Дисперсия суммы разности двух случайных величин. Свойства дисперсии случайной величины. Свойства функции распределения

Математическое ожидание и дисперсия - чаще всего применяемые числовые характеристики случайной величины. Они характеризуют самые важные черты распределения: его положение и степень разбросанности. Во многих задачах практики полная, исчерпывающая характеристика случайной величины - закон распределения - или вообще не может быть получена, или вообще не нужна. В этих случаях ограничиваются приблизительным описанием случайной величины с помощью числовых характеристик.

Математическое ожидание часто называют просто средним значением случайной величины. Дисперсия случайной величины - характеристика рассеивания, разбросанности случайной величины около её математического ожидания.

Математическое ожидание дискретной случайной величины

Подойдём к понятию математического ожидания, сначала исходя из механической интерпретации распределения дискретной случайной величины. Пусть единичная масса распределена между точками оси абсцисс x 1 , x 2 , ..., x n , причём каждая материальная точка имеет соответствующую ей массу из p 1 , p 2 , ..., p n . Требуется выбрать одну точку на оси абсцисс, характеризующую положение всей системы материальных точек, с учётом их масс. Естественно в качестве такой точки взять центр массы системы материальных точек. Это есть среднее взвешенное значение случайной величины X , в которое абсцисса каждой точки x i входит с "весом", равным соответствующей вероятности. Полученное таким образом среднее значение случайной величины X называется её математическим ожиданием.

Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных её значений на вероятности этих значений:

Пример 1. Организована беспроигрышная лотерея. Имеется 1000 выигрышей, из них 400 по 10 руб. 300 - по 20 руб. 200 - по 100 руб. и 100 - по 200 руб. Каков средний размер выигрыша для купившего один билет?

Решение. Средний выигрыш мы найдём, если общую сумму выигрышей, которая равна 10*400 + 20*300 + 100*200 + 200*100 = 50000 руб, разделим на 1000 (общая сумма выигрышей). Тогда получим 50000/1000 = 50 руб. Но выражение для подсчёта среднего выигрыша можно представить и в следующем виде:

С другой стороны, в данных условиях размер выигрыша является случайной величиной, которая может принимать значения 10, 20, 100 и 200 руб. с вероятностями, равными соответственно 0,4; 0,3; 0,2; 0,1. Следовательно, ожидаемый средний выигрыш равен сумме произведений размеров выигрышей на вероятности их получения.

Пример 2. Издатель решил издать новую книгу. Продавать книгу он собирается за 280 руб., из которых 200 получит он сам, 50 - книжный магазин и 30 - автор. В таблице дана информация о затратах на издание книги и вероятности продажи определённого числа экземпляров книги.

Найти ожидаемую прибыль издателя.

Решение. Случайная величина "прибыль" равна разности доходов от продажи и стоимости затрат. Например, если будет продано 500 экземпляров книги, то доходы от продажи равны 200*500=100000, а затраты на издание 225000 руб. Таким образом, издателю грозит убыток размером в 125000 руб. В следующей таблице обобщены ожидаемые значения случайной величины - прибыли:

Число Прибыль x i Вероятность p i x i p i
500 -125000 0,20 -25000
1000 -50000 0,40 -20000
2000 100000 0,25 25000
3000 250000 0,10 25000
4000 400000 0,05 20000
Всего: 1,00 25000

Таким образом, получаем математическое ожидание прибыли издателя:

.

Пример 3. Вероятность попадания при одном выстреле p = 0,2 . Определить расход снарядов, обеспечивающих математическое ожидание числа попаданий, равное 5.

Решение. Из всё той же формулы математического ожидания, которую мы использовали до сих пор, выражаем x - расход снарядов:

.

Пример 4. Определить математическое ожидание случайной величины x числа попаданий при трёх выстрелах, если вероятность попадания при каждом выстреле p = 0,4 .

Подсказка: вероятность значений случайной величины найти по формуле Бернулли .

Свойства математического ожидания

Рассмотрим свойства математического ожидания.

Свойство 1. Математическое ожидание постоянной величины равно этой постоянной:

Свойство 2. Постоянный множитель можно выносить за знак математического ожидания:

Свойство 3. Математическое ожидание суммы (разности) случайных величин равно сумме (разности) их математических ожиданий:

Свойство 4. Математическое ожидание произведения случайных величин равно произведению их математических ожиданий:

Свойство 5. Если все значения случайной величины X уменьшить (увеличить) на одно и то же число С , то её математическое ожидание уменьшится (увеличится) на то же число:

Когда нельзя ограничиваться только математическим ожиданием

В большинстве случаев только математическое ожидание не может в достаточной степени характеризовать случайную величину.

Пусть случайные величины X и Y заданы следующими законами распределения:

Значение X Вероятность
-0,1 0,1
-0,01 0,2
0 0,4
0,01 0,2
0,1 0,1
Значение Y Вероятность
-20 0,3
-10 0,1
0 0,2
10 0,1
20 0,3

Математические ожидания этих величин одинаковы - равны нулю:

Однако характер распределения их различный. Случайная величина X может принимать только значения, мало отличающиеся от математического ожидания, а случайная величина Y может принимать значения, значительно отклоняющиеся от математического ожидания. Аналогичный пример: средняя заработная плата не даёт возможности судить об удельном весе высоко- и низкооплачиваемых рабочих. Иными словами, по математическому ожиданию нельзя судить о том, какие отклонения от него, хотя бы в среднем, возможны. Для этого нужно найти дисперсию случайной величины.

Дисперсия дискретной случайной величины

Дисперсией дискретной случайной величины X называется математическое ожидание квадрата отклонения её от математического ожидания:

Средним квадратическим отклонением случайной величины X называется арифметическое значение квадратного корня её дисперсии:

.

Пример 5. Вычислить дисперсии и средние квадратические отклонения случайных величин X и Y , законы распределения которых приведены в таблицах выше.

Решение. Математические ожидания случайных величин X и Y , как было найдено выше, равны нулю. Согласно формуле дисперсии при Е (х )=Е (y )=0 получаем:

Тогда средние квадратические отклонения случайных величин X и Y составляют

.

Таким образом, при одинаковых математических ожиданиях дисперсия случайной величины X очень мала, а случайной величины Y - значительная. Это следствие различия в их распределении.

Пример 6. У инвестора есть 4 альтернативных проекта инвестиций. В таблице обобщены данные об ожидаемой прибыли в этих проектах с соответствующей вероятностью.

Проект 1 Проект 2 Проект 3 Проект 4
500, P =1 1000, P =0,5 500, P =0,5 500, P =0,5
0, P =0,5 1000, P =0,25 10500, P =0,25
0, P =0,25 9500, P =0,25

Найти для каждой альтернативы математическое ожидание, дисперсию и среднее квадратическое отклонение.

Решение. Покажем, как вычисляются эти величины для 3-й альтернативы:

В таблице обобщены найденные величины для всех альтернатив.

У всех альтернатив одинаковы математические ожидания. Это означает, что в долгосрочном периоде у всех - одинаковые доходы. Стандартное отклонение можно интерпретировать как единицу измерения риска - чем оно больше, тем больше риск инвестиций. Инвестор, который не желает большого риска, выберет проект 1, так как у него наименьшее стандартное отклонение (0). Если же инвестор отдаёт предпочтение риску и большим доходам в короткий период, то он выберет проект наибольшим стандартным отклонением - проект 4.

Свойства дисперсии

Приведём свойства дисперсии.

Свойство 1. Дисперсия постоянной величины равна нулю:

Свойство 2. Постоянный множитель можно выносить за знак дисперсии, возводя его при этом в квадрат:

.

Свойство 3. Дисперсия случайной величины равна математическому ожиданию квадрата этой величины, из которого вычтен квадрат математического ожидания самой величины:

,

где .

Свойство 4. Дисперсия суммы (разности) случайных величин равна сумме (разности) их дисперсий:

Пример 7. Известно, что дискретная случайная величина X принимает лишь два значения: −3 и 7. Кроме того, известно математическое ожидание: E (X ) = 4 . Найти дисперсию дискретной случайной величины.

Решение. Обозначим через p вероятность, с которой случайная величина принимает значение x 1 = −3 . Тогда вероятностью значения x 2 = 7 будет 1 − p . Выведем уравнение для математического ожидания:

E (X ) = x 1 p + x 2 (1 − p ) = −3p + 7(1 − p ) = 4 ,

откуда получаем вероятности: p = 0,3 и 1 − p = 0,7 .

Закон распределения случайной величины:

X −3 7
p 0,3 0,7

Дисперсию данной случайной величины вычислим по формуле из свойства 3 дисперсии:

D (X ) = 2,7 + 34,3 − 16 = 21 .

Найти математическое ожидание случайной величины самостоятельно, а затем посмотреть решение

Пример 8. Дискретная случайная величина X принимает лишь два значения. Большее из значений 3 она принимает с вероятностью 0,4. Кроме того, известна дисперсия случайной величины D (X ) = 6 . Найти математическое ожидание случайной величины.

Пример 9. В урне 6 белых и 4 чёрных шара. Из урны вынимают 3 шара. Число белых шаров среди вынутых шаров является дискретной случайной величиной X . Найти математическое ожидание и дисперсию этой случайной величины.

Решение. Случайная величина X может принимать значения 0, 1, 2, 3. Соответствующие им вероятности можно вычислить по правилу умножения вероятностей . Закон распределения случайной величины:

X 0 1 2 3
p 1/30 3/10 1/2 1/6

Отсюда математическое ожидание данной случайной величины:

M (X ) = 3/10 + 1 + 1/2 = 1,8 .

Дисперсия данной случайной величины:

D (X ) = 0,3 + 2 + 1,5 − 3,24 = 0,56 .

Математическое ожидание и дисперсия непрерывной случайной величины

Для непрерывной случайной величины механическая интерпретация математического ожидания сохранит тот же смысл: центр массы для единичной массы, распределённой непрерывно на оси абсцисс с плотностью f (x ). В отличие от дискретной случайной величиной, у которой аргумент функции x i изменяется скачкообразно, у непрерывной случайной величины аргумент меняется непрерывно. Но математическое ожидание непрерывной случайной величины также связано с её средним значением.

Чтобы находить математическое ожидание и дисперсию непрерывной случайной величины, нужно находить определённые интегралы . Если дана функция плотности непрерывной случайной величины, то она непосредственно входит в подынтегральное выражение. Если дана функция распределения вероятностей, то, дифференцируя её, нужно найти функцию плотности.

Арифметическое среднее всех возможных значений непрерывной случайной величины называется её математическим ожиданием , обозначаемым или .

Дисперсия случайной величины и ее свойства.

Многие случайные величины имеют одинаковое математическое ожидание, но различные возможные значения. Поэтому одного математического ожидания недостаточно для характеристики случайной величины.

Пусть доходы Х и Y (в долларах) двух фирм заданы распределениями:

Иногда удобно пользоваться другой формулой, которую можно получить, если воспользоваться свойствами математического ожидания,

Дисперсия существует, если ряд (соответственно интеграл) сходится.

Неотрицательное число называется средним квадратическим отклонением случайной величины Х. Оно имеет размерность случайной величины Х и определяет некоторый стандартный среднеквадратичный интервал рассеивания, симметричный относительно математического ожидания. Величину иногда называют стандартным отклонением.

Случайная величина называется центрированной , если . Случайная величина называется нормированной (стандартной), если .

Продолжим пример . Вычислим дисперсию доходов двух фирм:

Сравнивания дисперсии, видим, что доход второй фирмы варьирует больше, чем первой.

Свойства дисперсии .

1. Дисперсия постоянной величины равна нулю, т.е. , если константа. Это очевидно, так как постоянная величина имеет математическое ожидание, равное постоянной величине, т.е. .

2. Постоянный множитель C можно вынести за знак дисперсии, предварительно возведя его в квадрат.

Действительно,

3. Дисперсия алгебраической суммы двух независимых случайных величин равна сумме их дисперсией, т.е.

Выражение называется ковариацией величин Х и Y (см. Тема 4, §2). Для независимых случайных величин ковариация равна нулю, т.е.

Используя это равенство, можно пополнить список свойств математического ожидания. Если случайные величины Х и Y независимы , то математическое ожидание произведения равно произведению математических ожиданий, а именно:

Если случайная величина преобразована линейно, т.е. , то

.

Пример 1. Пусть производится n независимых испытаний, вероятность появления события А в каждом из которых постоянна и равна p . Чему равна дисперсия числа появлений события А в этих испытаниях?

Решение. Пусть – число появления события А в первом испытании, – число появления события А во втором испытании и т.д. Тогда общее число наступления события А в n испытаниях равно

Воспользовавшись свойством 3 дисперсии, получим

Здесь мы воспользовались тем, что , i = (см. примеры 1 и 2, п.3.3.1.).

Пример 2. Пусть Х – сумма вклада (в долларах) в банке – задана распределением вероятностей

Х
i = 0,01 0,03 0,10 0,30 0,5 0,06

Найти среднюю сумму вклада и дисперсию.

Решение. Средняя сумма вклада равна математическому ожиданию

Для вычисления дисперсии воспользуемся формулой

D(X) = 8196 – 7849,96 = 348,04 .

Среднее квадратическое отклонение

Моменты.

Для того, чтобы учесть влияние на математическое ожидание тех возможных значений случайной величины Х , которые велики, но имеют малую вероятность, целесообразно рассматривать математические ожидания целой положительной степени случайной величины.

Дисперсией (рассеянием) дискретной случайной величины D(X) называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания

1 свойство . Дисперсия постоянной величины C равна нулю; D(C) = 0.

Доказательство. По определению дисперсии, D(C) = M{ 2 }.

Из первого свойства математического ожидания D(C) = M[(C – C) 2 ] = M(0) = 0.

2 свойство. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

D(CX) = C 2 D(X)

Доказательство. По определению дисперсии, D(CX) = M{ 2 }

Из второго свойства математического ожидания D(CX)=M{ 2 }= C 2 M{ 2 }=C 2 D(X)

3 свойство. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин:

D = D[X] + D.

Доказательство. По формуле для вычисления дисперсии имеем

D(X + Y) = M[(X + Y) 2 ] − 2

Раскрыв скобки и пользуясь свойствами математического ожидания суммы нескольких величин и произведения двух независимых случайных величин, получим

D(X + Y) = M − 2 = M(X2) + 2M(X)M(Y) + M(Y2) − M2(X) − 2M(X)M(Y) − M2(Y) = {M(X2) − 2}+{M(Y2) − 2} = D(X) + D(Y). Итак, D(X + Y) = D(X) + D(Y)

4 свойство . Дисперсия разности двух независимых случайных величин равна сумме их дисперсий:

D(X − Y) = D(X) + D(Y)

Доказательство. В силу третьего свойства D(X − Y) = D(X) + D(–Y). По второму свойству

D(X − Y) = D(X) + (–1) 2 D(Y) или D(X − Y) = D(X) + D(Y)

Числовые характеристики систем случайных величин. Коэффициент корреляции, свойства коэффициента корреляции.

Корреляционный момент. Характеристикой зависимости между случайными величинами и служит математическое ожидание произведения отклонений и от их центров распределений (так иногда называют математическое ожидание случайной величины), которое называется корреляционным моментом или ковариацией:

Для вычисления корреляционного момента дискретных величин используют формулу:

а для непрерывных величин – формулу:

Коэффициентом корреляции rxy случайных величин X и Y называют отношение корреляционного момента к произведению среднеквадратичных отклонений величин:
- коэффициент корреляции;

Свойства коэффициента корреляции:

1. Если Х и У независимые случайные величины, то r =0;

2. -1≤ r ≤1 .При этом, если |r| =1, то между Х и У функциональная, а именно линейная зависимость;

3. r характеризует относительную величину отклонения М(ХУ) от М(Х)М(У), и т.к. отклонение имеет место только для зависимых величин, то rхарактеризует тесноту зависимости.

Линейная функция регрессии.

Рассмотрим двумерную случайную величину (X, Y), где X и У - зависимые случайные величины. Представим одну из величин как функцию другой. Ограничимся приближенным представлением (точное приближение, вообще говоря, невозможно) величины Y в виде линейной функции величины X:

где α и β - параметры, подлежащие определению.

Теорема. Линейная средняя квадратическая регрессия Y на X имеет вид

где m x =M(X), m y =M(Y), σ x =√D(X), σ y =√D(Y), r=µ xy /(σ x σ y)-коэффициент корреляции величин X и Y.

Коэффициент β=rσ y /σ x называют коэффициентом регрессии Y на X, а прямую

называют прямой среднеквадратической регрессии Y на X.

Неравенство Маркова.

Формулировка неравенства Маркова

Если среди значений случайной величины Х нет отрицательных, то вероятность того, что она примет какое-нибудь значение, превосходящее положительное число А, не больше дроби , т.е.

а вероятность того, что она примет какое-нибудь значение, не превосходящее положительного числа А, не меньше , т.е.

Неравенство Чебышева.

Неравенство Чебышева . Вероятность того, что отклонение случайной величины X от ее математического ожидания по абсолютной величине меньше положительного числа ε, не меньше, чем 1 −D[X]ε 2

P(|X – M(X)| < ε) ≥ 1 –D(X)ε 2

Доказательство. Так как события, состоящие в осуществлении неравенств

P(|X−M(X)| < ε) и P(|X – M(X)| ≥ε) противоположны, то сумма их вероятностей равна единице, т. е.

P(|X – M(X)| < ε) + P(|X – M(X)| ≥ ε) = 1.

Отсюда интересующая нас вероятность

P(|X – M(X)| < ε) = 1 − P(|X – M(X)| > ε).

Таким образом, задача сводится к вычислению вероятности P(|X –M(X)| ≥ ε).

Напишем выражение для дисперсии случайной величины X

D(X) = 2 p1 + 2 p 2 + . . . + 2 p n

Все слагаемые этой суммы неотрицательны. Отбросим те слагаемые, у которых |x i – M(X)| < ε (для оставшихся слагаемых |x j – M(X)| ≥ ε), вследствие чего сумма может только уменьшиться. Условимся считать для определенности, что отброшено k первых слагаемых (не нарушая общности, можно считать, что в таблице распределения возможные значения занумерованы именно в таком порядке). Таким образом,

D(X) ≥ 2 p k+1 + 2 p k+2 + . . . + 2 p n

Обе части неравенства |x j –M(X)| ≥ ε (j = k+1, k+2, . . ., n) положительны, поэтому, возведя их в квадрат, получим равносильное неравенство |x j – M(X)| 2 ≥ε 2 .Заменяя в оставшейся сумме каждый из множителей

|x j – M(X)| 2 числом ε 2 (при этом неравенство может лишь усилиться), получим

D(X) ≥ ε 2 (p k+1 + p k+2 + . . . + p n)

По теореме сложения, сумма вероятностей p k+1 +p k+2 +. . .+p n есть вероятность того, что X примет одно, безразлично какое, из значений x k+1 +x k+2 +. . .+x n , а при любом из них отклонение удовлетворяет неравенству |x j – M(X)| ≥ ε. Отсюда следует, что сумма p k+1 + p k+2 + . . . + p n выражает вероятность

P(|X – M(X)| ≥ ε).

Это позволяет переписать неравенство для D(X) так

D(X) ≥ ε 2 P(|X – M(X)| ≥ ε)

P(|X – M(X)|≥ ε) ≤D(X)/ε 2

Окончательно получим

P(|X – M(X)| < ε) ≥D(X)/ε 2

Теорема Чебышева.

Теорема Чебышева . Если - попарно независимые случайные величины, причем дисперсии их равномерно ограничены (не превышают постоянного числа С), то, как бы мало ни было положительное число ε, вероятность неравенства

будет как угодно близка к единице, если число случайных величин достаточно велико.

Другими словами, в условиях теоремы

Доказательство . Введем в рассмотрение новую случайную величину - среднее арифметическое случайных величин

Найдем математическое ожидание Х. Пользуясь свойствами математического ожидания (постоянный множитель можно вынести за знак математического ожидания, математическое ожидание суммы равно сумме математических ожиданий слагаемых), получим

(1)

Применяя к величине Х неравенство Чебышева, имеем

или, учитывая соотношение (1)

Пользуясь свойствами дисперсии (постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат; дисперсия суммы независимых случайных величин равна сумме дисперсий слагаемых), получим

По условию дисперсии всех случайных величин ограничены постоянным числом С, т.е. имеют место неравенства:

(2)

Подставляя правую часть (2) в неравенство (1) (отчего последнее может быть лишь усилено), имеем

Отсюда, переходя к пределу при n→∞, получим

Наконец, учитывая, что вероятность не может превышать единицу, окончательно можем написать

Теорема доказана.

Теорема Бернулли.

Теорема Бернулли . Если в каждом из n независимых испытаний вероятность p появления события A постоянна, то как угодно близка к единице вероятность того, что отклонение относительной частоты от вероятности p по абсолютной величине будет сколь угодно малым, если число испытаний достаточно велико.

Другими словами, если ε - сколь угодно малое положительное число, то при соблюдении условий теоремы имеет место равенство

Доказательство . Обозначим через X 1 дискретную случайную величину - число появлений события в первом испытании, через X 2 - во втором, ..., X n - в n -м испытании. Ясно, что каждая из величин может принять лишь два значения: 1 (событие A наступило) с вероятностью p и 0 (событие не появилось) с вероятностью .

Дисперсия случайной величины характеризует меру разброса случайной величины около ее математического ожидания.

Если случайная величина x имеет математическое ожидание M x , то дисперсией случайной величины x называется величина D x =M (x - M x ) 2 .

Легко показать, что D x = M (x - M x ) 2 = M x 2 - M (x) 2 .

Эта универсальная формула одинаково хорошо применима как для дискретных случайных величин, так и для непрерывных. Величина M x 2 >для дискретных и непрерывных случайных величин соответственно вычисляется по формулам

, .

Для определения меры разброса значений случайной величины часто используется среднеквадратичное отклонение ,связанное с дисперсией соотношением .

Основные свойства дисперсии:

  • дисперсия константы равна нулю, D c =0;
  • для произвольной константы D (cx ) = c 2 D (x);
  • дисперсия суммы двух независимых случайных величинравна сумме их дисперсий: D (x ± h ) = D (x) + D (h).

51) Функцией распределения называют функцию , определяющую вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х, т.е.

Иногда вместо термина «Функция распределения» используют термин «Интегральная функция».

Свойства функции распределения:

1. Значения функции распределения принадлежит отрезку : 0 F(x) 1
2. F(x) - неубывающая функция, т.е. F(x 2) F(x 1), если x 2 >x 1

Следствие 1. Вероятность того, что случайная величина примет значение, заключенное в интервале (a,b), равна приращению функции распределения на этом интервале:

P(a X

Пример 9. Случайная величина Х задана функцией распределения:

Найти вероятность того, что в результате испытания Х примет значение, принадлежащее интервалу (0;2): P(0

Решение: Так как на интервале (0;2) по условию, F(x)=x/4+1/4, то F(2)-F(0)=(2/4+1/4)-(0/4+1/4)=1/2. Итак, P(0

Следствие 2. Вероятность того, что непрерывная случайная величина Х примет одно определенное значение, равна нулю.

Следствие 3. Если возможные значения случайной величины принадлежат интервалу (а;b), то: 1) F(x)=0 при x a; 2) F(x)=1 при x b.
Справедливы следующие предельные соотношения:

График функции распределения расположен в полосе, ограниченной прямыми у=0, у=1 (первое свойство). При возрастании х в интервале (а;b), в котором заключены все возможные значения случайной величины, график «подымается вверх». При x a ординаты графика равны нулю; при x b ординаты графика равны единице:

Функцией распределения случайной величины Х называется функция F(x) , выражающая для каждого х вероятность того, что случайная величина Х примет значение, меньшее х :

.

Функцию F(x) называют интегральной функцией распределения или интегральным законом распределения.

Способ задания непрерывной случайной величины с помощью функции распределения не является единственным. Необходимо определить некоторую функцию, отражающую вероятности попадания случайной точки в различные участки области возможных значений непрерывной случайной величины. Т. е. представить некоторую замену вероятностям p i для дискретной случайной величины в непрерывном случае.

Такой функцией является плотность распределения вероятностей. Плотностью вероятности (плотностью распределения, дифференциальной функцией ) случайной величины Х называется функция f(x), являющаяся первой производной интегральной функции распределения.