Формула полной вероятности и формулы байеса. Решение задач про выбор шаров из урны

Полезная страница? Сохрани или расскажи друзьям

Общая постановка задачи примерно* следующая:

В урне находится $K$ белых и $N-K$ чёрных шаров (всего $N$ шаров). Из нее наудачу и без возвращения вынимают $n$ шаров. Найти вероятность того, что будет выбрано ровно $k$ белых и $n-k$ чёрных шаров.

По классическому определению вероятности, искомая вероятность находится по формуле гипергеометрической вероятности (см. пояснения ):

$$ P=\frac{C_K^k \cdot C_{N-K}^{n-k}}{C_N^n}. \qquad (1) $$

*Поясню, что значит "примерно": шары могут выниматься не из урны, а из корзины, или быть не черными и белыми, а красными и зелеными, большими и маленькими и так далее. Главное, чтобы они были ДВУХ типов, тогда один тип вы считаете условно "белыми шарами", второй - "черными шарами" и смело используете формулу для решения (поправив в нужных местах текст конечно:)).

Видеоурок и шаблон Excel

Посмотрите наш ролик о решении задач про шары в схеме гипергеометрической вероятности, узнайте, как использовать Excel для решения типовых задач.

Расчетный файл Эксель из видео можно бесплатно скачать и использовать для решения своих задач.

Примеры решений задач о выборе шаров

Пример 1. В урне 10 белых и 8 черных шаров. Наудачу отобраны 5 шаров. Найти вероятность того, что среди них окажется ровно 2 белых шара.

Подставляем в формулу (1) значения: $K=10$, $N-K=8$, итого $N=10+8=18$, выбираем $n=5$ шаров, из них должно быть $k=2$ белых и соответственно, $n-k=5-2=3$ черных. Получаем:

$$ P=\frac{C_{10}^2 \cdot C_{8}^{3}}{C_{18}^5} = \frac{45 \cdot 56}{8568} = \frac{5}{17} = 0.294. $$

Пример 2. В урне 5 белых и 5 красных шаров. Какова вероятность вытащить наудачу оба белых шара?

Здесь шары не черные и белые, а красные и белые. Но это совсем не влияет на ход решения и ответ.

Подставляем в формулу (1) значения: $K=5$ (белых шаров), $N-K=5$ (красных шаров), итого $N=5+5=10$ (всего шаров в урне), выбираем $n=2$ шара, из них должно быть $k=2$ белых и соответственно, $n-k=2-2=0$ красных. Получаем:

$$ P=\frac{C_{5}^2 \cdot C_{5}^{0}}{C_{10}^2} = \frac{10 \cdot 1}{45} = \frac{2}{9} = 0.222. $$

Пример 3. В корзине лежат 4 белых и 2 черных шара. Из корзины достали 2 шара. Какова вероятность, что они одного цвета?

Здесь задача немного усложняется, и решим мы ее по шагам. Введем искомое событие
$A = $ (Выбранные шары одного цвета) = (Выбрано или 2 белых, или 2 черных шара).
Представим это событие как сумму двух несовместных событий: $A=A_1+A_2$, где
$A_1 = $ (Выбраны 2 белых шара),
$A_2 = $ (Выбраны 2 черных шара).

Выпишем значения параметров: $K=4$ (белых шаров), $N-K=2$ (черных шаров), итого $N=4+2=6$ (всего шаров в корзине). Выбираем $n=2$ шара.

Для события $A_1$ из них должно быть $k=2$ белых и соответственно, $n-k=2-2=0$ черных. Получаем:

$$ P(A_1)=\frac{C_{4}^2 \cdot C_{2}^{0}}{C_{6}^2} = \frac{6 \cdot 1}{15} = \frac{2}{5} = 0.4. $$

Для события $A_2$ из выбранных шаров должно оказаться $k=0$ белых и $n-k=2$ черных. Получаем:

$$ P(A_2)=\frac{C_{4}^0 \cdot C_{2}^{2}}{C_{6}^2} = \frac{1 \cdot 1}{15} = \frac{1}{15}. $$

Тогда вероятность искомого события (вынутые шары одного цвета) есть сумма вероятностей этих событий:

$$ P(A)=P(A_1)+P(A_2)=\frac{2}{5} + \frac{1}{15} =\frac{7}{15} = 0.467. $$

Если событие А может произойти только совместно с одним из событий ,, …,, образующих полную группу несовместных событий (эти события называют гипотезами), то вероятность появления события А вычисляют по формулеполной вероятности :

. (4.1)

Пусть в описанной выше схеме событие А произошло и требуется выяснить вероятность того, что оно произошло вместе с одной из гипотез . Такую вероятностьвычисляют поформулам Байеса :

, . (4.2)

Образцы решения задач

Пример 1 ‑ Имеется три одинаковые на вид урны; в первой 2 белых и 3 черных шара, во второй – 4 белых и 1 черный шар, в третьей – 3 белых шара. Наугад выбирается одна из урн и из нее вынимается один шар. Найти вероятность того, что этот шар будет белым.

Решение

Опыт предполагает три гипотезы:

‑выбор первой урны, ;

‑выбор второй урны, ;

‑выбор третьей урны, .

Рассмотрим интересующее событие А – вынутый шар белый. Данное событие может произойти только совместно с одной из гипотез:

По формуле полной вероятности (4.1) получаем

Ответ: .

Пример 2 Два автомата производят одинаковые детали, которые поступают на общий конвейер. Производительность первого автомата вдвое больше производительности второго. Первый автомат производит в среднем 60 % деталей отличного качества, а второй – 84 %. Наудачу взятая с конвейера деталь оказалась отличного качества. Найти вероятность того, что эта деталь произведена первым автоматом.

Решение

Можно сделать два предположения (гипотезы): ‑ деталь произведена первым автоматом, причем (поскольку первый автомат производит вдвое больше деталей, чем второй);‑ деталь произведена вторым автоматом, причем .

Условная вероятность того, что деталь будет отличного качества, если она произведена первым автоматом, , если произведена вторым автоматом.

Вероятность того, что наудачу взятая деталь окажется отличного качества, по формуле полной вероятности (4.1) равна:

Искомая вероятность того, что взятая отличная деталь произведена первым автоматом, по формуле Байеса равна:

.

Ответ: .

Задачи для самостоятельного решения

1 В группе спортсменов 20 лыжников, 6 велосипедистов и 4 бегуна. Вероятность выполнить квалификационную норму такова: для лыжника – 0,9, для велосипедиста – 0,8 и для бегуна – 0,75. Найти вероятность того, что спортсмен, выбранный наудачу, выполнит норму.

2 Из урны, содержащей 5 белых и 3 черных шара, извлекается наудачу один шар и перекладывается в другую урну, которая до этого содержала 2 белых и 7 черных шаров. Цвет перекладываемого шара не фиксируется. Из второй урны наудачу извлекается один шар. Какова вероятность, что этот шар окажется белым?

3 В пирамиде 5 винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки с обычным прицелом эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок произведет один выстрел из наудачу взятой винтовки.

4 В условиях предыдущей задачи стрелок попал в мишень. Определить вероятность того, что он стрелял: из винтовки с оптическим прицелом; из винтовки с обычным прицелом.

5 Для участия в студенческих отборочных спортивных соревнованиях выделено из первой группы курса 4 студента, из второй – 6, из третьей – 5. Вероятности того, что студент первой, второй и третьей групп попадает в сборную института, соответственно равны 0,9; 0,7 и 0,8. Наудачу выбранный студент в итоге соревнования попал в сборную. К какой из групп вероятнее всего принадлежал этот студент?

6 В первой урне содержится 10 шаров, из них 8 белых; во второй урне 20 шаров, из них 4 белых. Из каждой урны наудачу извлекли по одному шару, а затем из этих двух шаров наудачу взят один шар. Найти вероятность того, что взят белый шар.

7 В группе из 10 студентов, пришедших на экзамен, 3 подготовлены на отлично, 4 – хорошо, 2 – посредственно, 1 – плохо. В экзаменационных билетах имеется 20 вопросов. Отлично подготовленный студент знает все 20 вопросов, хорошо подготовленный – 16, посредственно подготовленный – 10 и двоечник – 5. Вызванный наугад студент ответил на три произвольно заданных вопроса. Найти вероятность того, что этот студент подготовлен: отлично; плохо.

8 В каждой из трех урн содержится 6 черных и 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую урну, после чего из второй урны наудачу извлечен один шар и переложен в третью урну. Найти вероятность того, что шар, наудачу извлеченный из третьей урны, окажется белым.

9 По объекту производится три одиночных независимых выстрела. Вероятность попадания при первом выстреле равна 0,4; при втором – 0,5; при третьем – 0,7. Для вывода объекта из строя заведомо достаточно трех попаданий, при двух попаданиях он выходит из строя с вероятностью 0,6; при одном – с вероятностью 0,2. Найти вероятность того, что в результате трех выстрелов объект будет выведен из строя.

10 Три стрелка произвели залп, причем две пули поразили мишень. Найти вероятность того, что третий стрелок поразил мишень, если вероятности попадания в мишень первым, вторым и третьим стрелками соответственно равны 0,6; 0,5 и 0,4.

Домашнее задание.

1 Повторение испытаний. Формулы Бернулли и Пуассона. Локальная и интегральная теоремы Лапласа.

2 Решить задачи.

Задача 1 . Имеются две урны. В первой урне два белых и три черных шара, во второй – три белых и пять черных. Из первой и второй урн, не глядя, берут по одному шару и кладут их в третью урну. Шары в третьей урне перемешивают и берут из нее наугад один шар. Найти вероятность того, что этот шар белый.

Задача 2 . Один из трех стрелков вызывается на линию огня и производит выстрел. Цель поражена. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго – 0,5, для третьего – 0,8. Найти вероятность того, что выстрел произведен вторым стрелком.

Задача 3 . С первого автомата на сборку поступает 40 %, со второго – 35 %, с третьего – 25 % деталей. Среди деталей первого автомата 0,2 % бракованных, второго – 0,3 %, третьего – 0,5 %. Найти вероятность того, что:

а) поступившая на сборку деталь бракованная;

б) деталь, оказавшаяся бракованной, изготовлена на втором автомате.

Задача 4 . В группе из 20 стрелков пять отличных, девять хороших и шесть посредственных. При одном выстреле отличный стрелок попадает в мишень с вероятностью 0,9, хороший – с вероятностью 0,8 и посредственный – с вероятностью 0,7. Наугад выбранный стрелок выстрелил дважды; отмечено одно попадание и один промах. Каким, вероятнее всего, был этот стрелок: отличным, хорошим или посредственным?

4) Имеются три одинаковые с виду урны: в первой 5 белых и 10 черных шаров; во второй 9 белых и 6 черных шаров; в третьей только черные шары. Из наугад выбранной урны достают один шар. Какова вероятность того, что этот шар черный.

Решение

Событие A – достали черный шар. Событие A

H

H

H

Так как урны с виду одинаковы, то:

A для каждой гипотезы.

Черный шар достали из первой урны:

Аналогично:

Ответ:

5) Имеются две урны: в первой 5 белых и 10 черных шаров; во второй урне 9 белых и 6 черных шаров. Из первой урны во вторую перекладывают, не глядя, один шар. После этого из второй урны достают один шар. Найти вероятность того, что этот шар будет черным.

Решение

Событие A – из второй урны достали черный шар. Событие A может произойти с одним из несовместных событий (гипотез):

H 1 – из первой урны во вторую переложили белый шар;

H 2 – из первой урны во вторую переложили черный шар.

Вероятности гипотез:

Найдем условные вероятности события A . Если из первой урны во вторую переложили белый шар, то во второй урне стало 10 белых и 6 черных шаров. Значит, вероятность достать из нее черный шар равна:

Аналогично:

По формуле полной вероятности:

Ответ:

6) Имеются три урны: в первой 5 белых и 10 черных шаров; во второй 9 белых и 6 черных шаров; в третьей урне 15 черных шаров (белых шаров нет). Из наугад выбранной урны достали один шар. Этот шар оказался черным. Найти вероятность того, что шар достали из второй урны.

Решение

Событие A – из наугад выбранной урны достали один шар.

Событие A может произойти с одним из несовместных событий (гипотез):

H 1 – шар достали из первой урны;

H 2 – шар достали из второй урны;

H 3 – шар достали из третьей урны.

Априорные вероятности гипотез равны:



В задаче 4 найдены условные вероятности события A и его полная вероятность:

Найдем по формуле Байеса апостериорную вероятность гипотезы H 2 .

Черный шар достали из второй урны:

Сравним и :

Таким образом, если известно, что достали черный шар, то вероятность того, что его достали из второй урны уменьшается (это соответствует условию – во второй урне меньше всего черных шаров).

Ответ: .

Формула Бернулли

7) В семье шесть детей. Вероятность рождения девочки равна 0,49. Найти вероятность того, что среди этих детей одна девочка.

Решение

Событие A – родилась девочка.

P = P (A ) = 0,49;

q = 1 – p = 1 – 0,49 = 0,51.

Формула Бернулли:

Всего шесть детей, значит n =6.

Надо найти вероятность того, что среди них точно одна девочка, значит m = 1.

Ответ:

8) Отрезок AB разделен точной C в отношении 2:1. На этот отрезок наудачу брошено 6 точек. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения. Найти вероятность того, что более одной точки окажется правее точки C .

Решение

Событие A – случайная точка попала на отрезок CB (правее точки C ).

Так как C делит AB в отношении 2:1, то:

2CB =AC ;

2CB +CB =AC +CB ;

3CB =AB ;

Опираясь на геометрическое определение вероятности, получаем:

Формула Бернулли.

Рассмотрим зависимое событие , которое может произойти лишь в результате осуществления одной из несовместных гипотез , которые образуют полную группу . Пусть известны их вероятности и соответствующие условные вероятности . Тогда вероятность наступления события равна:

Эта формула получила название формулы полной вероятности . В учебниках она формулируется теоремой, доказательство которой элементарно: согласно алгебре событий , (произошло событие и или произошло событие и после него наступило событие или произошло событие и после него наступило событие или …. или произошло событие и после него наступило событие ) . Поскольку гипотезы несовместны, а событие – зависимо, то по теореме сложения вероятностей несовместных событий (первый шаг) и теореме умножения вероятностей зависимых событий (второй шаг) :

Задача 1

Имеются три одинаковые урны. В первой урне находятся 4 белых и 7 черных шаров, во второй – только белые и в третьей – только черные шары. Наудачу выбирается одна урна и из неё наугад извлекается шар. Какова вероятность того, что этот шар чёрный?

Решение : рассмотрим событие – из наугад выбранной урны будет извлечён чёрный шар. Данное событие может произойти в результате осуществления одной из следующих гипотез:
– будет выбрана 1-ая урна;
– будет выбрана 2-ая урна;
– будет выбрана 3-я урна.

Так как урна выбирается наугад, то выбор любой из трёх урн равновозможен , следовательно:

Обратите внимание, что перечисленные гипотезы образуют полную группу событий , то есть по условию чёрный шар может появиться только из этих урн, а например, не прилететь с бильярдного стола. Проведём простую промежуточную проверку:
, ОК, едем дальше:

В первой урне 4 белых + 7 черных = 11 шаров, по классическому определению :
– вероятность извлечения чёрного шара при условии , что будет выбрана 1-ая урна.

Во второй урне только белые шары, поэтому в случае её выбора появления чёрного шара становится невозможным : .

И, наконец, в третьей урне одни чёрные шары, а значит, соответствующая условная вероятность извлечения чёрного шара составит (событие достоверно) .

По формуле полной вероятности:

– вероятность того, что из наугад выбранной урны будет извлечен чёрный шар.

Ответ :

Задача 2

В тире имеются 5 различных по точности боя винтовок. Вероятности попада­ния в мишень для данного стрелка соответственно равны и 0,4. Чему равна вероятность попадания в мишень, если стрелок делает один выстрел из слу­чайно выбранной винтовки?

Задача 3

В пирамиде 5 винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок производит один выстрел из наудачу взятой винтовки.


Решение : в этой задаче количество винтовок точно такое же, как и в предыдущей, но вот гипотезы всего две:
– стрелок выберет винтовку с оптическим прицелом;
– стрелок выберет винтовку без оптического прицела.
По классическому определению вероятности : .
Контроль:

Задача 4

Двигатель работает в трёх режимах: нормальном, форсированном и на холостом ходу. В режиме холостого хода вероятность его выхода из строя равна 0,05, при нормальном режиме работы – 0,1, а при форсированном – 0,7. 70% времени двигатель работает в нормальном режиме, а 20% – в форсированном. Какова вероятность выхода из строя двигателя во время работы?

Имеются три одинаковые на вид урны; в первой урне 2 белых и 1 черный шар; во второй урне 3 белых и 1 черный шар; в третьей 2 белых и 2 черных шара.

Некто выбирает одну из урн наугад и вынимает из нее шар. Найти вероятность того, что этот шар белый.

Рассмотрим три гипотезы:

Н1-выбор первой урны

Н2-выбор второй урны

Н3-выбор третьей урны

олная группа несовместных событий.

Пусть событие А-появление белого шара. Т.к. гипотезы, по условию задачи равно возможны, то Р(Н1) =Р(Н2) =Р(Н3) =1\3

Условные вероятности события А при этих гипотезах соответственно равны: Р(А/Н1) =2\3; Р(А/Н2) =3\4; Р(А/Н3) =1/2.

По формуле полной вероятности

Р(А) =1\3*3\2+1\3*3\4+1\3*1\2=23\36

Ответ: 23\36

П.2. Теорема гипотез.

Следствием теоремы умножения и формулы полной вероятности является так называемая теорема гипотез, или формула Бейса (Байеса).

Поставим следующею задачу.

Имеется полная группа несовместных гипотез Н1, Н2,. . Нn. вероятности этих гипотез до опытов известны и равны соответственно Р(Н1),Р(Н2) …,Р(Нn). Произведен опыт, в результате которого наблюдено появление некоторого события А. Спрашивается, как следует изменить вероятности гипотез, в связи с появлением этого события?

Здесь, по существу речь идет о том, чтобы найти условную вероятность Р(Н1/А) для каждой гипотезы.

Из теоремы умножения имеем:

Р(A*Нi) =P(A) P(Hi/A) =P(Hi) P(A/Hi), (i=1,2,3, . n) или, отбрасывая левую часть Nutrend enduro bcaa 120caps купить .

P(A) P(Hi/A) =P(Hi) P(A/Hi),(i=1,2,. .,n)

Откуда P (Hi/A) =P(Hi) P(A/Hi) ÷P(A),(i=1,2,3, . . n)

Выражая с P(A) помощью полной вероятности, имеем

P(Hi/A) =P(Hi) P(A/Hi) ÷∑P(Hi) P(A\Hi),(i=1,2,3, . . n) (2)

Формула (2) носит название формулы Бейса или теоремы гипотез

Пример 2. на фабрике 30%продукции производится машиной I, 25% продукции - машиной II, остальная часть продукции – машиной III. У машины I в брак идет 1% сей производимой его продукции, у машины II-1.5%, у машины III-2% наугад выбранная единица продукции оказалась браком. Какова вероятность того, что она произведена машиной I?

Введем обозначения для событий.

А-выбранное изделие оказалось браком

Н1-изделие произведено машиной I

H2 - изделие произведено машиной II

H3 - изделие произведено машиной III

P(H1) =0,30; Р(Н2) =0,25; Р(Н3) =0,45

Р(А/Н1) =0,01,

Р(А/Н2) =0,015

Р(А/Н3) =0,02

Р(А) =0,01*0,30+0,015*0,25+0,02*0,45=0,015,

Р(Н1/А) = 0,01*0,30÷0,015=0, 20

Ответ: 20%всех бракованных изделий выпускается машиной I.

§9. Формула Бернулли

Закон больших чисел

Пусть А случайное событие по отношению к некоторому опыту σ. Будем интересоваться лишь тем, наступило или не наступило в результате опыта событие А, поэтому примем следующую точку зрения: пространство элементарных событий, связанное с опытом σ, состоит только из двух элементов - А и А. Обозначим вероятности этих элементов соответственно, через p и q, (p+q=1).

Допустим теперь, что опыт σ в неизменных условиях повторяется определенное число раз, например, 3 раза. Условимся троекратное осуществление σ рассматривать как некий новый опыт η. Если по прежнему интересоваться только наступлением или не наступлением А., то следует очевидно принять, что пространство элементарных событий, отвечающее опыту η, состоит из всевозможных последовательностей длины 3: (А, А, А), (А, А, А), (А, А, А), (А, А, А), (А, А, А), (А, А, А), (А, А, А), (А, А, А), которое можно составить из А и А.

Каждая из указанных последовательностей означает ту или иную последовательность появления или не появления событий А в трех опытах σ, например, последовательность (А, А, А), означает, что в первом опыте наступило А, а во втором и третьем - А. Определим, какие вероятности следует приписать каждой из последовательностей (1)

Условие, что все три раза опыт σ проводится в неизменных условиях, по смыслу должно означать следующие - исход каждого из трех опытов не зависит от того, какие исходы имели место в остальных двух опытах. Т.е. любая комбинация исходов трех опытов представляет собой тройку независимых событий. В таком случае, элементарному событию (А, А, А), естественно приписать вероятность, равную p*q*q, событию (А, А, А),-вероятность q*y*y и т.д.

Т. о. приходим к следующему описанию вероятностной модели для опыта η (т.е. для трехкратного осуществления опыта σ). Пространство Ω элементарных событий есть множество из 2 в 3степени последовательностей. (1). Каждой последовательности сопоставляется в качестве вероятности число р в степени k, q в степени e, где показатели степеней определяют, сколько раз символы А и А входят в выражение для данной последовательности.

Вероятностные модели такого рода называются схемами Бернулли. В общем случае схема Бернулли определяется значением чисел n и p, где n – число повторений исходного опыта σ (в предыдущем опыте мы считали n=3), а p-вероятность события А по отношению к опыту σ.

Теорема 1. пусть вероятность события А равна p, и пусть Pmn-вероятность того, что в серии из n независимых испытаний это событие произойдет m-раз.

Тогда справедлива формула Бернулли.

Pmn=Cn в степени m *P в степени m *q в степени n-m

Монета подбрасывается 10 раз. Какова вероятность того, что герб выпадет при этом ровно 3раза?

В данном случае успехом считается выпадение герба, вероятность p этого события в каждом опыте равна 1\2.

Отсюда: Р10,3=С10в 3степени*(1\2) в 3степени*(1\2) в 7степени=10*9*8÷1*2*3*(1÷2в 10степени) =15\128

Ответ: 15\128

При большом числе испытаний относительная частота появления события мало отличается от вероятности этого события. Математическую формулировку этого качественного это качественного утверждения дает принадлежащий Бернулли закон больших чисел, который уточнил Чебышев.

Теорема 2. Пусть вероятность события А в испытании p равна p, и пусть проводятся серии состоящие из n независимых повторений этого испытания.

Через m обозначим число испытаний, в которых происходило событие А. тогда для любого положительного числа α выполняется неравенство:

З(|m\n-p|> α)

Смысл этого неравенства состоит в том, что выражение m÷n равно относительной частоте события А в серии опытов, а |m\n-p|> α означает, что отклонение этой относительной от теоретического значения p. Неравенство |m\n-p|> α означает, что отклонение оказалось больше чем α. Но при постоянном значении α с ростом n правая часть неравенства (3) стремится к нулю. Иными словами, серии в которых отклонение экспериментальной частоты от теоретической велико, составляют малую долю всех возможных серий испытаний.

Из теоремы вытекает утверждение, полученное Бернулли: в условиях теоремы при любом значении α>0 имеем