.

Первоначально фотосинтез происходил без образования молекулярного кислорода. Около 4 млрд. лет назад организмы стали выделять кислород, иными словами, появился аэробный метаболизм.

Аэробный метаболизм – дыхание, при котором расщепление органических веществ происходит при участии кислорода.

В подобных процессах выделяется приблизительно в десять раз больше энергии, чем в реакциях без участия кислорода. Атмосфера стала обогащаться свободным кислородом. Около 400 млн. лет назад, когда количество свободного кислорода в атмосфере достигло 10% по объему, появился озоновый слой. Он обладает свойством поглощать ультрафиолетовое излучение Солнца, губительное для живых организмов. В настоящее время озоновый слой пропускает лишь ничтожную его часть и, тем самым, оберегает все живое на Земле.

Можно предположить, что в раннюю эпоху существования жизни происходила борьба между первичными и вторичными организмами. Первичные организмы – анаэробы, вторичные – аэробы. Видимо, главным оружием аэробов был свободный кислород, который выделялся как продукт их жизнедеятельности и был смертелен для анаэробов. Он и решил исход этой борьбы. Ныне повсеместно господствуют формы жизни, которые при обмене веществ используют кислород. Однако некоторые виды анаэробных организмов живут и поныне. Это, прежде всего, сине-зеленые водоросли.

Благодаря кислородному способу питания организмы нового типа быстро расселялись по нашей планете. Жизнь стала осваивать глубины океана. С появлением озонового слоя она вышла из моря и стала завоевывать сушу.

С распространением аэробов возросла интенсивность реакций фотосинтеза и, следовательно, накопление кислорода в атмосфере. Понадобилось около 100 млн. лет, чтобы количество кислорода в атмосфере достигло современного значения ‒ 21% по объему. С тех пор состав атмосферы практически не изменился до настоящего времени.

Постепенно клетки усложнялись. Около 2 млрд. лет назад появились эукариотические клетки.

Эукариотические клетки – клетки, имеющие ядро и многие внутриклеточные структуры.

Эукариоты ‒ организмы, состоящие из эукариотических клеток, ‒ появились около 2,6 млрд. лет назад.

Наши знания о первых организмах невелики, поскольку они исчезли и не оставили после себя никаких следов.

Приблизительно 1,3 млрд. лет назад стали появляться колонии одноклеточных организмов. В некоторых из них разные клетки выполняли различные функции. Одни клетки поглощали добычу, другие обеспечивали размножение. При этом каждая клетка была отдельным живым организмом. Постепенно некоторые колонии одноклеточных стали превращаться в целостные многоклеточные организмы.

У гипотезы Опарина есть немало сторонников, которые успешно ее развивают. Важнейшей является проблема, каковы источники органических соединений на Земле. Одним из них являются метеориты и космическая пыль. В 1969 году вблизи деревни Мëрчисон в Австралии упал метеорит весом 108 кг. Он относится к углистым хондритам. Как следует из названия, такие метеориты содержат много сложных органических соединений. В нем были найдены следы более 50 аминокислот, причем, восемь из них входят в состав современных белков. Также были обнаружены аденин, урацил и гуанин ‒ азотистые основания нуклеиновых кислот. Из 50 аминокислот значительное большинство не входит в состав живых организмов, а некоторые соединения встречаются в виде двух оптических изомеров – левого и правого. Вспомним, что важнейшим свойством живых организмов является асимметрия сложных молекул, иными словами, существование лишь одного из двух изомеров. Таким образом, обнаружение в Мëрчисонском метеорите симметричных изомеров, а также аминокислот, не входящих в состав живых организмов, доказывает, что все обнаруженные соединения не являются загрязнениями, попавшими на метеорит в земных условиях.

Другим источником органических соединений на Земле являются вулканы и гидротермальные жерла срединно-океанических хребтов. При извержении вулканов вместе с магмой выбрасывается огромное количество газов: сероводород, метан, аммиак, окислы азота и углерода.

Третий источник органических соединений на Земле ‒ атмосфера.

В настоящее время специалисты считают, что в процессе возникновения жизни на Земле все эти источники могли совместно поставлять органические вещества.

Под действием солнечных и космических лучей, которые проникали сквозь разреженную атмосферу, происходила ее ионизация – нейтральные атомы превращались в заряженные, и атмосфера становилась холодной плазмой. Таким образом, древняя атмосфера Земли была богата электричеством, в ней вспыхивали частые разряды.

У теории биохимической эволюции имеются некоторые эмпирические подтверждения. Одно из них – останки организмов, найденные в древнейших горных породах. Из них самые древние ‒ известняки, обнаруженные в Западной Австралии. Это останки нитчатых и округлых микроорганизмов, их насчитывается около десятка различных видов. Их образовали сине-зеленые водоросли и бактерии. Их возраст специалисты оценили в 3,2 ‒ 3,5 млрд. лет. В Северной Америке были обнаружены останки водорослей, возраст которых составляет около 1,1 млрд. лет.

Другим обоснованием теории биохимической эволюции явились эксперименты, которые поставили в 50 – 60-е годы XX века химики из США, СССР и Германии.

В 1953 году американский ученый Стэнли Миллер (1930 – 2007) провел эксперимент, который был призван моделировать процессы, происходящие в первичной атмосфере Земли. Главную часть установки составляла колба с электродами. В ней находились вода и газы, которые, предположительно, входили в состав древней земной атмосферы ‒ водород, метан, аммиак и др. Существенно, что не было свободного кислорода. Колба нагревалась, а между электродами протекали электрические разряды. Через несколько дней в ней образовались аминокислоты, азотистые основания и другие сложные биологические вещества.

Жизнь могла появиться только тогда, когда начал действовать механизм наследственности. Поэтому в настоящее время центральная проблема в теории биохимической эволюции – как появился этот механизм. Началом жизни на Земле нельзя считать даже появление древней ДНК вместо коацерватной капли, поскольку ДНК способна действовать только в присутствии белков-ферментов.

Проблему можно пояснить следующим рассуждением: для работы молекул ДНК и РНК необходимы ферменты, т.е. белки, а для синтеза белков ‒ нуклеиновые кислоты. Известная ситуация: змея кусает себя за хвост. Были предположения, что нуклеиновые кислоты и белки-ферменты появились одновременно, объединились в единую систему, и после этого началась их коэволюция ‒ одновременная и взаимосвязанная эволюция. Но это предположение не получило признания ученых. Объясняется это тем, что белковые и нуклеиновые молекулы по структуре и функциям глубоко различны. Поэтому они не могли появиться одновременно, в результате одного скачка в процессе химической эволюции.

В XX веке ученые спорили о том, что было первичным ‒ белки-ферменты или нуклеиновые кислоты, а также о том, как и когда произошло их объединение в единую систему, которую и можно считать живым организмом. В зависимости от решения вопроса, белки или нуклеиновые кислоты являлись первичными образованиями, методологические подходы к биохимической эволюции можно разделить на две группы ‒ голобиоза и генобиоза.

Теория Опарина относится к этой группе. Появление нуклеиновых кислот она считает итогом эволюции.

Он проявился, в частности, в теории американского генетика Джона Холдейна (1892 ‒ 1964), предложенной в 1929 году. Согласно Холдейну, первичным явился макромолекулярный комплекс, подобный гену и способный к самовоспроизведению. Он был назван «голым геном».

Вплоть до 80-х годов XX века гипотезы голобиоза и генобиоза резко противостояли друг другу. В конце концов, ученые предпочли концепцию генобиоза. Но оставались нерешенными принципиальной важности проблемы. Какая из молекул появилась первой ‒ ДНК или РНК? Если белки-ферменты появились позже молекулы нуклеиновой кислоты, то как без них эта молекула могла действовать?

В 80-х годах XX века у молекулы РНК были обнаружены уникальные свойства. Оказалось, что она способна передавать генетическую информацию так же, как и молекула ДНК. Было открыто, что не существует организмов, не обладающих РНК, однако есть множество вирусов, не содержащих ДНК. Выяснилось, что возможен перенос информации от РНК к ДНК. И, самое главное, была обнаружена способность молекулы РНК к саморепродукции без участия белков-ферментов. Это открытие позволило решить проблему первичности. Первичными являлись нуклеиновые кислоты, а именно ‒ РНК. Замкнутый круг был разорван.

Однако концепции, которые описывают происхождение жизни на Земле как результат случайных процессов, подвергают критике многие выдающиеся ученые. Английскому астрофизику Фреду Хойлу принадлежит известная шутка о том, что любая подобная концепция «столь же нелепа и неправдоподобна, как утверждение, что ураган, пронесшийся над мусорной свалкой, может привести к сборке Боинга-747».

Важнейшие положения темы № 9 «Проблема происхождения жизни

в научной картине мира»

Современная биология, определяя жизнь, перечисляет важнейшие свойства живых организмов, признавая, что только совокупность этих свойств и может отличить живое от неживого. Между живой и неживой природой нет резкой грани. Существуют переходные формы, которые, в зависимости от конкретных условий, считаются или живыми, или неживыми объектами. Например, вирусы.

К основным теориям происхождения жизни относятся: креационизм, теория самопроизвольного зарождения жизни, теория панспермии, теория биохимической эволюции.

Согласно теории самопроизвольного зарождения жизни, в некоторых телах могут находиться «активные зерна», которые дают начало живым существам, если оказываются в благоприятной среде.

Франческо Реди поставил опыт с кусками мяса, который поколебал, но еще не мог опровергнуть теорию самопроизвольного зарождения жизни. Реди доказал, что самозарождение червей из гниющего мяса без мух невозможно. Благодаря этому опыту Франческо Реди сумел сформулировать вывод, который стал основополагающим принципом современной биологии.

Принцип Реди. Живые организмы происходят только от других живых организмов и не способны самозарождаться.

Луи Пастер в решающем опыте опроверг теорию самопроизвольного жизни.

Согласно теории панспермии, жизнь занесена на Землю из Космоса. Однако все варианты концепции панспермии, в конечном счете, не решают проблемы происхождения жизни. Они оставляют открытым вопрос: где и как жизнь возникла в Космосе?

Теория биохимической эволюции, разработанная Александром Ивановичем Опариным, представила зарождение жизни на Земле как процесс последовательного усложнения химических веществ: от неорганических соединений ‒ к органическим, от органических ‒ к биологическим. Стэнли Миллер провел опыт, который призван был экспериментально обосновать теорию биохимической эволюции. Он поставил цель смоделировать в колбе первичную атмосферу Земли. Через несколько дней в колбе образовались аминокислоты, азотистые основания и другие сложные биологические вещества.

В XX веке ученые спорили о том, что было первичным ‒ белки-ферменты или нуклеиновые кислоты. В зависимости от решения вопроса о первичности, методологические подходы к биохимической эволюции разделились на две группы ‒ голобиоза и генобиоза.

Голобиоз ‒ методологический подход, который утверждает первичность структур, способных к обмену веществ при участии белков-ферментов.

Теория Опарина относится к этой группе.

Генобиоз ‒ методологический подход, который утверждает первичность структур со свойствами первичного генетического кода.

У молекулы РНК были обнаружены уникальные свойства. Оказалось, что она способна передавать генетическую информацию. Была обнаружена способность молекулы РНК к саморепродукции без участия белков-ферментов. Это открытие позволило решить проблему первичности. Первичными являлись нуклеиновые кислоты, а именно ‒ РНК.

Вопросы для самоконтроля

1. Как меняются свойства вирусов, когда они попадают в клетку?

2. Сформулируйте суть теории самопроизвольного зарождения жизни.

3. Опишите опыт Франческо Реди.

4. Сформулируйте принцип Реди.

5. Какое великое биологическое открытие сделал Антони ван Левенгук?

6. Опишите опыт Луи Пастера.

7. Опишите один из вариантов гипотезы панспермии.

8. Сформулируйте одно из возражений против теории панспермии.

9. Какое открытие сделал Йёнс Якоб Берцелиус, исследуя метеорит Алаис?

10. Что такое изомерия?

11. Что такое хиральность?

12. В чем заключается суть теории биохимической эволюции?

13. Что такое биогенез?

14. Какие клетки называются прокариотическими?

15. Какие клетки называются эукариотическими?

16. Перечислите источники органических соединений на Земле.

17. Опишите опыт Стэнли Миллера.

18. Что такое голобиоз?

19. Что такое генобиоз?

20. Какие вещества признаны первичными – белки или нуклеиновые кислоты?

Биохимическая эволюция

Среди астрономов, геологов и биологов принято считать, что возраст Земли составляет примерно 4,5 – 5 млрд. лет.

По мнению многих биологов, в прошлом состояние нашей планеты было мало похоже на нынешнее: вероятно температура на поверхности была очень высокой (4000 - 8000°С), и по мере того, как Земля остывала, углерод и более тугоплавкие металлы конденсировались и образовали земную кору; поверхность планеты была, вероятно, голой и неровнои̌, так как на ней в результате вулканической активности, подвижек и сжатий коры, вызванных охлаждением, происходило образование складок и разрывов.

Полагают, что гравитационное поле ещё недостаточно плотнои̌ планеты не могло удерживать легкие газы: водород, кислород, азот, гелий и аргон, и они уходили из атмосферы. Но простые соединения, содержащие среди прочих эти элементы (вода, аммиак, CO2 и метан). До тех пор, пока температура Земли не упала ниже 100°C, вся вода находилась в парообразном состоянии. Атмосфера была, по видимому, ʼʼвосстановительнои̌ʼʼ, о чем свидетельствует наличие в самых древних горнах породах металлов в восстановленнои̌ форме (например, двухвалентное железо). Более молодые породы содержат металлы в окисленнои̌ форме (Fe3+). Отсутствие кислорода, вероятно, было необходимым условием для возникновения жизни; как показывают лабораторные опыты, органические вещества (основа жизни) гораздо легче образуются в атмосфере беднои̌ кислородом.
Понятие и виды, 2018.

В 1923 г. А.И. Опарин, исходя из теоретических соображений, высказал мнение, что органические вещества, возможно углеводороды, могли создаваться в океане из более простых соединений. Энергию для этих процессов поставляла интенсивная солнечная радиация, главным образом ультрафиолетовое излучение, падавшее на Землю до того, как образовался слой озона, который стал задерживать большую её часть. По мнению Опарина, разнообразие находившихся в океанах простых соединений, площадь поверхности Земли, доступность энергии и масштабы времени позволяют предположить, что в океанах постепенно накопились органические вещества и образовался ʼʼпервичный бульонʼʼ, в котором могла возникнуть жизнь.

В 1953 г. Стэнли Миллер в ряде экспериментов моделировал условия, предположительно существовавшие на первобытнои̌ Земле.
В созданнои̌ им установке ему удалось синтезировать многие вещества, имеющие важное биологическое значение, в т.ч. ряд аминокислот, аденин и простые сахара, такие как рибоза. После ϶того Орджел в Институте Солка в сходном эксперименте синтезировал нуклеотидные цепи длинои̌ в шесть мономерных единиц (простые нуклеиновые кислоты).

Позднее возникло предположение, что в первичнои̌ атмосфере в относительно высокой концентрации содержалась двуокись углерода. Недавние эксперименты, проведенные с использованием установки Миллера, в которую поместили смесь CO2 и H2O, и только следовые количества других газов, дали такие же результаты, какие получил Миллер.
Размещено на реф.рф
Теория Опарина завоевала широкое признание, но она не решает проблемы, связанные с переходом от сложных органических веществ к простым живым организмам. Именно в данном аспекте теория биохимической эволюции представляет общую схему, приемлемую для большинства биологов.
Опарин полагал, что решающая роль в превращении неживого в живое принадлежала белкам. Благодаря амфотерности белков они способны к образованию коллоидных гидрофильных комплексов – притягивают к себе молекулы воды, создающие вокруг них оболочку. Данные комплексы могут обособляться от воднои̌ фазы, в которой они суспендированы, и образовывать своᴇᴦο рода эмульсию. Слияние таких комплексов друг с другом приводит к отделению коллоидов от среды – процесс, называемый коацервацией. Богатые коллоидами коацерваты, возможно, были способны обмениваться с окружающей средой веществами и избирательно накапливать различные соединения, особенно кристаллоиды. Коллоидный состав данного коацервата, очевидно, зависел от состава среды. Разнообразие состава ʼʼбульонаʼʼ в разных местах вело к различиям в составе коацерватов и поставляло таким образом сырье для ʼʼбиохимического естественного отбораʼʼ.

Предполагается, что в самих коацерватах входящие в их состав вещества вступали в дальнейшие химические реакции; при ϶том происходило поглощение коацерватами ионов металлов и образование ферментов. На границе между коацерватами и средой выстраивались молекулы липидов, что приводило к образованию примитивнои̌ клеточнои̌ мембраны, обеспечивавшей коацерватам стабильность. В результате включения в коацерват предсуществующей молекулы, способнои̌ к самовоспроизведению и внутренней перестройки покрытого липиднои̌ оболочкой коацервата, могла возникнуть первичная клетка. Увеличение размеров коацерватов и их фрагментация, возможно, вели к образованию идентичных коацерватов, которые могли поглощать больше компонентов среды, так, что ϶тот процесс мог продолжаться. Такая предположительная последовательность событий должна была привести к появлению примитивного самовоспроизводящегося гетеротрофного организма, питавшегося органическими веществами первичного бульона.

Хоть и эту гипотезу происхождения жизни признают очень многие ученые, у некоторых она вызывает сомнения из-за большого количества допущений и предположений. Астроном Фред Хойл недавно высказал мнение, что мысль о возникновении жизни в результате описанных выше случайных взаимодействий молекул ʼʼстоль же нелепа и неправдоподобна, как утверждение, что ураган, пронесшийся над мусорнои̌ свалкой, может привести к сборке Боинга-747ʼʼ.

Самое трудное для ϶той теории – объяснить появление способности живых систем к самовоспроизведению. Гипотезы по ϶тому вопросу пока малоубедительны.

Теория самопроизвольного зарождения жизни

Эта теория была распространена в Древнем Китае, Вавилоне и Египте в качестве альтернативы креационизму, с которым она сосуществовала.

Аристотель (384 – 322 гг. до н. э.), которого часто провозглашают основателем биологии, придерживался теории спонтанного зарождения жизни. На базе собственных наблюдений он развивал эту теорию дальше, связываю все организмы в непрерывный ряд – ʼʼлестницу природыʼʼ. ʼʼИбо природа совершает переход от безжизненных объектов к животным с такой плавнои̌ последовательностью, поместив между ними существа, которые живут, не будучи при ϶том животными, что между соседними группами, благодаря их теснои̌ близости, едва можно заметить различияʼʼ (Аристотель).
Этим утверждением Аристотель укрепил более ранние высказывания Эмпедокла об органической эволюции. Согласно гипотезе Аристотеля о спонтанном зарождении, определенные ʼʼчастицыʼʼ вещества содержат некое ʼʼактивное началоʼʼ, которое при подходящих условиях может создать живой организм. Аристотель был прав, считая, что ϶то активное начало содержится в оплодотворенном яйце, но ошибочно полагал, что оно присутствует аналогичным образом в солнечном свете, тине и гниющем мясе.

ʼʼТаковы факты – живое может возникать не только путем спаривания животных, но и разложением почвы. Следует отметить, что так же обстоит дело и у растений: некоторые развиваются из семян, а другие как бы самозарождаются под действием всей природы, возникая из разлагающейся земли или определенных частей растенийʼʼ (Аристотель).

С распространением христианства теория спонтанного зарождения жизни оказалась не в чести: её признали лишь те, кто верил в колдовство и поклонялся нечистой силе, но эта идея все продолжала существовать где-то на заднем плане в течение ещё многих веков.

Ван Гельмот (1577 – 1644 гг), весьма знаменитый и удачливый ученый, описал эксперимент, в котором он за три недели якобы создал мышей. Для ϶того нужны были грязная рубашка, темный шкаф и горсть пшеницы. Активным началом в процессе зарождения мыши Ван Гельмот считал человеческий пот. В 1688 году итальянский биолог и врач Франческо Реди, живший во Флоренции, подошел к проблеме возникновения жизни более строго и подверг сомнению теорию спонтанного зарождения. Реди установил, что маленькие белые червячки, появляющиеся на гниющем мясе, - ϶то личинки мух. Проведя ряд экспериментов, он получил данные, подтверждающие мысль о том, что жизнь может возникнуть только из предшествующей жизни (концепция биогенеза).

ʼʼУбежденность была бы тщетой, в случае если бы её нельзя было подтвердить экспериментом.
Понятие и виды, 2018.
По϶тому в середине июля я взял четыре больших сосуда с широким горлом, поместил в один из них землю, в другой – немного рыбы, в третий – угрей из Арно, в четвертый – кусок молочнои̌ телятины, плотно закрыл их и запечатал. Далее я поместил то же самое в четыре других сосуда, оставив их открытыми… Вскоре мясо и рыбы в незапечатанных сосудах зачервили; можно было видеть, как мухи свободно залетают в сосуды и вылетают из них. Но в запечатанных сосудах я не видел ни одного червяка, хотя прошло много дней, после того как в них была положена дохлая рыбаʼʼ (Реди). Данные эксперименты, однако, не привели к отказу от идеи самозарождения, и хотя эта идея несколько отошла на задний план, она продолжала оставаться главнои̌ теорией в неклерикальнои̌ среде. В то время как эксперименты Реди, казалось бы, опровергли спонтанное зарождение мух, первые микроскопические исследования Антона ван Левенгука усилили эту теорию применительно к микроорганизмам. Сам Левенгук не вступал в споры между сторонниками биогенеза и спонтанного зарождения, однако ᴇᴦο наблюдения под микроскопом давали пищу обеим теориям и в конце концов побудили других ученых поставить эксперименты для решения вопроса о возникновении жизни путем спонтанного зарождения.

В 1765 году Ладзаро Спалланцани провел следующий опыт: подвергнув мясные и овощные отвары кипячению в течение нескольких часов, он сразу же их запечатал, после чᴇᴦο снял с огня. Исследовав жидкости через несколько дней, Спалланцани не обнаружил в них никаких признаков жизни. Из ϶того он сделал вывод, что высокая температура уничтожила все формы живых существ и что без них ничто живое уже не могло возникнуть. В 1860 году проблемой происхождения жизни занялся Луи Пастер.
Размещено на реф.рф
К ϶тому времени он уже многое сделал в сфере микробиологии и сумел разрешить проблемы, угрожавшие шелководству и виноделию. Он показал аналогичным образом, что бактерии вездесущи и что неживые материалы легко могут быть заражены живыми существами, в случае если их не стерилизовать должным образом.
Понятие и виды, 2018.

В результате ряда экспериментов, в базе которых лежали методы Спалланцани, Пастер доказал справедливость теории биогенеза и окончательно опроверг теорию спонтанного зарождения.

Однако подтверждение теории биогенеза породило другую проблему. Коль скоро для возникновения живого организма необходим другой живой организм, то откуда же взялся самый первый живой организм? Только теория стационарного состояния не требует ответа на ϶тот вопрос, а во всех других теориях подразумевается, что на какой-то стадии истории жизни произошел переход от неживого к живому. Было ли ϶то первичным самозарождением?

Биохимическая эволюция - понятие и виды. Классификация и особенности категории "Биохимическая эволюция"2017-2018.

Как уже упоминалось, в состав первичной атмосферы Земли входили пары воды и несколько газов: CO 2 , CO, H 2 S, NH 3 , CH 4 . При этом кислород практически отсутствовал, и атмосфера имела восстановительный характер.

Возникновение жизни на Земле и ее биосферы – одна из основных проблем современного естествознания. Согласно гипотезе биохимической эволюции А.И.Опарина зарождение жизни на Земле – это длительный процесс становления живой материи из неживой под воздействием физико-химических факторов.

В то же время в вопросе о происхождении первых «протоклеток», моменте перехода от «нежизни» к жизни еще очень много неясного.

Гиперциклы и зарождение жизни. Лучше понять процесс происхождения и эволюции жизни, можно, обратясь к расмотренной ранее теории химической эволюции Руденко и гипотезы немецкого физико-химика М. Эйгена. Согласно последней, процесс возникновения живых клеток тесно связан с взаимодействием нуклеотидов (нуклеотиды – элементы нуклеиновых кислот, в состав которых входят азотистые основания – цитозин, гуанин, тимин, аденин), являющихся материальными носителями информации , и протеинов (полипептидов), служащих катализаторами химических реакций. В процессе взаимодействия нуклеотиды под влиянием протеинов воспроизводят самих себя и передают информацию следующему за ними протеину, так что возникает замкнутая автокаталитическая цепь , которую М. Эйген назвал гиперциклом . В ходе дальнейшей эволюции из них возникают первые живые клетки, сначала безъядерные (прокариоты), а затем с ядрами – эукариоты.

Здесь, как видим, прослеживается логическая связь между теорией эволюции катализаторов и представлениями о замкнутой автокаталитической цепи. В ходе эволюции принцип автокатализа дополняется принципом самовоспроизведения целого циклически организованного процесса в гиперциклах, предложенного М.Эйгеном. Воспроизведение компонентов гиперциклов, так же как и их объединение в новые гиперциклы, сопровождается усилением метаболизма, связанного с синтезированием высокоэнергетических молекул и выведением как «отбросов» бедных энергией молекул. Здесь интересно отметить особенности вирусов как промежуточной формы между жизнью и нежизнью: они лишены способности к метаболизму и, внедряясь в клетки, начинают пользоваться их метаболической системой . Итак, по Эйгену происходит конкуренция гиперциклов, или циклов химических реакций, которые приводят к образованию белковых молекул (рис.).

Рис. Гиперцикл и возникновение гипотетической клетки

Циклы, которые работают быстрее и эффективнее, чем остальные, «побеждают» в конкурентной борьбе. Фактически, Эйген выдвинул концепцию образования упорядоченных макромолекул из неупорядоченного вещества на основе матричной репродукции естественного отбора. Он начинает с того, что дарвиновский принцип естественного отбора – это единственный понятный нам способ создания новой информации как физической величины, отражающей меру упорядоченности системы (в противоположность энтропии – «беспорядку»). Другими словами, если имеется система самовоспроизводящихся единиц, которые строятся из материала, поступающего в ограниченном количестве из единого источника, то в ней с неизбежностью возникает конкуренция и, как ее следствие, отбор . Эволюционное поведение, управляемое естественным отбором, основано на самовоспроизведении с "информационным шумом" (в случае эволюции биологических видов роль "шума" выполняют мутации). Наличия этих двух физических свойств достаточно, чтобы стало принципиально возможным возникновение системы с прогрессирующей степенью сложности.

Простейшим примером гиперцикла может служить размножение РНК-содержащего вируса в бактериальной клетке. Этот гиперцикл конкурирует с любой самовоспроизводящейся единицей, не являющейся его членом; он не может стабильно сосуществовать и с другими гиперциклами – если только не объединен с ними в автокаталитический цикл следующего, более высокого, порядка. Состоя из самостоятельных самовоспроизводящихся единиц (что гарантирует сохранение фиксированного количества информации, передающейся от "предков" к "потомкам"), он обладает и интегрирующими свойствами. Таким образом, гиперцикл объединяет эти единицы в систему, способную к согласованной эволюции, где преимущества одного индивида могут использоваться всеми ее членами, причем система как целое продолжает интенсивно конкурировать с любой единицей иного состава.

В процессе возникновения жизни на Земле различают несколько основных этапов. Их последовательность в процессе эволюции: абиогенный синтез низкомолекулярных органических веществ, образование биополимеров, формирование коацерватов, возникновение фотосинтеза.


Рис. 4. Схема абиогенеза

Интересно сопоставить действительные представления о биохимической эволюции с тем, что пытаются обычно представить креационисты, критикующие эту теорию (рис.).

Согласно современным гипотезам, вещества, возникшие в первичной атмосфере, в основном вымывались в океанах, размеры которых увеличивались по мере остывания Земли. Были проведены эксперименты с газами, предположительно входившими в состав этой атмосферы, в условиях, считающимися близкими к господствовавшим в то время. В этих экспериментах получены сложные органические молекулы, сходные с основными компонентами биологических структур. Земные океаны превращались во все более концентрированный раствор таких веществ.

Некоторые органические молекулы имеют тенденцию собираться вместе. В первичном океане эти скопления, вероятно, приобретали форму капель, похожих на образуемые маслом в воде. Такие капли, по-видимому, и были предшественниками примитивных клеток – первых форм живого.

Согласно современным теориям, эти органические молекулы служили также источником энергии для первых организмов. Примитивные клетки или клеткоподобные структуры могли получать ее, используя имеющиеся в изобилии химические соединения. По мере развития и усложнения организмы становились все более самостоятельными, приобретая такие способности: расти, размножаться и предавать свои признаки следующим поколениям.

Таким образом, первые организмы , возникшие на Земле и долго существовавшие в водах первичного океана – это прокариоты , т.е. безъядерные организмы. Прокариот называют также «бактериями». Кроме того, эти организмы не нуждались в кислороде для своей жизнедеятельности, т.е. были анаэробами . Они удовлетворяли свои энергетические нужды, потребляя органические соединения из окружающей среды, т.е. были гетеротрофами (от греческих слов heteros – другой и trophos – питающийся). К этой группе сейчас относятся все животные и грибы, а также многие одноклеточные, например большинство бактерий.

До того как атмосфера стала аэробной, т.е. кислородной, существовали только лишенные ядерных оболочек прокариотические клетки, генетический материал которых не организован в сложные хромосомы.

По мере увеличения численности примитивных гетеротрофов запас сложных молекул, от которых зависело их существование, накапливавшийся в течение миллионов лет, начал истощаться. Органики за пределами клеток становилось все меньше, и между ними началась конкуренция. Под ее давлением клетки, которые могли эффективно использовать ставшие ограниченными источниками энергии, получили в сравнении с другими больше шансов выжить. С течением времени в результате длительного медленного процесса вымирания (элиминации) наименее приспособленных возникли организмы, способные создавать собственно богатые энергией молекулы из простых неорганических веществ. Они называются автотрофами , что означает по-гречески «самостоятельно питающиеся». Без появления этих первых автотрофов жизнь на Земле прекратилась бы.

Наиболее преуспевающими оказались автотрофы, у которых появилась система для непосредственного использования солнечной энергии, т.е. фотосинтеза. Первые фотосинтезирующие организмы были намного проще современных растений, но уже значительно сложнее, чем примитивные гетеротрофы. Для поглощения и использования солнечной энергии потребовалась особая, улавливающая световую энергию пигментная система и сопряженная с ней система запасания этой энергии в связях органических молекул.

Доказательства существования фотосинтезирующих организмов были найдены в породах возрастом 3,4 млрд. лет, т.е. на 100 млн. лет более молодых, чем те, в которых обнаружены первые ископаемые свидетельства жизни на Земле. Однако можно быть почти уверенным в том, что и жизнь, и фотосинтез появились значительно раньше. С появлением автотрофов поток энергии в биосфере приобрел современные черты: лучистая энергия улавливается фотосинтезирующими организмами, а от них предается всем остальным живым существам.

По мере увеличения количества автотрофов облик планеты изменялся. Эта биологическая революция связана с одним из наиболее эффективных способов фотосинтеза, используемым почти всеми ныне живущими автотрофами и включающим расщепление молекулы воды с высвобождением кислорода. В результате количество газообразного кислорода в атмосфере увеличивалось, а это имело два важных последствия.

Во-первых, часть кислорода во внешнем слое атмосферы превращалась в озон , который, накопившись в достаточном количестве, начал поглощать ультрафиолетовые лучи падающего на землю солнечного света, губительные для живого. Около 450 млн. лет назад организмы, защищенные озоновым слоем, уже могли выживать у поверхности воды и на суше.

Во-вторых, увеличение количества свободного кислорода дало возможность более эффективно использовать богатые энергией углеродсодержащие молекулы, образованные в ходе фотосинтеза, позволив организмам расщеплять и окислять их в процессе дыхания (окислительное фосфорилирование) . А дыхание дает значительно больше энергии, чем любое анаэробное (бескислородное) разложение.

Окисли́тельное фосфорили́рование – метаболический путь, при котором энергия, образовавшаяся при окислении (обязательно нужно присутствие кислорода) питательных веществ, запасается в митохондриях клеток в виде АТФ.

Все виды организмов, жившие на Земле ранее примерно 1,5 млрд. лет назад, были гетеротрофами или автотрофными бактериями. Согласно палеонтологическим данным, увеличение концентрации свободного кислорода сопровождалось появлением первых эукариотических клеток , имеющих ядерные оболочки, особо устроенные хромосомы и ограниченные мембранами органеллы. Эукариотические организмы, отдельные клетки которых обычно значительно крупнее бактериальных, возникли около 1,5 млрд. лет назад, а многочисленными и разнообразными стали примерно 1 млрд. лет назад. Все живые существа, кроме бактерий, состоят из одной или многих эукариотических клеток. Следует отметить, что первые этапы становления жизни на Земле заняли миллиарды лет (рис.).

Рис. Начальный этап эволюции жизни

Таким образом, концепция самоорганизации позволяет установить связь между живым и неживым в ходе эволюции, так что возникновение жизни представляется отнюдь не чисто случайной и крайне маловероятной комбинацией условий и предпосылок для ее появления. Кроме того, жизнь сама готовит условия для своей дальнейшей эволюции.

Нерегулярные полимеры – полимеры, в которых нет определенной закономерности в последовательности молекул.


Теории возникновения жизни.

1 из 44

Презентация - Биохимическая эволюция

Текст этой презентации

Теория абиогенеза (биохимической эволюции). Модель А.Опарина -Дж. Холдейна. Опыты С. Миллера. Проблемы и противоречия теории

В 1923 году советским биохимиком Алексеем Опариным была разработана теория биохимической эволюции.

А. И. Опарин, русский биохимик, академик, еще в 1924 г. опубликовал свою первую книгу по данной проблеме происхождения жизни путем биохимической эволюции
2 марта 1894 г. - 21 апреля 1980 г.

миллиарды лет назад при формировании планеты первыми органическими веществами были углеводороды, которые образовались в океане из более простых соединений.
Основу этой теории составляла идея:

Появление жизни А. Опарин рассматривал как единый естественный процесс, который состоял из протекавшей в условиях ранней Земли первоначальной химической эволюции, перешедшей постепенно на качественно новый уровень - биохимическую эволюцию.

Суть гипотезы:
Зарождение жизни на Земле - длительный эволюционный процесс становления живой материи в недрах неживой
Произошло это путем химической эволюции, в результате которой простейшие органические вещества образовались из неорганических под влиянием сильнодействующих физико-химических факторов.

Опарин выделяет три этапа перехода от неживой материи к живой:
1) этап синтеза исходных органических соединений из неорганических веществ в условиях первичной атмосферы ранней Земли; 2) этап формирования в первичных водоемах Земли из накопившихся органических соединений биополимеров, липидов, углеводородов; 3) этап самоорганизации сложных органических соединений, возникновение на их основе и эволюционное совершенствование процессов обмена веществом и воспроизводства органических структур, завершающееся образованием простейшей клетки.

Первый этап (около 4 млрд. лет назад)
По мере остывания планеты водяные пары, находившиеся в атмосфере, конденсировались и обрушивались на Землю ливнями, образуя огромные водные пространства.
Поскольку поверхность Земли оставалась горячей, вода испарялась, а затем, охлаждаясь в верхних слоях атмосферы, вновь выпадала на поверхность планеты.
Таким образом в водах первичного океана были растворены различные соли и органические соединения
Эти процессы продолжались многие миллионы лет

Второй этап
Происходит смягчение условий на Земле, под воздействием на химические смеси первичного океана электрических разрядов, тепловой энергии и ультрафиолетовых лучей стало возможным образование сложных органических соединений - биополимеров и нуклеотидов, которые, постепенно объединяясь и усложняясь.
Итогом эволюции сложных органических веществ стало появление коацерватов, или коацерватных капель.

Коацерваты - это комплексы коллоидных частиц, раствор которых разделяется на два слоя:
слой, богатый коллоидными частицами
жидкость, почти свободную от них
Коацерваты оказались способными поглощать из внешней среды различные органические вещества, что обеспечило возможность первичного обмена веществ со средой.

сохранившиеся коацерватные капли обладали способностью к первичному метаболизму
Третий этап
Начал действовать естественный отбор
в результате сохранилась только малая часть коацерватов
достигнув определенных размеров, материнская капля могла распадаться на дочерние, которые сохраняли особенности материнской структуры

Позднее теория биохимической эволюции получила развитие в трудах английского учёного Джона Холдейна

Дж. Холдейн, английский генетик и биохимик, с 1929 г. развивал идеи, созвучные представлениям А. И. Опарина.

Жизнь явилась результатом длительных эволюционных углеродных соединений. Вещества, близкие по своему химическому составу к белкам и другим органическим соединениям, составляющие основу живых организмов, возникли на основе углеводородов.
Джон Холдейн сформулировал гипотезу

В дальнейшем поглощая из окружавшей среды белковые вещества, структура коацерватов усложнялась, и они стали похожи на примитивные, но уже живые клетки, а химические соединения внутреннего состава позволяли им расти, видоизменяться, осуществлять обмен веществ и размножаться.
Коацерват (от лат. coacervātus - «собранный в кучу») или «Первичный бульон» - многомолекулярный комплекс, капли или слои с большей концентрацией разведённого вещества, чем в остальной части раствора того же химического состава.

Теория биохимической эволюции и происхождения жизни на Земле, высказанная Алексеем Опариным, признана многими учеными, однако из-за большого количества предположений и допущений, она вызывает некоторые сомнения.

Постулирует, что жизнь возникла на Земле именно из неживой материи, в условиях, имевших место на планете миллиарды лет назад. Эти условия включали наличие источников энергии, определенного температурного режима, воды и других неорганических веществ - предшественников органических соединений. Атмосфера тогда была бескислородной (источником кислорода в настоящее время являются растения, а тогда их не было).
«Гипотеза Опарина-Холдейна»

Этапы развития жизни на Земле по гипотезе Опарина-Холдейна
Временной период Этапы возникновения жизни События, происходящие на Земле
От 6,5 до 3,5 млрд лет тому назад 1 Образование первичной атмосферы, содержащей метан, аммиак, углекислый газ, водород, окись углерода и пары воды
2 Охлаждение планеты (ниже температуры +100 °С на ее поверхности); конденсация паров воды; образование первичного океана; растворение в его воде газов и минеральных веществ; мощные грозы Синтез простых органических соединений - аминокислот, сахаров, азотистых оснований - в результате действия мощных электрических разрядов (молний) и ультрафиолетовой радиации
3 Образование простейших белков, нуклеиновых кислот, полисахаридов, жиров; коацерватов
От 3,5 до 3 млрд лет тому назад 4 Образование протобионтов, способных к самовоспроизведению и регулируемому обмену веществ, в результате возникновения мембран с избирательной проницаемостью и взаимодействий нуклеиновых кислот и белков
3 млрд лет тому назад 5 Возникновение организмов, имеющих клеточное строение (первичных прокариот-бактерий)

Весьма убедительные доказательства возможности осуществления 2-го и 3-го этапов развития жизни получены в результате многочисленных экспериментов по искусственному синтезу биологических мономеров.

Впервые в 1953 г. С. Миллер (США) создал достаточно простую установку, на которой ему удалось из смеси газов и паров воды под действием ультрафиолетового облучения и электрических разрядов синтезировать ряд аминокислот и других органических соединений

Публикация в журнале Science описывает данные, ускользнувшие от ученых 50 с лишним лет назад.
Молодой сотрудник Университета Чикаго, Стэнли Миллер, проводит свои знаменитые эксперименты по синтезу биологических молекул. 1953 год. //Архив Химического факультета Калифорнийского университета в Сан-Диего

Тогда нобелевский лауреат Гарольд Юри, получивший престижную премию за открытие тяжелой воды и увлекшийся впоследствии проблемами космохимии,
вдохновил одного из своих подопечных, Стэнли Миллера, теорией доисторического абиотического супа, из которого под влиянием внешних факторов получились первые органические молекулы.
29 апреля 189 - 5 января 1981 (87 лет)

Для того чтобы воссоздать реакции в лаборатории в условиях, приближенных к тем, что царили на Земле миллиарды лет назад, Миллер, разработал оригинальный химический прибор.

Прибор состоит из большой реакционной колбы, содержащей пары метана, аммиака и водорода, в которую снизу нагнетается горячий водяной пар. Сверху же расположены вольфрамовые электроды, генерирующие искровой разряд. Моделируя таким образом условия грозы в окрестностях действующего прибрежного вулкана, Миллер надеялся получить в ходе синтеза биологические молекулы.
Кипящая вода (1) создает поток пара, который усиливается соплом аспиратора (врезка), искра, проскакивающая между двумя электродами (2), запускает набор химических превращений, холодильник (3) охлаждает поток водяного пара, содержащего продукты реакции, которые оседают в ловушке (4).// Нед Шоу, Университет Индианы.

В своем опыте Миллер использовал газовую смесь, состоящую из:
аммиак
метан
водород
водяной пар
По предположению Миллера, именно эта смесь преобладала в первичной атмосфере Земли

Так как эти газы не могли вступить в реакцию в естественных условиях, Миллер подвергал их воздействию электрической энергии, имитируя грозовые разряды, от которых, как предполагалось, была получена энергия в ранней атмосфере
При температуре 100 ° С смесь кипятилась в течение недели, систематично подвергаясь воздействию электрических разрядов.
Проведенный в конце недели анализ хемосинтеза показал, что из двадцати аминокислот, составляющих основу любого белка, образовались только три

После смерти Стивена Миллера, разбирая его дневники и архивы, близкие и коллеги обнаружили записи, относящиеся к работам 50-х годов, а также несколько склянок с подписями.
Подписи указали на то, что содержимое склянок – не что иное, как продукты синтеза в аппаратах Миллера, сохраненные автором в неприкосновенном виде.

Опыты Стэнли Миллера, попытавшегося в пробирке повторить зарождение жизни на Земле, были куда успешнее, чем полагал сам Миллер. Современные методы позволили найти не пять, а все 22 аминокислоты в химической посуде, запечатанной ученым многие десятилетия назад

На протяжении последующих 20 лет было установлено:
Атмосфера в опыте Миллера была фиктивной
Ранняя атмосфера Земли состояла не из метана и аммиака, а из азота, двуокиси углерода и водных испарений, а эксперимент Миллера был ничем иным, как откровенной ложью.
В опытах, для получения аминокислот, брали готовый аммиак, а сам по себе, абиогенным способом, образуется он только при высоком давлении и температурах из эквималярной смеси водорода и азота, в присутствии катализатора

Миллер использовал в эксперименте механизм "холодного капкана", то есть образовавшиеся аминокислоты сразу же были изолированы от внешней среды.
Если бы не было этого механизма, атмосферные условия тотчас же разрушили бы эти молекулы.

Миллер, использовав метод «холодного капкана», сам сокрушил свое же утверждение о возможности свободного образования аминокислот в атмосфере.
В итоге все усилия показали, что даже в идеальных условиях лаборатории невозможно синтезировать аминокислоты без механизма "холодного капкана", чтобы предотвратить расщепление аминокислот уже под влиянием собственной среды, так что не может быть и речи о случайном их возникновении в природе.

Научные проблемы опытов Миллера
Полученные аминокислоты оказались «неживыми»: не того направления вращения – эффект «киральности». в результате опыта было получено множество D-аминокислот. D-аминокислоты отсутствуют в структуре живого организма.

“проблемы хиральности” В результате опыта были получены аминокислоты с разным поворотом (ориентацией) от воображаемой оси, что делает практически невозможным их соединение в протеин (б-ок)

киральность
Термин "хиральность" происходит от греческого слова "хирос" - рука.

Биохимическая эволюция

Среди астрономов, геологов и биологов принято — считать, что возраст Земли составляет примерно 4,5-5 млрд. лет.

По мнению многих биологов, в далеком прошлом состояние нашей планеты было мало похоже на нынешнее: по всей вероятности, температура ее поверхности была очень высокой (4000-8000°С), и по мере того, как Земля остывала, углерод и более тугоплавкие металлы конденсировались и образовали земную кору; поверхность планеты была, вероятно, голой и неровной, так как на ней в результате вулканической активности, непрерывных подвижек коры и сжатия, вызванного охлаждением, происходило образование складок и разрывов.

Полагают, что в те времена атмосфера была совершенно не такая, как теперь. Легкие газы — водород, гелий, азот, кислород и аргон — уходили из атмосферы, так как гравитационное поле нашей еще недостаточно плотной планеты не могло их удержать. Однако простые соединения, содержащие (среди прочих) эти элементы, должны были удерживаться; к ним относятся вода, аммиак, двуокись углерода и метан. До тех пор пока температура Земли не упала ниже 100°С, вся вода, вероятно, находилась в парообразном состоянии.

Атмосфера была, по-видимому, “восстановительной”, о чем свидетельствует наличие в самых древних горных породах Земли металлов в восстановленной форме, таких как двухвалентное железо. Более молодые горные породы содержат металлы в окисленной форме, например трехвалентное железо. Отсутствие в атмосфере кислорода было, вероятно, необходимым условием для возникновения жизни; лабораторные опыты показывают, что, как это ни парадоксально, органические вещества (основа живых организмов) гораздо легче создаются в восстановительной среде, чем в атмосфере, богатой кислородом.В 1923 г. А. И. Опарин высказал мнение, что атмосфера первичной Земли была не такой, как сейчас, а примерно соответствовала сделанному выше описанию. Исходя из теоретических соображений, он полагал, что органические вещества, возможно углеводороды, могли создаваться в океане из более простых соединений; энергию для этих реакций синтеза, вероятно, доставляла интенсивная солнечная радиация (главным образом ультрафиолетовая), падавшая на Землю до того, как образовался слой озона, который стал задерживать большую ее часть. По мнению Опарина, разнообразие

находившихся в океанах простых соединений, площадь поверхности Земли, доступность энергии и масштабы времени позволяют предположить, что в океанах постепенно накопились органические вещества и образовался тот “первичный бульон”, в котором могла возникнуть жизнь. Эта идея была не нова: в 1871 г. сходную мысль высказал Дарвин:

Часто говорят, что все необходимые для создания живого организма условия, которые могли когда-то существовать, имеются и в настоящее время. Но если (ох, какое это большое “если”) представить себе, что в каком-то небольшом теплом пруду, содержащем всевозможные аммонийные и фосфорные соли, при наличии света, тепла, электричества и т.п. образовался бы химическим путем белок, готовый претерпеть еще более сложные превращения, то в наши дни такой материал непрерывно пожирался бы или поглощался, чего не могло случиться до того, как появились живые существа”.

В 1953 г. Стэнли Миллер в ряде экспериментов моделировал условия, предположительно существовавшие на первобытной Земле. В созданной им установке (рис. 24.1), снабженной источником энергии, ему удалось синтезировать многие вещества, имеющие важное биологическое значение, в том числе ряд аминокислот, аденин и простые сахара, такие как рибоза. После этого Орджел в Институте Солка в сходном эксперименте синтезировал нуклеотидные цепи длиной в шесть мономерных единиц (простые нуклеиновые кислоты).

Позднее возникло предположение, что в первичной атмосфере, в относительно высокой концентрации содержалась двуокись углерода. Недавние эксперименты, приведенные с использованием установки Миллера, н которую, однако, поместили смесь СО 2 и Н 2 О и только следовые количества других газов, дали такие же результаты, какие получил Миллер. Теория Опарина завоевала широкое признание, но она, оставляет нерешенными проблемы, связанные с переходом от сложных органических веществ к простым живым организмам. Именно в этом аспекте теория биохимической эволюции предлагает общую схему, приемлемую для большинства современных биологов. Однако они не пришли к единому мнению о деталях этого процесса.

Опарин полагал, что решающая роль в превращении неживого в живое принадлежала белкам. Благодаря амфотерности белковых молекул они способны к образованию коллоидных гидрофильных комплексов -притягивают к себе молекулы воды, создающие вокруг них оболочку. Эти комплексы могут обособляться от всей массы воды, в которой они суспендированы (водной фазы), и образовывать своего рода эмульсию. Слияние таких комплексов друг с другом приводит к отделению коллоидов от водной среды — процесс, называемый коацервацией (от лат. coacervus — сгусток или куча). Богатые коллоидами коацерваты, возможно, были способны обмениваться с окружающей средой веществами и избирательно накапливать различные соединения, в особенности кристаллоиды. Коллоидный состав данного коацервата, очевидно, зависел от состава среды. Разнообразие состава “бульона” в разных местах вело к различиям в химическом составе коацерватов и поставляло таким образом сырье для “биохимического естественного отбора”.

Предполагается, что в самих коацерватах входящие в их состав вещества вступали в дальнейшие химические реакции; при этом происходило поглощение коацерватами ионов металлов и образование ферментов. На границе между коацерватами и внешней средой выстраивались молекулы липидов (сложные углеводороды), что приводило к образованию примитивной клеточной мембраны, обеспечивавшей концерватам стабильность. В результате включения в коацерват пред существующей молекулы, способной к. самовоспроизведению, и внутренней перестройки покрытого липидной оболочкой коацервата могла возникнуть примитивная клетка. Увеличение размеров коацерватов и их фрагментация, возможно, вели к образованию идентичных коацерватов, которые могли поглощать больше компонентов среды, так что этот процесс мог продолжаться. Такая предположительная последовательность событий должна была привести к возникновению примитивного самовоспроизводящегося гетеротрофного организма, питавшегося органическими веществами первичного бульона.

Хотя эту гипотезу происхождения жизни признают очень многие ученые, астроном Фред Хойл недавно высказал мнение, что мысль о возникновении живого в результате описанных выше случайных взаимодействий молекул “столь же нелепа и неправдоподобна, как утверждение, что ураган, пронесшийся над мусорной свалкой, может привести к сборке Боинга-747” 1 .

1 Самое трудное для этой теории — объяснить появление способности живых систем к самовоспроизведению. Гипотезы по этому вопросу пока мало убедительны.