Энтропия газа формула. Изменение энтропии. Расчет энтропии при протекании химических реакций

Если термодинамическая система перешла из одного состояния в другое, то полученное ею количество теплоты зависит не только от начального и конечного состояний, но и от вида процесса перехода. Иными словами, количество теплоты является функцией процесса, а не состояния. В поисках функции состояния рассмотрим величину, приращение которой равно отношению тепла, поглощенного на участке обратимого процесса, к температуре:

Эта величина называется энтропией или приведенным количеством теплоты. Понятие энтропии введено в 1865 г. Р. Клаузиусом. Несложно показать, что сумма всех приращений энтропии в цикле Карно равна нулю. Действительно, для адиабатных процессов 2-3 и 4-1 dS= О, поскольку dQ = 0 (рис. 13.3). А для оставшихся изотермических процессов 1-2 и 3^1 интегрирование (13.12) с учетом (13.5) и (13.7) дает

Этот результат справедлив независимо от выбора рабочего тела. Можно показать, что изменение энтропии равно нулю не только в цикле Карно, но и в любом другом обратимом цикле. Таким образом, энтропия является функцией состояния, а ее значения в начале и в конце кругового процесса одинаковы.

Можно показать, что энтропия системы, совершающей необратимый цикл, возрастает. В общем случае справедливо неравенство Клаузиуса: энтропия замкнутой системы возрастает (в случае необратимых процессов) либо остается постоянной (в случае обратимых процессов)

Найдем теперь с помощью (12.9) и (12.3) изменение энтропии в процессах идеального газа:

Здесь давление выражено с помощью уравнения Менделеева- Клапейрона. Интегрирование полученного выражения дает

Следует подчеркнуть, что изменение энтропии определяется только начальным и конечным состояниями идеального газа и не зависит от характера процесса перехода. Из формулы (13.17) следует, что при изотермическом процессе

а при изохорном процессе

Как уже отмечалось, из определения энтропии следует, что для адиабатного процесса dS = 0. Энтропия измеряется в джоулях на кельвин (Дж/К). Энтропия обладает свойством аддитивности: энтропия системы равна сумме энтропии тел, входящих в систему. Связано это с тем, что тепло, поглощенное системой, складывается из порций тепла, поглощенных ее частями. Свойством аддитивности обладают также внутренняя энергия, масса, объем (а, например, температура и давление таким свойством не обладают).

Энтропия - понятие не только термодинамическое, но и статистическое. Она связана с термодинамической вероятностью состояния системы. Термодинамическая вероятность W состояния системы - это число способов, которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний, осуществляющих данное макросостояние. Термодинамическая вероятность состояния системы, состоящей всего из 10 молекул газа, примерно 1000, а в реальных системах молекул на много порядков больше. Поэтому более удобным для восприятия в термодинамике оказалось использовать не величину W, а ее логарифм In W. Последнему можно придать размерность (Дж/К), умножив на константу Больцмана к. Энтропия системы и термодинамическая вероятность связаны между собой формулой Больцмана : где к - постоянная Больцмана.

Таким образом, энтропия равна логарифму числа микросостояний, с помощью которых может быть реализовано данное макросостояние. Чем больше число микросостояний, реализующих данное макросостояние, тем больше энтропия. В состоянии равновесия - наиболее вероятного состояния системы - число микросостояний максимально, при этом максимальна и энтропия.

Часто воспринимают энтропию как меру беспорядка в системе. Связано это с тем, что упорядоченные системы обычно имеют гораздо меньше микросостояний, чем неупорядоченные. Так 100 молекул в двух половинах сосуда поровну можно разместить, в соответствии с теорией вероятности, огромным количеством способов. А размещению всех их в одной половине соответствует лишь два варианта. Поэтому и стремятся молекулы распределиться по объему примерно поровну, и энтропия при этом максимальна. Рассмотрим, например, распределение молекул идеального газа. В случае идеального газа наиболее вероятным состоянием, соответствующим максимуму энтропии, будет равномерное распределение молекул. При этом реализуется и максимальный «беспорядок», так как возможности конфигурирования будут максимальные. Реальные необратимые процессы в замкнутой системе ведут к увеличению ее энтропии - в этом состоит принцип возрастания энтропии.

Следует подчеркнуть, что вышеприведенные утверждения, в том числе и второе начало термодинамики, носят статистический характер и могут не выполняться для систем из малого числа частиц.

  • 3.3. Вращение твердого тела вокруг неподвижной оси, его момент инерции и кинетическая энергия.
  • 3.4. Момент импульса. Закон сохранения момента импульса. Второй закон динамики для вращательного движения.
  • Лекция № 4
  • 4.1. Описание движения жидкости и газа. Вязкость жидкостей и газов.
  • 4.2. Уравнение неразрывности.
  • 4.3. Уравнение Бернулли и выводы из него
  • Лекция №5
  • 5.1. Гармонические колебания.
  • 5.2. Сложение гармонических колебаний.
  • 5.3. Сложение перпендикулярных колебаний.
  • 5.4. Дифференциальное уравнение колебаний.
  • 5.5. Энергетические соотношения в колебательных процессах.
  • 5.6. Колебания математического и физического маятников
  • 5.7. Уравнение вынужденных колебаний. Резонанс
  • Лекция №6
  • 6.1.Волны в упругих средах и их виды. Фронт волны, плоские и сферические волны.
  • 6.2. Энергия волны
  • 6.3. Упругие волны в твердом теле
  • Лекция №7
  • 7.1. Основные положения мкт.
  • Агрегатные состояния вещества
  • 7.2. Опытные законы идеального газа
  • Закон Авогадро
  • 7.3. Уравнение состояния идеального газа
  • 7.4. Основное уравнение молекулярно-кинетической теории идеального газа.
  • 7.5. Закон Максвелла для распределения молекул по скоростям.
  • 7.6. Барометрическая формула. Распределение Больцмана
  • Лекция №8
  • 8.2. Столкновения молекул и явления переноса в идеальном газе
  • 8.3. Среднее число столкновений и среднее время свободного пробега молекул
  • 8.4.Средняя длина свободного пробега молекул
  • 8.5. Диффузия в газах
  • 8.6. Вязкость газов
  • 8.7. Теплопроводность газов
  • 8.8. Осмос. Осмотическое давление
  • Лекция №9
  • 9.1.Распределение энергии по степеням свободы молекул
  • 9.2. Внутренняя энергия
  • 9.3. Работа газа при его расширении
  • 9.4. Первое начало термодинамики
  • 9.5. Теплоемкость. Уравнение Майера
  • 9.6. Адиабатный процесс
  • 9.7. Политропический процесс
  • 9.8. Принцип действия тепловой машины. Цикл Карно и его кпд.
  • 9.9. Энтропия. Физический смысл энтропии. Энтропия и вероятность.
  • 9.10. Второе начало термодинамики и его статистический смысл.
  • Лекция №10
  • 10.1. Реальные газы, уравнение Ван-дер-Ваальса.
  • Уравнение Ван-дер-Ваальса неплохо качественно описывает поведение газа при сжижении, но непригодно к процессу затвердевания.
  • 10.2.Основные характеристики и закономерности агрегатных состояний и фазовых переходов.
  • Фазовые переходы второго рода. Жидкий гелий. Сверхтекучесть
  • 10.3. Поверхностное натяжение жидкости. Давление Лапласа.
  • 10.4. Капиллярные явления
  • 10.5. Твёрдые тела
  • Дефекты в кристаллах
  • Тепловые свойства кристаллов
  • Жидкие кристаллы
  • Лекция №11
  • 11.1. Электрические свойства тел. Электрический заряд. Закон сохранения заряда
  • 11.2. Закон Кулона
  • 11.3. Электростатическое поле. Напряженность электрического поля. Силовые линии поля.
  • 11.4. Электрический диполь
  • 11.5. Поток вектора напряженности. Теорема Остроградского-Гаусса
  • 11.6. Работа сил электростатического поля по перемещению зарядов.
  • 11.6. Потенциал. Разность потенциалов. Потенциал точечного заряда, диполя, сферы.
  • 11.7. Связь между напряженностью электрического поля и потенциалом
  • 11.8. Типы диэлектриков. Поляризация диэлектриков.
  • 11.9. Теорема Остроградского-Гаусса для поля в диэлектрике. Связь векторов - сме­щения, - напряженности и - поляризованности
  • 11.10. Проводники в электростатическом поле
  • 11.11. Проводник во внешнем электростатическом поле. Электрическая емкость
  • 11.12. Энергия заряженного проводника, системы проводников и конденсатора
  • Лекция №12
  • 12.1. Электрический ток. Сила и плотность тока.
  • 12.3. Закон Ома для однородного участка цепи. Сопротивление проводников.
  • 12.4. Закон Ома для неоднородного участка цепи
  • 12.5. Закон Джоуля – Ленца. Работа и мощность тока.
  • 12.6. Правила Кирхгофа
  • Лекция №13
  • 13.1. Классическая теория электропроводности металлов
  • 13.2. Термоэлектронная эмиссия. Электрический ток в вакууме.
  • 13.3. Электрический ток в газах. Виды газового разряда.
  • Самостоятельный газовый разряд и его типы
  • Лекция №14
  • 14.1. Магнитное поле. Магнитное взаимодействие токов. Закон Ампера. Вектор магнитной индукции.
  • 14.2. Закон Био-Савара-Лапласа. Магнитное поле прямолинейного и кругового токов.
  • 14.3. Циркуляция вектора магнитной индукции. Поле соленоида и тороида
  • 14.4. Магнитный поток. Теорема Гаусса
  • 14.5. Работа перемещения проводника и рамки с током в магнитном поле
  • 14.6. Действие магнитного поля на движущийся заряд. Сила Лоренца
  • 14.7. Магнитное поле в веществе. Намагниченность и напряженность магнитного поля.
  • 14.8. Закон полного тока для магнитного поля в веществе
  • 14.9. Виды магнетиков
  • Лекция 15
  • 15.1. Явление электромагнитной индукции.
  • 15.2. Явление самоиндукции
  • 15.3. Энергия магнитного поля
  • 15.4. Электромагнитная теория Максвелла.
  • 1) Первое уравнение Максвелла
  • 2) Ток смешения. Второе уравнение Максвелла
  • 3)Третье и четвертое уравнения Максвелла
  • 4)Полная система уравнений Максвелла в дифференциальной форме
  • 15.5. Переменный ток
  • Лекция № 16
  • 16.1. Основные законы геометрической оптики. Полное внутренне отражение света.
  • 16.2. Отражение и преломление света на сферической поверхности. Линзы.
  • 16.3. Основные фотометрические величины и их единицы
  • 17.1.Интерференция света. Когерентность и монохроматичность световых волн. Оптическая длина пути и оптическая разность хода лучей.
  • 17.2. Способы получения интерференционных картин.
  • 17.3. Интерференция в тонких пленках.
  • 17.4. Просветление оптики
  • 17.5. Дифракция света и условия ее наблюдения. Принцип Гюйгенса-Френеля. Дифракционная решетка. Дифракция на пространственной решетке. Формула Вульфа-Бреггов
  • 17.6. Дифракция Френеля от простейших преград.
  • 17.7. Дифракция в параллельных лучах (дифракция Фраунгофера)
  • 17.8. Дифракция на пространственных решетках. Формула Вульфа-Бреггов.
  • 17.9. Поляризация света. Естественный и поляризованный свет.
  • 17.10. Поляризация света при отражении и преломлении. Закон Брюстера.
  • 17.11.Поляризация при двойном лучепреломлении.
  • 17.12. Вращение плоскости поляризации.
  • 17.13. Дисперсия света. Поглощение (абсорбция) света.
  • Лекция №18
  • 18.1. Квантовая природа излучения. Тепловое излучение и его характеристики. Закон Кирхгофа. Законы Стефана-Больцмана и Вина.
  • 18.2.Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта. Уравнение Эйнштейна для фотоэффекта.
  • 18.3. Масса и импульс фотона. Давление света. Эффект Комптона.
  • Лекция №19
  • 19.2.Линейчатый спектр атома водорода.
  • 19.3. Постулаты Бора. Опыты Франка и Герца.
  • Лекция №20
  • 20.1.Атомное ядро.
  • 20.2.Ядерные силы.
  • 20.3.Энергия связи ядер. Дефект массы.
  • 20.4.Реакции деления ядер.
  • 2.5.Термоядерный синтез.
  • 20.6.Радиоактивность. Закон радиоактивного распада.
  • План-график самостоятельной работы
  • План-график проведения лабораторно-практических занятий
  • Перечень вопросов для подготовки к коллоквиуму Механика
  • Формулы
  • Определения
  • Вопросы к экзамену
  • Правила и образец оформления лабораторной работы
  • 9.9. Энтропия. Физический смысл энтропии. Энтропия и вероятность.

    Рассматривая КПД тепловой машины, работающей по циклу Карно, можно отметить, что отношение температуры холодильника к температуре нагревателя равно отношению величин количества теплоты, отданного рабочим телом холодильнику, и количества теплоты, принятой от нагревателя. Это значит, что для идеальной тепловой машины, работающей по циклу Карно, выполняется и такое соотношение:
    . ОтношениеЛоренц назвалприведённой теплотой . Для элементарного процесса приведённая теплота будет равна . Значит, при реализации цикла Карно (а он является обратимым циклическим процессом) приведённая теплота остаётся неизменной и ведёт себя как функция состояния, тогда, как известно, что количество теплоты является функцией процесса.

    Используя первое начало термодинамики для обратимых процессов,
    и деля обе части этого равенства на температуру, получим:

    (9-41)

    Выразим из уравнения Менделеева - Клапейрона
    , подставим в уравнение (9-41) и получим:

    (9-42)

    Учтём, что
    , а
    , подставим их в уравнение (9-42) и получим:

    (9-43)

    Правая часть этого равенства является полным дифференциалом, следовательно, при обратимых процессах и приведённая теплота тоже является полным дифференциалом, что является признаком функции состояния.

    Функция состояния, дифференциалом которой является , называетсяэнтропией и обозначается S . Таким образом, энтропия – функция состояния. После введения энтропии формула (9-43) будет иметь вид:

    , (9-44)

    где dS – приращение энтропии. Равенство (9-44) справедливо только для обратимых процессов и удобно для расчёта изменения энтропии при конечных процессах:

    (9-45)

    Если система обратимым путём совершает круговой процесс (цикл), то
    , а, следовательно,S=0, то S = const.

    Выражая количество теплоты через приращение энтропии для элементарного процесса, и подставляя его в уравнение для первого начала термодинамики, получим новый вид записи этого уравнения, которое принято называть основным термодинамическим тождеством:

    (9-46)

    Таким образом, для расчёта изменения энтропии при обратимых процессах удобно использовать приведённую теплоту.

    В случае необратимых неравновесных процессов
    , а для необратимых круговых процессов выполняетсянеравенство Клаузиуса :

    (9-47)

    Рассмотрим, что происходит с энтропией в изолированной термодинамической системе.

    В изолированной термодинамической системе при любом обратимом изменении состояния её энтропия не изменится. Математически это можно записать так: S = const.

    Рассмотрим, что происходит с энтропией термодинамической системы при необратимом процессе. Предположим, что переход из состояния 1 в состояние 2 по путиL 1 обратим, а из состояния 2 в состояние 1 по пути L 2 – необратим (рис.9.13).

    Тогда справедливо неравенство Клаузиуса (9-47). Запишем выражение для правой части этого неравенства, соответствующее нашему примеру:

    .

    Первое слагаемое в этой формуле может быть заменено на изменение энтропии, так как этот процесс обратимый. Тогда неравенство Клаузиуса можно записать в виде:

    .

    Отсюда
    . Так как
    , то окончательно можно записать:

    (9-48)

    Если система изолирована, то
    , а неравенство (9-48) будет иметь вид:

    , (9-49)

    то есть энтропия изолированной системы при необратимом процессе возрастает. Рост энтропии продолжается не беспредельно, а до определённого максимального значения, характерного для данного состояния системы. Это максимальное значение энтропии соответствует состоянию термодинамического равновесия. Рост энтропии при необратимых процессах в изолированной системе означает, что энергия, которой обладает система, становится менее доступной для преобразования в механическую работу. В состоянии равновесия, когда энтропия достигает максимального значения, энергия системы не может быть преобразована в механическую работу.

    Если же система не изолирована, то энтропия может как убывать, так и возрастать в зависимости от направления теплообмена.

    Энтропия как функция состояния системы, может служить таким же параметром состояния, как температура, давление, объём. Изображая тот или иной процесс на диаграмме (Т,S), можно дать математическую интерпретацию количества теплоты, как площади фигуры под кривой, изображающей процесс. На рис.9.14 приведена диаграмма для изотермического процесса в координатах энтропия – температура.

    Энтропия может быть выражена через параметры состояния газа – температуру, давление, объём. Для этого из основного термодинамического тождества (9-46) выразим приращение энтропии:

    .

    Проинтегрируем это выражение и получим:

    (9-50)

    Изменение энтропии можно выразить и через другую пару параметров состояния – давление и объём. Для этого нужно выразить температуры начального и конечного состояний из уравнения состояния идеального газа через давление и объём и подставить в (9-50):

    (9-51)

    При изотермическом расширении газа в пустоту Т 1 =Т 2 , а значит первое слагаемое в формуле (9-47) обнулится и изменение энтропии будет определяться только вторым слагаемым:

    (9-52)

    Несмотря на то, что во многих случаях для расчёта изменения энтропии удобно использовать приведённую теплоту, ясно, что приведённая теплота и энтропия – разные, не тождественные понятия.

    Выясним физический смысл энтропии . Для этого используем формулу (9-52), для изотермического процесса, при котором не изменяется внутренняя энергия, а всевозможные изменения характеристик обусловлены лишь изменением объёма. Рассмотрим связь объёма, занимаемого газом в равновесном состоянии, с числом пространственных микросостояний частиц газа. Число микросостояний частиц газа, с помощью которых реализуется данное макросостояние газа как термодинамической системы, можно подсчитать следующим образом. Разобьём весь объём на элементарные кубические ячейки со стороной d~10 –10 м (порядка величины эффективного диаметра молекулы). Объём такой ячейки будет равен d 3 . В первом состоянии газ занимает объём V 1 , следовательно, число элементарных ячеек, то есть число мест N 1 , которые могут занимать молекулы в этом состоянии будет равно
    . Аналогично для второго состояния с объёмомV 2 получим
    . Следует отметить, что изменение положений молекул соответствует новому микросостоянию. Не всякое изменение микросостояния приведёт к изменению макросостояния. Предположим, молекулы могут заниматьN 1 мест, тогда обмен местами любых молекул в этих N 1 ячейках не приведёт к новому макросостоянию. Однако, переход молекул в другие ячейки, приведёт к изменению макросостояния системы. Число микросостояний газа, соответствующих данному макросостоянию, можно подсчитать, определив число способов размещения частиц этого газа по элементарным ячейкам. Для упрощения расчётов рассмотрим 1 моль идеального газа. Для 1 моля идеального газа формула (9-52) будет иметь вид:

    (9-53)

    Число микросостояний системы, занимающей объём V 1 , обозначим через Г 1 и определим, подсчитав число размещений N A (число Авогадро) молекул, которые содержатся в 1 моле газа, по N 1 ячейкам (местам):
    . Аналогично подсчитаем число микросостояний Г 2 системы, занимающей объём V 2:
    .

    Число микросостояний Г i , с помощью которых можно реализовать i- тое макросостояние, называется термодинамической вероятностью данного макросостояния. Термодинамическая вероятность Г ≥ 1.

    Найдём отношение Г 2 /Г 1:

    .

    Для идеальных газов число свободных мест гораздо больше числа молекул, то есть N 1 >>N A и N 2 >>N A . . Тогда, учитывая выражение чисел N 1 и N 2 через соответствующие объёмы, получим:

    Отсюда можно выразить отношение объёмов через отношение термодинамических вероятностей соответствующих состояний:

    (9-54)

    Подставим (9-54) в (9-53) и получим:
    . Учитывая, что отношение молярной газовой постоянной и числа Авогадро, есть постоянная Больцманаk , а также то, что логарифм отношения двух величин равен разности логарифмов этих величин, получим:. Отсюда можно заключить, что энтропияi- того состояния S i определяется логарифмом числа микросостояний, посредством которых реализуется данное макросостояние:

    (9-55)

    Формула (9-55) называется формулой Больцмана , впервые получившего её и понявшего статистический смысл энтропии , как функции беспорядка . Формула Больцмана имеет более общее значение, чем формула (9-53), то есть может быть использована не только для идеальных газов, и позволяет раскрыть физический смысл энтропии. Чем более упорядочена система, тем меньше число микросостояний, посредством которых осуществляется данное макросостояние, тем меньше энтропия системы. Рост энтропии в изолированной системе, где происходят необратимые процессы, означает движение системы в направлении наиболее вероятного состояния, которым является состояние равновесия. Можно сказать, что энтропия является мерой беспорядка системы; чем больше беспорядка в ней, тем выше энтропия. В этом заключается физический смысл энтропии .

    Математическое выражение второго закона термодинамики записывается:

    Здесь знак > относится к необратимым процессам, а знак = к обратимым. Так как энтропия является функцией состояния, ее изменение при протекании как обратимого, так и необратимого процессов одинаково. Поэтому при расчете изменения энтропии необходимо пользоваться формулами для обратимых процессов.

    Энтропия обладает свойствами аддитивности, поэтому изменение энтропии в сложном процессе равно сумме изменений энтропий в отдельных его стадиях. Абсолютное значение энтропии какого-либо вещества при любой температуре можно рассчитать, если известна абсолютная энтропия при какой-то одной температуре, например, при 298К и температурные коэффициенты теплоемкости:

    Изменение энтропии в различных процессах вычисляют по следующим уравнениям:

    При нагревании n – моль вещества от Т 1 до Т 2 при P = const:

    Интегрирование дает:

    При фазовом превращении:

    Где λ – молярная теплота фазового перехода (плавления, испарения, сублимации, модификационного превращения); Т – температура фазового перехода.

    При переходе n – моль идеального газа из состояния 1 в состояние 2 при Т=const:

    При смешении идеальных газов (Т,Р=const):

    Где n 1 и n 2 – числа моль первого и второго газа: V 1 и V 2 – их начальные объемы:

    V= V 1 + V 2 - конечный объем.

    Определить изменение энтропии при превращении 2г льда, взятого при температуре 253К и давлении 1,013*10 5 н/м 2 в пар при температуре 423К, если теплота плавления льда при 273К равна 0,335 кДж/г, удельная теплоемкость льда равна 2,02 Дж/г*К воды – 4,2 Дж/г. К, скрытая теплота парообразования воды равна 2,255 кДж/г, мольная теплоемкость пара при постоянном давлении:

    С р = 30,13+11,3*10 -3 Т, Дж/моль. К

    Данный процесс состоит из пяти стадий:

    1) нагревание льда от 253 до 273 К – ∆S 1 ;

    2) плавление льда при 273 К – ∆S 2 ;

    3) нагревание жидкой воды от 273 до 373 К – ∆S 3 ;

    4) переход жидкой воды в пар при 373К – ∆S 4 ;

    5) нагревание водяного пара от 373 до 473 К – ∆S 5 .

    В одном из сосудов вместимостью 0,1 м 3 находится кислород, в другом, вместимостью 0,4 м 3 – азот. В обоих сосудах температура 290 К и давление 1,013 · 10 5 Н/м 2 . Найти изменение энтропии при смешении газов, считая их идеальными.

    Находим числа моль газов по уравнению Менделеева – Клапейрона:

    Вычислить стандартное изменение энтропии для реакции: Cd+2AgCl = 2Ag+CdCl 2 , если

    2.2. Вычисление изменения изобарного и изохорного
    потенциалов в различных процессах

    В изобарно-изотермическом процессе (Р , Т = const) критерием направления процесса и равновесия является изобарно-изотер­мический потенциал или свободная энергия Гиббса: ∆G ≤ 0. При равновесии G минимальна. В изохорно-изотермическом процессе (V , T = const) критерием направления процесса и равновесия служит изохорно-изотермический потенциал или свободная энергия Гельмгольца: ∆F ≤ 0. При равновесии F минимальна.

    Изменения ∆G и ∆F при постоянной температуре рассчитываются по формулам: ∆G = ∆H T S и ∆F = ∆U T S .

    Из этих уравнений видно, что свободная энергия G или F являются частью полного запаса энергии системы Н или U за вычетом связанной энергии T S . Свободная энергия может быть извлечена из системы и превращена в работу: -∆G = A р макс и -∆F = = A V макс, где A р макс – максимальная полная работа; A V макс – максимальная полезная работа.

    При расширении или сжатии идеального газа при постоянной температуре

    Зависимость ∆G и ∆F от температуры выражается уравнением Гиббса – Гельмгольца. Для ∆G в интегральной форме оно записывается так:

    или в пределах от 298 до Т :

    здесь ∆Н = f (T ).

    Для химической реакции

    G = ∆F + ∆nRT ,

    Первый закон термодинамики утверждает, что, хотя между системой и ее окружением возможна передача энергии, энергия никогда не создается и не исчезает. Таким образом, этот закон накладывает на химические и физические превращения требование сохранения энергии. Одно время полагали, что все химические реакции являются экзотермическими, другими словами, химическая реакция может осуществляться только в том случае, если система теряет энергию. Однако в настоящее время известны многие химические и физические превращения, которые являются эндотермическими. Следовательно, по одному лишь изменению энергии или энтальпии еще нельзя предсказать, будет самопроизвольно осуществляться реакция или нет. Чтобы предсказать, возможно ли самопроизвольное протекание реакции, необходимо ввести еще одну термодинамическую функцию состояния, называемую энтропией. Энтропию принято обозначать буквой S.

    Энтропию можно охарактеризовать как меру хаотичности, беспорядка или неупорядоченности в системе. Например, мы уже указывали, что частицы газа в гораздо

    Рис. 5.16. Самопроизвольное смешивание двух газов приводит к возрастанию энтропии, но не сопровождается суммарным изменением энергии в системе.

    большей мере не упорядочены, чем частицы твердого вещества; следовательно, энтропия газов, как правило, намного больше, чем энтропия твердых веществ.

    Но как, зная энтропию, можно предсказать, осуществимо ли самопроизвольно некоторое превращение? Чтобы ответить на этот вопрос, рассмотрим систему, состоящую из двух сосудов, соединенных между собой трубкой с краном (рис. 5.16). Допустим, что в этих сосудах находятся разные газы. Если открыть кран, газы начнут самопроизвольно смешиваться в результате диффузии (см. разд. 3.1). После смешивания газы окажутся в состоянии с большей степенью беспорядка, чем до смешивания. Следовательно, после смешивания они обладают большей энтропией. В этом процессе не происходит изменения энергии. Суммарная энтальпия газов до и после смешивания совершенно одинакова. Однако смешивание приводит к более хаотическому распределению энергии.

    Во многих химических реакциях тоже происходит перераспределение энергии. Например, реакции горения представляют собой экзотермические процессы. В результате горения происходит выделение энергии и ее перераспределение в окружающую среду. Таким образом, можно рассматривать энтропию как меру распределенности энергии. Протекание химических реакций всегда сопровождается перераспределением энергии либо от химической системы к ее окружению, либо, наоборот, от окружения к химической системе. Таким образом, в химической реакции всегда происходит изменение энтропии. Именно это изменение энтропии наряду с изменением энтальпии в реакции необходимо учитывать, если требуется предсказать, возможно ли самопроизвольное протекание рассматриваемой химической реакции. Однако, прежде чем мы обсудим соотношение между изменениями энтропии и энтальпии и возможностью самопроизвольного протекания реакции, необходимо познакомиться со вторым законом термодинамики.

    Второй закон термодинамики

    Этот закон утверждает, что все самопроизвольно протекающие процессы обязательно сопровождаются увеличением суммарной энтропии системы и ее окружения. Второй закон термодинамики, возможно, является одним из наиболее общих положений всей науки в целом. Существует много различных формулировок этого закона. Но главная мысль всех этих формулировок заключается в том, что в любой изолированной системе с течением времени происходит постоянное возрастание степени беспорядка, т.е. энтропии.

    Некоторые формулировки второго закона термодинамики

    1. Каждая система, предоставленная сама себе, изменяется в среднем в направлении состояния с максимальной вероятностью (Г. Льюис).

    2. Состояние с максимальной энтропией является наиболее устойчивым состоянием для изолированной системы (Э. Ферми).

    3. При протекании любого реального процесса невозможно обеспечить средства возвращения каждой из участвующих в нем систем в ее исходное состояние (Г. Льюис).

    4. Каждый физический или химический процесс в природе протекает таким образом, чтобы увеличивалась сумма энтропий всех тел, которые принимают участие в этом процессе (М. Планк).

    5. Невозможна самопроизвольная передача теплоты от более холодного к более горячему телу.

    6. Получение информации представляет собой уменьшение энтропии (Г. Льюис).

    7. Энтропия - это стрелка времени (А. Эддингтон).

    Эту формулировку следует понимать в том смысле, что по изменению энтропии можно судить о последовательности различных самопроизвольных событий. - Прим. перев.

    Из второго закона термодинамики следует, что для любых самопроизвольных процессов

    где полное (суммарное) изменение энтропии в результате химического или физического превращения определяется выражением

    Изменения энтропии в химических реакциях

    Энтропия одного моля вещества в его стандартном состоянии при соответствующей температуре называется стандартной молярной энтропией. Стандартная молярная энтропия обозначается символом и имеет размерность В табл. 5.12 указаны стандартные молярные энтропии ряда элементов и соединений при температуре Отметим, что стандартная молярная энтропия газов, как правило, имеет намного большие значения по сравнению с энтропией твердых тел. Энтропия любого фиксированного количества вещества увеличивается в такой последовательности:

    Стандартные молярные энтропии иногда называют абсолютными энтропиями. Они не являются изменениями энтропии, сопровождающими образование соединения из входящих в него свободных элементов. Следует также отметить, что стандартные молярные энтропии свободных элементов (в виде простых веществ) не равны нулю.

    Третий закон термодинамике утверждает, что энтропия идеального ионного кристалла при температуре абсолютного нуля (0 К) равна нулю.

    Таблица 5.12. Стандартные молярные энтропии

    Изменение стандартной молярной энтропии в химической реакции определяется уравнением

    Вычислим стандартное молярное изменение энтропии для полного сгорания одного моля газообразного водорода при 25°С, пользуясь данными, которые приведены в табл. 5.1.

    Уравнение рассматриваемой реакции имеет вид

    Применяя уравнение (16), находим

    Подстановка в это уравнение значений энтропии при температуре 298 К из табл. 5.12 дает

    Следует обратить внимание на то, что изменение энтропии в рассмотренном примере оказывается отрицательным. Этого можно было ожидать, если учесть, что, согласно уравнению рассматриваемой реакции, суммарное количество газообразных реагентов равно 1,5 моль, а суммарное количество газообразных продуктов - только 1 моль. Таким образом, в результате реакции происходит уменьшение общего количества газов. Вместе с тем нам известно, что реакции горения принадлежат к числу экзотермических реакций. Следовательно, результатом их протекания является рассеяние энергии, а это заставляет ожидать возрастания энтропии, а не ее уменьшения. Далее, следует учесть, что горение газообразного водорода при 25°С, вызванное первоначальным инициированием, протекает затем самопроизвольно и с большой интенсивностью. Но разве не должно в таком случае изменение энтропии в данной реакции быть положительным, как того требует второй закон термодинамики? Оказывается - нет или по крайней мере не обязательно должно. Второй закон термодинамики требует, чтобы в результате самопроизвольного процесса возрастала суммарная энтропия системы и ее окружения. Вычисленное выше изменение энтропии характеризует только рассматриваемую химическую систему, состоящую из реагентов и продуктов, которые принимают участие в горении газообразного водорода при 25°С. А как же вычислить изменение энтропии для окружения этой системы?

    Изменения энтропии для окружения термодинамической системы

    Термодинамические соображения позволяют показать, что изменение энтропии равно отношению энергии, переданной в форме теплоты , к абсолютной температуре Т, при которой происходит эта передача энергии, т.е.

    Это изменение энтропии может быть отнесено либо к системе, либо к ее окружению. Однако имеется одно условие. Тепловая энергия q должна передаваться обратимым путем. В термодинамике обратимым процессом называется такой процесс, который проводится бесконечно медленно и осторожно, так чтобы он все время находился практически в состоянии равновесия. В экзотермическом процессе энергия, теряемая системой, равна энергии, которую приобретает окружение системы. И наоборот, в эндотермическом процессе энергия, поглощаемая системой, равна энергии, которую теряет окружение системы. Поэтому можно записать

    Ранее мы указывали, что при постоянном давлении энергия, передаваемая в форме теплоты в ходе химической реакции, равна изменению энтальпии . Следовательно,

    Воспользуемся теперь уравнением (18) и перепишем уравнение (17) в таком виде:

    Мокружсние

    Суммарное изменение энтропии при протекании химической реакции

    Выше было показано, что суммарное изменение энтропии при протекании самопроизвольного процесса равно сумме изменения энтропии системы и изменения энтропии окружения системы (см. уравнение (15)). Изменение энтропии в системе, где протекает химическая реакция, определяется уравнением (16), а изменение энтропии в окружении системы-уравнением (20). Теперь мы можем вычислить суммарное изменение энтропии, которым сопровождается химическое превращение, и проверить, удовлетворяет ли полученный результат второму закону термодинамики.

    Вычислим полное изменение энтропии, которым сопровождается сгорание одного моля газообразного водорода при 25°С. Удовлетворяет ли результат вычисления второму закону термодинамики?

    Полное изменение энтропии, которым сопровождается всякий процесс, определяется уравнением (15). Подставив в него выражение (20), получим

    Полученное уравнение относится к сгоранию одного моля газообразного водорода при стандартных условиях в соответствии с химическим уравнением, приведенным в предыдущем примере.

    Согласно условию задачи, .

    Значение было вычислено в предыдущем примере и найдено равным

    Стандартная энтальпия сгорания водорода, по данным табл. 5.2, равна

    Следовательно,

    Отметим, что, хотя изменение энтропии в реакционной системе отрицательно, полное изменение энтропии, которым сопровождается протекание реакции, положительно. Следовательно, результат, полученный нами, удовлетворяет второму закону термодинамики.

    В предыдущем разделе мы исходили из того основного предположения, что для любой системы существует параметр, называемый энтропией и обозначаемый S. При малых величинах теплового взаимодействия соответствующее дифференциальное изменение энтропии dS составляет . Используем далее это определение для вычисления изменений энтропии в некоторых простых и известных процессах.

    Изменение энтропии при таянии льда. Предположим, что в жаркий летний день мы принесли на пикник термос, наполненный смесью льда и воды. Поскольку изоляция термоса не идеальна, лед будет постепенно таять. Однако таяние происходит медленно, температура в термосе будет оставаться практически неизменной и равной 0°С. Подсчитаем изменение энтропии, соответствующее таянию 1 моль (или 18 г) льда. Табличное значение теплоты плавления льда составляет 79,67 кал/г, что дает около 1434 кал/моль. Тогда можно записать

    Как и ранее, обозначает просто суммирование бесконечно малых величин - интегрирование (или суммирование) всех величин , соответствующих каждому малому количеству теплоты . Интегрирование выполняется в этом случае особенно просто потому, что температура Т не меняется в ходе процесса плавления. Поэтому множитель 1/Т можно вынести из-под знака интеграла, так что он становится просто множителем при последнее выражение представляет собой фактически теплоту фазового перехода (плавления) льда кал/моль. Соотношение (19) означает, что энтропия 1 моль воды при 273 К на 5,27 кал/К превышает энтропию 1 моль льда при той же температуре.

    Верь, когда растает лед. Энтропия возрастет.

    Наоборот, если у воды при температуре 273 К отобрать достаточно теплоты - чтобы образовался 1 моль льда при 273 К, энтропия системы понизится на .

    Заметим, что всюду в этом разделе мы использовали абсолютную температуру по Кельвину в знаменателе отношения . Можно было бы использовать и абсолютную шкалу Рэнкина, если измерять при этом количество теплоты в б.т. е. Очевидно, что в знаменателе выражения нельзя использовать температуры по шкалам Цельсия или Фаренгейта (как это иногда пытаются делать даже подготовленные студенты). Так, например, используя шкалу Цельсия, в рассматриваемом случае мы пришли бы к абсурдному результату (знаменатель выражения обратился бы в нуль). Заметим, что единицы, в которых выражается изменение энтропии, совпадают с единицами, в которых измеряется молярная теплоемкость Изменение энтропии при таянии 1 моль льда при точке замерзания в нормальных условиях составляет 5,27 кал/(моль К).

    Изменение энтропии при кипении воды. Другой хорошо знакомый процесс, идущий при определенной температуре, - это переход жидкой воды в пар при давлении 1 атм. Температура, при которой вода кипит при нормальных условиях, равна по определению 100°С, или 373 К. Теплота испарения при такой температуре составляет 539 кал/г, или 9702 кал/моль. Тогда изменение энтропии, соответствующее испарению 1 моль воды при нормальных условиях, равно

    Это вычисление оказалось столь простым потому, что температура не менялась в ходе процесса.

    Заметим, что изменение энтропии в процессе испарения воды почти в 5 раз превышает изменение энтропии в процессе таяния льда. Значение несколько превышает обычные для подобных ситуаций значения и указывает на необычные свойства такого вещества, как вода. У многих «нормальных» (неполярных) жидкостей изменение энтропии при испарении составляет Это правило было получено эмпирически английским физиком Фредериком Троутоном (1863-1922) и носит название «правило Троутона». Оно дает способ оценки теплоты испарения данного вещества, если известна температура, при которой оно кипит при нормальных условиях.

    Чтобы найти приближенное значение теплоты испарения, достаточно умножить температуру кипения (выраженную в Кельвинах) на постоянную Гроутона.

    Изменение энтропии в процессе изотермического расширения идеального газа. Существует еще один процесс при постоянной температуре, который уже не раз встречался нам ранее, - это процесс обратимого изотермического расширения идеального газа. Если наряду с тепловым имеется лишь обычное механическое взаимодействие (так что элементарная работа выражается формулой первое начало термодинамики для 1 моль идеального газа можно записать в виде

    (здесь учтено, что ). Используя уравнение pV = RT, можно при dT = 0 (условие постоянства температуры) написать

    Интегрировать это выражение нам приходилось в гл. 4, так что здесь сразу приведем результат:

    Поскольку температура T остается постоянной, выражение для соответствующего изменения энтропии имеет вид

    Как известно, газовая постоянная R имеет размерность кал/(моль К), а множитель, содержащий логарифм, - безразмерное число, так что размерности в левой и правой частях соотношения (24) совпадают. Таким образом, увеличение объема (т. е. расширение) при постоянной температуре сопровождается ростом энтропии.

    Вернемся к случаю кипения воды. Пусть испарился 1 моль воды; 1 моль идеального газа, как мы помним, при нормальных условиях (давлении 1 атм и температуре 273 К) занимает объем около 22 400 см3. При 373 К соответствующий объем будет равен 22 400 (373/273), или примерно 30 600 см3. До испарения 1 моль жидкости занимал объем около таким образом, отношение составляет Согласно равенству (24), изменение энтропии, соответствующее изменению объема за счет испарения, составляет R ln 1700. Учитывая, что значение R примерно равно , искомое изменение энтропии составляет примерно 14,88 кал/(моль К).

    Подсчитывая в предыдущем разделе полное изменение энтропии в течение всего процесса испарения 1 моль воды, мы получили значение 26,0 кал/(моль К). Как мы убедились теперь, чуть более половины этого значения связано с изменением объема при переходе жидкости в пар.

    Изменения энтропии, обусловленные изменениями температуры. До сих пор все наши вычисления изменения энтропии проводились для тепловых взаимодействий при постоянной температуре. Рассмотрим теперь более обычный и несколько более сложный случай, когда обратимое нагревание приводит к изменению температуры. Если нагревание происходит при постоянном объеме, то. согласно определению удельной теплоемкости при постоянном объеме , имеем . Тогда

    Интегрируя это выражение по конечному интервалу температур, получаем

    Здесь предполагалось, что теплоемкость не зависит от температуры и ее можно вынести за знак интеграла. Существенно, что, отождествляя

    мы снимаем ограничеиие об обратимости процесса нагревания, а также об однородности температуры в процессе нагревания. Нам необходимо знать температуру системы только в начале и в конце процесса нагревания. Иными словами, существенно лишь, чтобы тепловое равновесие существовало в начальном и конечном состояниях: промежуточные состояния не играют роли.

    В более обычном и практически значительно легче осуществляемом случае нагревания при постоянном давлении имеем . Буквально повторяя все приведенные выше рассуждения, получаем

    2. Нагревание воды при 1 атм от 273 К до 373 К:

    3. Переход вода-пар при 1 атм и 373 К:

    Таким образом, результирующее изменение энтропии при превращении 1 моль льда, имеющего температуру 273 К, в пар при 373 К составляет