Что такое число п. Пространства с иным числом пи. Понятие числа пи


Что такое "пи" известно абсолютно всем. Но знакомое всем со школы число возникает во многих ситуациях, не имеющим никакого отношения к окружностям. Его можно встретить в теории вероятностей, в формуле Стирлинга для вычисления факториала, в решении задач с комплексными числами и прочих неожиданных и далеких от геометрии областях математики. Английский математик Август де Морган назвал как-то "пи" “…загадочным числом 3,14159…, которое лезет в дверь, в окно и через крышу”.

Это таинственное число, связанное с одной из трех классических задач Античности - построение квадрата, площадь которого равна площади заданного круга - влечет за собой шлейф драматических исторических и курьезных занимательных фактов.


  • Несколько занимательных фактов о числе Пи

  • 1. А знаете ли Вы, что первым, кто использовал для числа 3,14 символ «пи», был Вильям Джонс из Уэльса, и произошло это в 1706 году.

  • 2. А знаете ли Вы, что мировой рекорд по запоминанию числа Пи установил 17 июня 2009 года украинский нейрохирург, доктор медицинских наук, профессор Андрей Слюсарчук, удержавший в памяти 30 млн. его знаков (20 томов текста).

  • 3. А знаете ли Вы, что в 1996 году Майк Кейт написал короткий рассказ, который называется «Ритмическая каденция» («Cadeic Cadenze»), в его тексте длина слов соответствовала первым 3834 цифрам числа Пи.

Символ Пи впервые употребил в 1706 году Уильям Джонс, однако настоящую популярность он приобрел после того, как его начал использовать в своих работах математик Леонард Эйлер в 1737 году.

Считается, что праздник придумал в 1987 году физик из Сан-Франциско Ларри Шоу, обративший внимание на то, что 14 марта (в американском написании - 3.14) ровно в 01:59 дата и время совпадут с первыми разрядами числа Пи = 3,14159.

14 марта 1879 года также родился создатель теории относительности Альберт Эйнштейн, что делает этот день еще более привлекательным для всех любителей математики.

Кроме того, математики отмечают и день приближенного значения Пи, который приходится на 22 июля (22/7 в европейском формате записи даты).

"В это время читают хвалебные речи в честь числа Пи и его роли в жизни человечества, рисуют антиутопические картины мира без Пи, едят пироги с изображением греческой буквы Пи или с первыми цифрами самого числа, решают математические головоломки и загадки, а также водят хороводы", - пишет Википедия.

В цифровом выражении Пи начинается как 3,141592 и имеет бесконечную математическую продолжительность.

Французский ученый Фабрис Беллар вычислил число Пи с рекордной точностью. Об этом сообщается на его официальном сайте. Свежий рекорд составляет около 2,7 триллиона (2 триллиона 699 миллиардов 999 миллионов 990 тысяч) десятичных знаков. Предыдущее достижение принадлежит японцам, которые посчитали константу с точностью до 2,6 триллиона десятичных знаков.

На вычисления у Беллара ушло около 103 дней. Все расчеты проводились на домашнем компьютере, стоимость которого лежит в пределах 2000 евро. Для сравнения, предыдущий рекорд был установлен на суперкомпьютере T2K Tsukuba System, у которого ушло на работу около 73 часов.

Изначально число Пи появилось как отношение длины окружности к ее диаметру, поэтому его приближенное значение вычислялось как отношение периметра вписанного в окружность многоугольника к диаметру этой окружности. Позже появились более совершенные методы. В настоящее время Пи вычисляется при помощи быстро сходящихся рядов, наподобие тех, которые были предложены Сринивасом Рамануджаном в начале 20 века.

Сначала Пи рассчитывалось в двоичной системе, после чего переводилось в десятичную. Это проделали за 13 дней. В общей сложности для хранения всех цифр требуется 1,1 терабайта дискового пространства.

Подобные вычисления имеют не только прикладное значение. Так, сейчас с Пи связано множество нерешенных задач. Не решен вопрос о нормальности этого числа. Например, известно, что Пи и e (основание экспоненты) трансцендентные числа, то есть не являются корнями никакого многочлена с целыми коэффициентами. При этом, однако, является ли сумма этих двух фундаментальных констант трансцендентным числом или нет - неизвестно до сих пор.

Более того, до сих пор не известно, все ли цифры от 0 до 9 встречаются в десятичной записи числа Пи бесконечное число раз.

В данном случае сверхточное вычисление числа является удобным экспериментом, результаты которого позволяют сформулировать гипотезы относительно тех или иных особенностей числа.

Число вычисляется по определенным правилам, причем при любом вычислении, в любом месте и в любое время, на определенном месте в записи числа стоит одна и та же цифра. Значит существует некий закон, по которому в числе в определенном месте ставится определенная цифра. Конечно, это закон не простой, но закон всё таки есть. И, значит, цифры в записи числа не случайны, а закономерны.

Считают число Пи: PI = 4 — 4/3 + 4/5 — 4/7 + 4/9 — … — 4/n + 4/(n+2)

Поиск Pi или деление столбиком:

Пары целых чисел, дающих при делении большое приближение к числу Pi. Деление производилось "столбиком", чтобы обойти ограничения по длине чисел с плавающей точкой Visual Basic 6.

Pi = 3.14159265358979323846264>33832795028841 971...

К экзотическим методам вычисления пи вроде использования теории вероятности или простых чисел принадлежит и метод, придуманный Г.А. Гальпериным, и называемый Пи-биллиардом, который основан на оригинальной модели. При столкновении двух шаров, меньший из которых находится между большим и стенкой, и больший движется к стенке, число соударений шаров позволяет вычислить Пи со сколь угодно большой наперед заданной точностью. Надо только запустить процесс (можно и на компьютере) и посчитать число ударов шаров. Программная реализация этой модели пока не известна

В каждой книге по занимательной математике вы непременно найдете историю вычисления и уточнения значения числа "пи". Сначала, в древних Китае, Египте, Вавилоне и Греции для расчетов использовали дроби, например, 22/7 или 49/16. В Средние века и Эпоху Возрождения европейские, индийские и арабские математики уточнили значение "пи" до 40 знаков после десятичной точки, а к началу Эпохи Компьютеров усилиями многих энтузиастов количество знаков было доведено до 500. Такая точность имеет чисто научный интерес (об этом ниже), для практики, в пределах Земли достаточно 11 знаков после точки.

Тогда, зная, что радиус Земли равен 6400 км или 6,4*1012 миллиметров, получится, что мы, отбросив двенадцатую цифру "пи" после точки при вычислении длины меридиана, ошибемся на несколько миллиметров. А при расчете длины Земной орбиты при вращении вокруг Солнца (как известно, R=150*106 км = 1,5*1014 мм) для такой же точности достаточно использовать "пи" с четырнадцатью знаками после точки. Среднее расстояние от Солнца до Плутона - самой далекой планеты Солнечной системы - в 40 раз больше среднего расстояния от Земли до Солнца.

Для вычисления длины орбиты Плутона с ошибкой в несколько миллиметров достаточно шестнадцати знаков "пи". Да что уж там мелочиться - диаметр нашей Галактики около 100.000 световых лет (1 световой год примерно равен 1013 км) или 1018 км или 1030 мм., а еще в XXVII веке были получены 34 знака "пи", избыточные для таких расстояний.

В чем же сложность вычисления значения "пи"? Дело в том, что оно не только иррациональное (то есть его нельзя выразить в видедроби P/Q, где P и Q целые числа), но оно еще не может быть корнем алгебраического уравнения. Число, например, иррациональное, не может быть представлено отношением целых чисел, но оно является корнем уравнения Х2-2=0, а для чисел "пи" и е (постоянная Эйлера), нельзя указать такое алгебраическое (не дифференциальное) уравнение. Такие числа (трансцендентные) вычисляются рассмотрением какого-либо процесса и уточняются за счет увеличения шагов рассматриваемого процесса. Самый “простой” путь - вписывать в окружность правильный многоугольник и вычислять отношение периметра многоугольника к его “радиусу”...pages marsu

Число объясняет мир

Кажется, двум американским математикам удалось приблизиться к разгадке тайны числа пи, представляющего в сугубо математическом плане соотношение длины окружности круга к его диаметру, сообщает Der Spiegel.

Как иррациональная величина оно не может быть представлено в виде завершенной дроби, поэтому после запятой следует бесконечный ряд цифр. Это свойство всегда привлекало математиков, стремившихся найти, с одной стороны, более точное значение пи, а с другой — его обобщенную формулу.

Однако математики Дэвид Бейли из лаборатории Lawrence Berkeley National Laboratory в Калифорнии и Ричард Грендел из колледжа Reed College в Портланде, рассматривали число с другой стороны — они попытались найти какой-то смысл в кажущемся хаотичном ряду цифр после запятой. В результате установили, что регулярно повторяются комбинации следующих цифр — 59345 и 78952.

Но пока что не могут ответить на вопрос, является ли повторение случайным или закономерным. Вопрос закономерности повторения определенных комбинаций цифр, и не только в числе пи,— один из самых трудных в математике. Но теперь можно сказать что-то более определенное об этом числе. Открытие прокладывает путь к разгадке числа пи и в целом к определению его сути — является ли оно нормальным для нашего мира или нет.

Оба математика интересуются числом пи с 1996 года, и с этого времени им пришлось отказаться от так называемой «теории чисел» и обратить внимание на «теорию хаоса», являющуюся ныне их главным оружием. Исследователи конструируют на основе отображения числа пи — самой распространенной его формой является при этом 3,14159... — ряды чисел между нулем и единицей — 0,314, 0,141, 0,415, 0,159 и так далее. Поэтому, если число пи действительно является хаотичным, то хаотичным должны быть и ряды чисел, начинающихся с нуля. Но ответа на этот вопрос пока нет. Разгадать секрет пи, как и его старшего брата — числа 42, с помощью которого многие исследователи пытаются объяснить тайну мироздания, еще предстоит."

Интересные данные о распределении цифр Пи.

(Программирование — величайшее из достижений человечества. Благодаря ему мы регулярно узнаем то, что нам знать совсем не нужно, но уж очень интересно)

Посчитано (для миллиона цифр после запятой):

нулей = 99959,

единиц = 99758,

двоек = 100026,

троек = 100229,

четвёрок = 100230,

пятёрок = 100359,

шестёрок = 99548,

семёрок = 99800,

восьмёрок = 99985,

девяток = 100106.

В первых 200,000,000,000 десятичных знаках Пи цифры встречались с такой частотой:

"0" : 20000030841;

"1" : 19999914711;

"2" : 20000136978;

"3" : 20000069393

"4" : 19999921691;

"5" : 19999917053;

"6" : 19999881515;

"7" : 19999967594

"8" : 20000291044;

"9" : 19999869180;

То есть цифры распределены почти равномерно. Почему?Потому что по современным математическим представлениям при бесконечном количестве цифр их будет точно поровну, кроме того единичек будет столько же, сколько двоек и троек вместе взятых и даже столько же, сколько и всех остальных девяти цифр вместе взятых. Но тут знать, где остановиться, ловить момент, так сказать, где их действительно поровну.

И еще - в цифрах числа Пи можно ожидать появление любой наперед заданной последовательности цифр. Например, самыераспространенные расстановки встретились в следующих по счету цифрах:

01234567891: с 26,852,899,245

01234567891: с 41,952,536,161

01234567891: с 99,972,955,571

01234567891: с 102,081,851,717

01234567891: с 171,257,652,369

01234567890: с 53,217,681,704

27182818284: с 45,111,908,393 - это цифры числа е. (

Была такая шутка: ученые нашли последнее число в записи Пи - им оказалось число е, почти попали)

Можно поискать в первых десяти тысячах знаков Пи свой телефон или дату рождения, если не получится, то ищите в 100.000 знаков.

В числе 1/Пи начиная с 55,172,085,586 знака идут 3333333333333, не правда ли удивительно?

В философии обычно противопоставляют случайное и необходимое. Так знаки числа пи случайны? Или они необходимы? Скажем, третий знак числа пи равен "4". И вне зависимости от того, кто-бы это пи вычислял, в каком месте и в какое время он бы это не делал, третий знак с необходимостью всегда будет равен "4".

Связь числа Пи, числом Фи и рядом Фибоначии . Связь числа 3,1415916 и числа 1,61803 и последовательности Пизанского.


  • Еще интересное:

  • 1. В десятичных позициях числа Пи 7, 22, 113, 355 — цифра 2. Дроби 22/7 и 355/113 - хорошие приближения к числу Пи.

  • 2. Коханский нашел, что Пи является приблизительным корнем уравнения: 9х^4-240х^2+1492=0

  • 3. Если записать заглавные буквы английского алфавита по часовой стрелке в круг и вычеркнуть буквы имеющие симметрию слева - направо: A,H,I,M,O,T,U,V,W,X,Y, то оставшиеся буквы образуют группы по 3,1,4,1,6 букв.

  • (A) BCDEFG (HI) JKL (M) N (O) PQRS (TUVWXY) Z

  • 6 3 1 4 1

  • Так что английский алфавит должен начинаться с буквы Н, I или J, а не с буквы А:)

Поскольку в последовательности знаков числа пи нет повторений - это значит, что последовательность знаков пи подчиняется теории хаоса, точнее, число пи - это и есть хаос, записанный цифрами. Более того, при желании, можно этот хаос представить графически, и есть предположение, что этот Хаос разумен. В 1965-м году американский математик М. Улэм, сидя на одном скучном собрании, от нечего делать начал писать на клетчатой бумаге цифры, входящие в число пи. Поставив в центре 3 и двигаясь по спирали против часовой стрелки, он выписывал 1, 4, 1, 5, 9, 2, 6, 5 и прочие цифры после запятой. Попутно он обводил все простые числа кружками. Каково же было его удивление и ужас, когда кружки стали выстраиваться вдоль прямых! Позже он сгенерировал на основе этого рисунка цветовую картину с помощью специального алгоритма. Что изображено на этой картине - засекречено.

А нам-то что с того? А следует из этого то, что в десятичном хвосте числа пи можно отыскать любую задуманную последовательность цифр. Ваш телефон? Пожалуйста, и не раз (проверить можно тут, но имейте в виду, что эта страничка весит около 300 мегабайт, так что загрузки придется подождать. Можно скачать жалкий миллион знаков тут или поверить на слово: любая последовательность цифр в десятичных знаках числа пи рано или поздно найдется. Любая!

Для более возвышенных читателей можно предложить и другой пример: если зашифровать все буквы цифрами, то в десятичном разложении числа пи можно найти всю мировую литературу и науку, и рецепт изготовления соуса бешамель, и все священные книги всех религий. Я не шучу, это строгий научный факт. Ведь последовательность БЕСКОНЕЧНА и сочетания не повторяются, следовательно она содержит ВСЕ сочетания цифр, и это уже доказано. А раз все, то все. В том числе и такие, которые соответствуют выбранной вами книге.

А это опять-таки означает, что там содержится не только вся мировая литература, которая уже написана (в частности и те книги, которые сгорели и т.д.), но и все книги, которые еще БУДУТ написаны.

Получается, что это число (единственное разумное число во вселенной!) и управляет нашим миром.

Вопрос в том, как их там отыскать...

А еще в этот день родился Альберт Эйнштейн, который предсказал... да чего он только не предсказал! ... даже темную энергию.

Был этот мир глубокой тьмой окутан.

Да будет свет! И вот явился Ньютон.

Но Сатана не долго ждал реванша.

Пришел Эйнштейн - и стало все, как раньше.

Они хорошо коррелируются - пи и Альберт...

Теории возникают, развиваются и...

Суть: число Пи не равно 3,14159265358979....

Это заблуждение, основанное на ошибочном постулате отождествления плоского Евклидового пространства с реальным пространством Вселенной.

Краткое объяснение почему в общем случае Пи не равно 3,14159265358979...

Этот феномен связан с кривизной пространства. Силовые линии во Вселенной на значительных расстояниях не идеальные прямые, а слегка изогнутые линии. Мы уже доросли до момента констатации факта, что в реальном мире не существует идеально прямых линий, идеально плоских кругов, идеального Евклидового пространства. Следовательно, мы должны представлять себе любой круг одного радиуса на сфере гораздо большего радиуса.

Мы заблуждаемся, думая что пространство плоско, «кубично». Вселенная не кубична, не цилиндрична и тем более не пирамидальна. Вселенная сферична. Единственный случай, когда плоскость может быть идеальной (в смысле «неизогнутой») является случай, когда такая плоскость проходит через центр Вселенной.

Конечно, кривизной CD-ROMа можно пренебречь, поскольку диаметр компакт-диска значительно меньше диаметра Земли, тем более диаметра Вселенной. Но пренебрегать кривизной в орбитах комет и астероидов не следует. Неистребимое Птолемеевское убеждение, что мы всё ещё находимся в центре Вселенной может нам дорого стоить.

Ниже приводятся аксиомы плоского Евклидова («кубичного» Декартова) пространства и сформулированная мной дополнительная аксиома для сферического пространства.

Аксиомы плоского сознания:

через 1 точку можно провести бесконечное количество прямых и бесконечное количество плоскостей.

через 2 точки можно провести 1 и только 1 прямую, через которую можно провести бесконечное количество плоскостей.

через 3 точки в общем случае нельзя провести ни одной прямой и одну, и только одну, плоскость. Дополнительная аксиома для сферического сознания:

через 4 точки в общем случае нельзя провести ни одной прямой, ни одной плоскости и одну и только одну сферу.Арсентьев Алексей Иванович

Немного мистики. Число ПИ Разумно?

Через число Пи может быть определена любая другая константа, включая постоянную тонкой структуры (альфа), константу золотой пропорции (f=1,618...), не говоря уж о числе e - именно поэтому число пи встречается не только в геометрии, но и в теории относительности, квантовой механике, ядерной физике и т.д. Более того - недавно учёные установили, что именно через Пи можно определить местоположение элементарных частиц в Таблице элементарных частиц (ранее это пытались сделать через Таблицу Вуди), а сообщение о том, что в недавно расшифрованном ДНК человека число Пи отвечает за саму структуру ДНК (достаточно сложную, надо отметить), произвело эффект разорвавшейся бомбы!

Как считает доктор Чарльз Кэнтор, под руководством которого ДНК и было расшифровано: "Такое впечатление, что мы подошли к разгадке некоей фундаментальной задачки, которую нам подкинуло мироздание. Число Пи - повсюду, оно контролирует все известные нам процессы, оставаясь при этом неизменным! Кто же контролирует само число Пи? Ответа пока нет."

На самом деле, Кэнтор лукавит, ответ есть, просто он настолько невероятен, что учёные предпочитают не выносить его на широкую публику, опасаясь за собственную жизнь (об этом чуть позже): число Пи само себя контролирует, оно разумно! Вздор? Не спешите. Ведь ещё Фонвизин говорил, что "в человеческом невежестве весьма утешительно считать всё то за вздор, чего не знаешь."

Во-первых, догадки о разумности чисел вообще давно посещали многих известных математиков современности. Норвежский математик Нильс Хенрик Абель в феврале 1829-го писал своей матери: "Я получил подтверждения того, что одно из чисел - разумно. Я говорил с ним! Но меня пугает, что я не могу определить, что это за число. Но может быть это и к лучшему. Число предупредило меня, что я буду наказан, если Оно будет раскрыто." Кто знает, раскрыл бы Нильс значение числа, с ним говорившего, но 6 марта 1829-го года его не стало.

1955 год, японец Ютака Танияма выдвигает гипотезу о том, что "каждой эллиптической кривой соответствует определенная модулярная форма" (как известно, на основе этой гипотезы была доказана теорема Ферма). 15 сентября 1955-го, на международном математическом симпозиуме в Токио, где Танияма объявил о своей гипотезе, на вопрос журналиста: "Как вы до этого додумались?" - Танияма отвечает: "Я не додумался, число мне об этом сообщило по телефону". Журналист, думая, что это шутка, решил её "поддержать": "А номер-то телефона оно вам сообщило?". На что Танияма серьёзно ответил: "Такое впечатление, что этот номер мне давно был известен, но я могу теперь сообщить его только через три года, 51 день, 15 часов и 30 минут." В ноябре 1958 года Танияма покончил с собой. Три года, 51 день, 15 часов и 30 минут - это и есть 3,1415. Совпадение? Может быть. Но - вот ещё одно, ещё более странное. Итальянский математик Селла Квитино тоже несколько лет, как он сам туманно выражался, "поддерживал связь с одной милой цифрой". Цифра, по словам Квитино, который уже тогда лежал в психиатрической лечебнице, "обещала сказать своё имя в день своего рождения". Мог ли Квитино настолько лишиться разума, чтобы называть число Пи цифрой, или он так специально запутывал врачей? Не ясно, но 14 марта 1827-го года Квитино не стало.

А самая загадочная история связана с "великим Харди" (как вы все знаете, так современники называли великого английского математика Годфри Харолда Харди), который вместе со своим приятелем Джоном Литлвудом знаменит работами в теории чисел (особенно в области диофантовых приближений) и теории функций (где друзья прославились исследованием неравенств). Как известно, Харди был официально неженат, хотя не раз заявлял, что "обручён с царицей мира нашего". Коллеги-учёные не раз слышали, как он разговаривает с кем-то в своём кабинете, его собеседника никто никогда не видел, хотя его голос - металлический и чуть скрипучий - долгое время был притчей во языцех в Оксфордском университете, где он работал в последние годы. В ноябре 1947 года эти беседы прекращаются, а 1 декабря 1947 года Харди находят на городской свалке, с пулей в желудке. Версию о самоубийстве подтвердила и записка, где рукой Харди было написано: "Джон, ты увёл у меня царицу, я тебя не виню, но жить без неё я более не могу".

Связана ли эта история с числом Пи? Пока неясно, но не правда ли, любопытно?

Вообще говоря, подобных историй можно накопать очень много, и, разумеется, не все они трагичны.

Но, перейдём к "во-вторых": каким образом число вообще может быть разумным? Да очень просто. Человеческий мозг содержит 100 млрд. нейронов, число знаков Пи после запятой вообще стремится к бесконечности, в общем, по формальным признакам оно может быть разумным. Но ведь если верить работе американского физика Дэвида Бейли и канадских математиков Питера Борвина и Саймона Плофе, последовательность десятичных знаков в Пи подчиняется теории хаоса, грубо говоря, число Пи это и есть хаос в его первозданном виде. Может ли хаос быть разумным? Конечно! Точно так же, как и вакуум, при его кажущейся пустоте, как известно, отнюдь не пуст.

Более того, при желании, можно этот хаос представить графически - чтобы убедиться, что он может быть разумным. В 1965-ом году американский математик польского происхождения Станислав М. Улам (именно ему принадлежит ключевая идея конструкции термоядерной бомбы), присутствуя на одном очень длинном и очень скучном (по его словам) собрании, чтобы как-то развлечься начал писать на клетчатой бумаге цифры, входящие в число Пи. Поставив в центре 3 и двигаясь по спирали против часовой стрелки, он выписывал 1, 4, 1, 5, 9, 2, 6, 5 и прочие цифры после запятой. Без всякой задней мысли он попутно обводил все простые числа чёрными кружками. Вскоре, к его удивлению, кружки с поразительным упорством стали выстраиваться вдоль прямых - то, что получилось, очень было похоже на нечто разумное. Особенно, после того, как Улам сгенерировал на основе этого рисунка цветовую картину, с помощью специального алгоритма.

Собственно, эту картинку, которую можно сравнить и с мозгом, и со звёздной туманностью, можно смело называть "мозгом числа Пи". Примерно с помощью такой структуры это число (единственное разумное число во вселенной) и управляет нашим миром. Но - каким образом происходит это управление? Как правило, с помощью неписанных законов физики, химии, физиологии, астрономии, которые контролируются и корректируются разумным числом. Приведённые выше примеры показывают, что разумное число так же нарочно персонифицируется, общаясь с учёными как некая сверхличность. Но если так, приходило ли число Пи в наш мир, в облике обычного человека?

Сложный вопрос. Может быть приходило, может быть нет, надёжной методки определения этого нет и быть не может, но, если это число во всех случаях определено само собой, то можно предположить, что оно приходило в наш мир как персона в день, соответствующий его значению. Разумеется, идеальной датой рождения Пи является 14 марта 1592-го года (3,141592), однако, надёжной статистики по этому году, увы, нет - известно только, что именно в этом году 14 марта родился Джордж Вильерс Бэкингем - герцог Бэкингем из "Трёх мушкетёров". Он великолепно фехтовал, знал толк в лошадях и соколиной охоте - но был ли он числом Пи? Вряд ли. На роль человеческого воплощения числа Пи мог бы идеально претендовать Дункан МакЛауд, родившийся 14-го марта 1592-го года, в горах Шотландии - если б был реальной личностью.

Но ведь год (1592) может определяться по собственному, более логичному для Пи летоисчислению. Если принять это предположение, то претендентов на роль числа Пи становится много больше.

Самый очевидный из них - Альберт Эйнштейн, родившийся 14 марта 1879-го. Но 1879 год это и есть 1592 год относительно 287 года до нашей эры! А почему именно 287? Да потому что именно в этом году родился Архимед, впервые в мире вычисливший число Пи как отношение длины окружности к диаметру и доказавший, что оно одинаково для любого круга! Совпадение? Но не много ли совпадений, как думаете?

В какой личности Пи персонифицировано сегодня, не ясно, но для того, что бы увидеть значение этого числа для нашего мира, не нужно быть математиком: Пи проявляется во всём, что нас окружает. И это, кстати, очень свойственно для любого разумного существа, каковым, без сомнения, является Пи!

Что такое ПИН-код?

Пер-СОНальный ИДЕН-тифи-КА-ЦИ-онный номер.

Что такое число ПИ?

Расшифровка числа ПИ (3, 14...) (пин-код), сделать это может любой и без меня, через Глаголицу. Подставляем вместо цифр буквы (числовые значения букв приведены в Глаголице) и получаем вот такую фразу: Глаголи (глаголю, говорю, делаю) Аз (я, ас, мастер, творец) Добро. А если взять следующие цифры, то там получается примерно следующее: "Делаю я добро, я есть Фита (скрытое, внебрачный ребенок, непорочное зачатие, непроявленное, 9), ведаю (познаю) искажение (зло) это есть говорение(действие) воля (желание) Земля делаю познаю делаю воля добро зло (искажение) познаю зло добро делаю"..... и так до бесконечности, там много цифр, но полагаю, что всё об одном и том же...

Музыка числа ПИ

Чему равно число Пи мы знаем и помним со школы. Оно равно 3.1415926 и так далее… Обычному человеку достаточно знать, что это число получается, если разделить длину окружности на ее диаметр. Но многим известно, что число Пи возникает в неожиданных областях не только математики и геометрии, но и в физике. Ну а если вникнуть в подробности природы этого числа, то можно заметить много удивительного среди бесконечного ряда цифр. Возможно ли, что Пи скрывает самые сокровенные тайны Вселенной?

Бесконечное число

Само число Пи возникает в нашем мире как длина окружности, диаметр которой равен единице. Но, несмотря на то, что отрезок равный Пи вполне себе конечен, число Пи начинается, как 3.1415926 и уходит в бесконечность рядами цифр, которые никогда не повторяются. Первый удивительный факт состоит в том, что это число, используемое в геометрии, нельзя выразить в виде дроби из целых чисел. Иначе говоря, вы не сможете его записать отношением двух чисел a/b. Кроме этого число Пи трансцендентное. Это означает, что нет такого уравнения (многочлена) с целыми коэффициентами, решением которого было бы число Пи.

То, что число Пи трансцендентно, доказал в 1882 году немецкий математик фон Линдеман. Именно это доказательство стало ответом на вопрос, можно ли с помощью циркуля и линейки нарисовать квадрат, у которого площадь равна площади заданного круга. Эта задача известна как поиск квадратуры круга, волновавший человечество с древнейших времен. Казалось, что эта задача имеет простое решение и вот-вот будет раскрыта. Но именно непостижимое свойство числа Пи показало, что у задачи квадратуры круга решения не существует.

В течение как минимум четырех с половиной тысячелетий человечество пыталось получить все более точное значение числа Пи. Например, В Библии в Третьей Книги Царств (7:23) число Пи принимается равным 3.

Замечательное по точности значение Пи можно обнаружить в пирамидах Гизы: соотношение периметра и высоты пирамид составляет 22/7. Эта дробь дает приближенное значение Пи, равное 3.142… Если, конечно, египтяне не задали такое соотношение случайно. Это же значение уже применительно к расчету числа Пи получил в III веке до нашей эры великий Архимед.

В папирусе Ахмеса, древнеегипетском учебнике по математике, который датируется 1650 годом до нашей эры, число Пи рассчитано как 3.160493827.

В древнеиндийских текстах примерно IX века до нашей эры наиболее точное значение было выражено числом 339/108, которое равнялось 3,1388…

После Архимеда почти две тысячи лет люди пытались найти способы рассчитать число Пи. Среди них были как известные, так и неизвестные математики. Например, римский архитектор Марк Витрувий Поллион, египетский астроном Клавдий Птолемей, китайский математик Лю Хуэй, индийский мудрец Ариабхата, средневековый математик Леонардо Пизанский, известный как Фибоначчи, арабский ученый Аль-Хорезми, от чьего имени появилось слово «алгоритм». Все они и множество других людей искали наиболее точные методики расчета Пи, но вплоть до 15 века никогда не получали больше чем 10 цифр после запятой в связи со сложностью расчетов.

Наконец, в 1400 году индийский математик Мадхава из Сангамаграма рассчитал Пи с точностью до 13 знаков (хотя в двух последних все-таки ошибся).

Количество знаков

В 17 веке Лейбниц и Ньютон открыли анализ бесконечно малых величин, который позволил вычислять Пи более прогрессивно – через степенные ряды и интегралы. Сам Ньютон вычислил 16 знаков после запятой, но не упомянул это в своих книгах – об этом стало известно после его смерти. Ньютон утверждал, что занимался расчетом Пи исключительно от скуки.

Примерно в то же время подтянулись и другие менее известные математики, предложившие новые формулы расчета числа Пи через тригонометрические функции.

Например, вот по какой формуле рассчитывал Пи преподаватель астрономии Джон Мэчин в 1706 году: PI / 4 = 4arctg(1/5) – arctg(1/239). С помощью методов анализа Мэчин вывел из этой формулы число Пи с сотней знаков после запятой.

Кстати, в том же 1706 году число Пи получило официальное обозначение в виде греческой буквы: его в своем труде по математике использовал Уильям Джонс, взяв первую букву греческого слова «периферия», что означает «окружность». Родившийся в 1707 великий Леонард Эйлер популяризовал это обозначение, нынче известное любому школьнику.

До эры компьютеров математики занимались тем, чтобы рассчитать как можно больше знаков. В связи с этим порой возникали курьезы. Математик-любитель У. Шенкс в 1875 году рассчитал 707 знаков числа Пи. Эти семь сотен знаков увековечили на стене Дворца Открытий в Париже в 1937 году. Однако спустя девять лет наблюдательными математиками было обнаружено, что правильно вычислены лишь первые 527 знаков. Музею пришлось понести приличные расходы, чтобы исправить ошибку – сейчас все цифры верные.

Когда появились компьютеры, количество цифр числа Пи стало исчисляться совершенно невообразимыми порядками.

Один из первых электронных компьютеров ENIAC, созданный в 1946 году, имевший огромные размеры, и выделявший столько тепла, что помещение прогревалось до 50 градусов по Цельсию, вычислил первые 2037 знаков числа Пи. Этот расчет занял у машины 70 часов.

По мере совершенствования компьютеров наше знание числа Пи все дальше и дальше уходило в бесконечность. В 1958 году было рассчитано 10 тысяч знаков числа. В 1987 году японцы высчитали 10 013 395 знаков. В 2011 японский исследователь Сигеру Хондо превысил рубеж в 10 триллионов знаков.

Где еще можно встретить Пи?

Итак, зачастую наши знания о числе Пи остаются на школьном уровне, и мы точно знаем, что это число незаменимо в первую очередь в геометрии.

Помимо формул длины и площади окружности число Пи используется в формулах эллипсов, сфер, конусов, цилиндров, эллипсоидов и так далее: где-то формулы простые и легко запоминающиеся, а где-то содержат очень сложные интегралы.

Затем мы можем встретить число Пи в математических формулах, там, где, на первый взгляд геометрии и не видно. Например, неопределенный интеграл от 1/(1-x^2) равен Пи.

Пи часто используется в анализе рядов. Для примера приведем простой ряд, который сходится к числу Пи:

1/1 – 1/3 + 1/5 – 1/7 + 1/9 — …. = PI/4

Среди рядов число Пи наиболее неожиданно появляется в известной дзета-функции Римана. Рассказать про нее в двух словах не получится, скажем лишь, что когда-нибудь число Пи поможет найти формулу расчета простых чисел.

И совершенно удивительно: Пи появляется в двух самых красивых «королевских» формулах математики – формуле Стирлинга (которая помогает найти приблизительное значение факториала и гамма-функции) и формуле Эйлера (которая связывает аж целых пять математических констант).

Однако самое неожиданное открытие ожидало математиков в теории вероятности. Там тоже присутствует число Пи.

Например, вероятность того, что два числа окажутся взаимно простыми, равна 6/PI^2.

Пи появляется в задаче Бюффона о бросании иглы, сформулированной в 18 веке: какова вероятность того, что брошенная на расчерченный лист бумаги игла пересечет одну из линий. Если длина иглы L, а расстояние между линиями L, и r > L то мы можем приблизительно рассчитать значение числа Пи по формуле вероятности 2L/rPI. Только представьте – мы можем получить Пи из случайных событий. И между прочим Пи присутствует в нормальном распределении вероятностей, появляется в уравнении знаменитой кривой Гаусса. Значит ли это, что число Пи еще более фундаментально, чем просто отношение длины окружности к диаметру?

Мы можем встретить Пи и в физике. Пи появляется в законе Кулона, который описывает силу взаимодействия между двумя зарядами, в третьем законе Кеплера, который показывает период обращения планеты вокруг Солнца, встречается даже в расположении электронных орбиталей атома водорода. И что опять же самое невероятное – число Пи прячется в формуле принципа неопределенности Гейзенберга – фундаментального закона квантовой физики.

Тайны числа Пи

В романе Карла Сагана «Контакт», по которому снят одноименный фильм, инопланетяне сообщают героине, что среди знаков Пи содержится тайное послание от Бога. С некоторой позиции цифры в числе перестают быть случайными и представляют себе код, в котором записаны все секреты Мироздания.

Этот роман на самом деле отразил загадку, занимающую умы математиков всей планеты: является ли число Пи нормальным числом, в котором цифры разбросаны с одинаковой частотой, или с этим числом что-то не так. И хотя ученые склоняются к первому варианту (но не могут доказать), число Пи выглядит очень загадочно. Один японец как то подсчитал, сколько раз встречаются числа от 0 до 9 в первом триллионе знаков Пи. И увидел, что числа 2, 4 и 8 встречаются чаще, чем остальные. Это может быть одним из намеков на то, что Пи не совсем нормальное, и цифры в нем действительно не случайны.

Вспомним всё, что мы прочли выше, и спросим себя, какое еще иррациональное и трансцендентное число так часто встречается в реальном мире?

А в запасе имеются еще странности. Например, сумма первых двадцати цифр Пи равна 20, а сумма первых 144 цифр равна «числу зверя» 666.

Главный герой американского сериала «Подозреваемый» профессор Финч рассказывал студентам, что в силу бесконечности числа Пи в нем могут встретиться любые комбинации цифр, начиная от цифр даты вашего рождения до более сложных чисел. Например, на 762-ой позиции находится последовательность из шести девяток. Эта позиция называется точкой Фейнмана в честь известного физика, который заметил это интересное сочетание.

Нам известно также, что число Пи содержит последовательность 0123456789, но находится она на 17 387 594 880-й цифре.

Все это означает, что в бесконечности числа Пи можно обнаружить не только интересные сочетания цифр, но и закодированный текст «Войны и Мира», Библии и даже Главную Тайну Мироздания, если таковая существует.

Кстати, о Библии. Известный популяризатор математики Мартин Гарднер в 1966 году заявил, что миллионным знаком числа Пи (на тот момент еще неизвестным) будет число 5. Свои расчеты он объяснил тем, что в англоязычной версии Библии, в 3-й книге, 14-й главе, 16-м стихе (3-14-16) седьмое слово содержит пять букв. Миллионную цифру получили спустя восемь лет. Это было число пять.

Стоит ли после этого утверждать, что число Пи случайно?

ЧИСЛО p – отношение длины окружности к ее диаметру, – величина постоянная и не зависит от размеров окружности. Число, выражающее это отношение, принято обозначать греческой буквой 241 (от «perijereia » – окружность, периферия). Это обозначение стало употребительным после работы Леонарда Эйлера , относящейся к 1736, однако впервые оно было употреблено Уильямом Джонсом (1675–1749) в 1706. Как и всякое иррациональное число, оно представляется бесконечной непериодической десятичной дробью:

p = 3,141592653589793238462643… Нужды практических расчетов, относящихся к окружностям и круглым телам, заставили уже в глубокой древности искать для 241 приближений с помощью рациональных чисел. Сведения о том, что окружность ровно втрое длиннее диаметра, находятся в клинописных табличках Древнего Междуречья. Такое же значение числа p есть и в тексте Библии: «И сделал литое из меди море, – от края до края его десять локтей, – совсем круглое, вышиною в пять локтей, и снурок в тридцать локтей обнимал его кругом» (3 Цар. 7. 23). Так же считали и древние китайцы. Но уже во 2 тыс. до н.э. древние египтяне пользовались более точным значением числа 241, которое получается из формулы для площади круга диаметра d :

Этому правилу из 50-й задачи папируса Райнда соответствует значение 4(8/9) 2 » 3,1605. Папирус Райнда, найденный в 1858, назван так по имени его первого владельца, его переписал писец Ахмес около 1650 до н.э., автор же оригинала неизвестен, установлено только, что текст создавался во второй половине 19 в. до н.э. Хотя каким образом египтяне получили саму формулу, из контекста неясно. В так называемом Московском папирусе, который был переписан неким учеником между 1800 и 1600 до н.э. с более древнего текста, примерно 1900 до н.э., есть еще одна интересная задача о вычислении поверхности корзины «с отверстием 4½». Неизвестно, какой формы была корзина, но все исследователи сходятся во мнении, что и здесь для числа p берется то же самое приближенное значение 4(8/9) 2 .

Чтобы понять, каким образом древние ученые получили тот или иной результат, нужно попытаться решить задачу, используя только знания и приемы вычислений того времени. Именно так поступают исследователи старинных текстов, однако решения, которые им удается найти, вовсе не обязательно «те самые». Очень часто для одной задачи предлагается несколько вариантов решения, каждый может выбрать себе по вкусу, однако никто не может утверждать, что именно им пользовались в древности. Относительно площади круга кажется правдоподобной гипотеза А.Е.Раик, автора многочисленных книг по истории математики: площадь круга диаметра d сравнивается с площадью описанного вокруг него квадрата, из которого по очереди удаляются малые квадраты со сторонами и (рис. 1). В наших обозначениях вычисления будут выглядеть так: в первом приближении площадь круга S равна разности между площадью квадрата со стороной d и суммарной площадью четырех малых квадратов А со стороной d :

В пользу этой гипотезы свидетельствуют аналогичные вычисления в одной из задач Московского папируса, где предлагается сосчитать

С 6 в. до н.э. математика стремительно развивалась в Древней Греции. Именно древнегреческие геометры строго доказали, что длина окружности пропорциональна ее диаметру (l = 2 p R ; R – радиус окружности, l – ее длина), а площадь круга равна половине произведения длины окружности и радиуса:

S = ½ l R = p R 2 .

Эти доказательства приписывают Евдоксу Книдскому иАрхимеду .

В 3 в. до н.э. Архимед в сочинении Об измерении круга вычислил периметры вписанных в окружность и описанных около нее правильных многоугольников (рис. 2) – от 6- до 96-угольника. Таким образом он установил, что число p находится между 3 10/71 и 3 1/7, т.е. 3,14084 < p < 3,14285. Последнее значение до сих пор используется при расчетах, не требующих особой точности. Более точное приближение 3 17/120 (p » 3,14166) нашел знаменитый астроном, создатель тригонометрии Клавдий Птолемей (2 в.), но оно не вошло в употребление.

Индийцы и арабы полагали, что p = . Это значение приводит так же и индийский математик Брахмагупта (598 – ок. 660). В Китае ученые в 3 в. использовали значение 3 7/50, которое хуже приближения Архимеда, но во второй половине 5 в. Цзу Чун Чжи (ок. 430 – ок. 501) получил для p приближение 355/113 (p » 3,1415927). Оно осталось неизвестно европейцам и было вновь найдено нидерландским математиком Адрианом Антонисом только в 1585. Это приближение дает ошибку лишь в седьмом десятичном знаке.

Поиски более точного приближения p продолжались и в дальнейшем. Например, аль-Каши (первая половина 15 в.) в Трактате об окружности (1427) вычислил 17 десятичных знаков p . В Европе такое же значение было найдено в 1597 году. Для этого ему пришлось вычислять сторону правильного 800 335 168-угольника. Нидерландский ученый Лудольф Ван Цейлен (1540–1610) нашел для него 32 правильных десятичных знака (опубликовано посмертно в 1615), это приближение называется лудольфовым числом.

Число p появляется не только при решении геометрических задач. Со времени Ф.Виета (1540–1603) разыскание пределов некоторых арифметических последовательностей, составляемых по простым законам, приводило к тому же числу p . В связи с этим в определении числа p принимали участие почти все известные математики: Ф.Виет, Х.Гюйгенс , Дж.Валлис, Г.В.Лейбниц , Л.Эйлер . Они получали различные выражения для 241 в виде бесконечного произведения, суммы ряда, бесконечной дроби.

Например, в 1593 Ф.Виет (1540–1603) вывел формулу

В 1658 англичанин Уильям Броункер (1620–1684) нашел представление числа p в виде бесконечной непрерывной дроби

однако неизвестно, как он пришел к этому результату.

В 1665 Джон Валлис (1616–1703) доказал, что

Эта формула носит его имя. Для практического нахождения числа 241 она мало пригодна, но полезна в различных теоретических рассуждениях. В историю науки она вошла как один из первых примеров бесконечных произведений.

Готфрид Вильгельм Лейбниц (1646–1716) в 1673 установил следующую формулу:

выражающую число p /4 как сумму ряда. Однако этот ряд сходится очень медленно. Чтобы вычислить p с точностью до десяти знаков, потребовалось бы, как показал Исаак Ньютон, найти сумму 5 млрд чисел и затратить на это около тысячи лет непрерывной работы.

Лондонский математик Джон Мэчин (1680–1751) в 1706, применяя формулу

получил выражение

которая до сих пор считается одной из лучших для приближенного вычисления p . Чтобы найти те же десять точных десятичных знаков, потребуется всего несколько часов ручного счета. Сам Джон Мэчин вычислил p со 100 верными знаками.

C помощью того же ряда для arctg x и формулы

значение числа p было получено на ЭВМ с точностью до ста тысяч десятичных знаков. Такого рода вычисления представляют интерес в связи с понятием случайных и псевдослучайных чисел. Статистическая обработка упорядоченной совокупности указанного количества знаков p показывает, что она обладает многими чертами случайной последовательности.

Есть несколько забавных способов запомнить число p точнее, чем просто 3,14. Например, выучив следующее четверостишие, можно без труда назвать семь десятичных знаков p :

Нужно только постараться

И запомнить все как есть:

Три, четырнадцать, пятнадцать,

Девяносто два и шесть .

(С.Бобров Волшебный двурог )

Подсчет количества букв в каждом слове следующих фраз так же дает значение числа p :

«Что я знаю о кругах?» (p » 3,1416). Эту поговорку предложил Я.И.Перельман.

«Вот и знаю я число, именуемое Пи. – Молодец!» (p » 3,1415927).

«Учи и знай в числе известном за цифрой цифру, как удачу примечать» (p » 3,14159265359).

Учитель одной из московских школ придумал строку: «Это я знаю и помню прекрасно», а его ученица сочинила забавное продолжение: «Пи многие знаки мне лишни, напрасны». Это двустишие позволяет определить 12 цифр.

А так выглядит 101 знак числа p без округления

3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679.

В наше время с помощью ЭВМ значение числа p вычислено с миллионами правильных знаков, но такая точность не нужна ни в каких вычислениях. А вот возможность аналитического определения числа ,

В последней формуле в числителе стоят все простые числа, а знаменатели отличаются от них на единицу, причем знаменатель больше числителя, если тот имеет вид 4n + 1, и меньше в противном случае.

Хотя еще с конца 16 в., т.е. с тех пор, как сформировались сами понятия рациональных и иррациональных чисел, многие ученые были убеждены в том, что p – число иррациональное, но только в 1766 немецкий математик Иоганн Генрих Ламберт (1728–1777), основываясь на открытой Эйлером зависимости между показательной и тригонометрической функциями, строго доказал это. Число p не может быть представлено в виде простой дроби, как ни были бы велики числитель и знаменатель.

В 1882 профессор Мюнхенского университета Карл Луиз Фердинанд Линдеман (1852–1939) используя результаты, полученные французским математиком Ш.Эрмитом , доказал, что p – число трансцендентное, т.е. оно не является корнем никакого алгебраического уравнения a n x n + a n– 1 x n– 1 + … + a 1 x + a 0 = 0 с целыми коэффициентами. Это доказательство поставило точку в истории древнейшей математической задачи о квадратуре круга. Тысячелетия эта задача не поддавалась усилиям математиков, выражение «квадратура круга» стало синонимом неразрешимой проблемы. А все дело оказалось в трансцендентной природе числа p .

В память об этом открытии в зале перед математической аудиторией Мюнхенского университета был установлен бюст Линдемана. На постаменте под его именем изображен круг, пересеченный квадратом равной площади, внутри которого начертана буква p .

Марина Федосова

Введение

В статье присутствуют математические формулы, поэтому для чтения перейдите на сайт для их корректного отображения. Число \(\pi \) имеет богатую историю. Данная константа обозначает отношение длины окружности к ее диаметру.

В науке число \(\pi \) используют в любых расчетах, где есть окружности. Начиная от объема банки газировки, до орбит спутников. И не только окружности. Ведь в изучении кривых линий число \(\pi \) помогает понять периодические и колебательные системы. Например, электромагнитные волны и даже музыку.

В 1706 году в книге «Новое введение в математику» британского ученого Уильяма Джонса (1675-1749 гг.) для обозначения числа 3,141592… впервые была использована буква греческого алфавита \(\pi \). Это обозначение происходит от начальной буквы греческих слов περιϕερεια – окружность, периферия и περιµετρoς – периметр. Общепринятым обозначение стало после работ Леонарда Эйлера в 1737 году.

Геометрический период

Постоянство отношения длины любой окружности к её диаметру было замечено уже давно. Жители Междуречья применяли довольно грубое приближение числа \(\pi \). Как следует из древних задач, в своих расчетах они используют значение \(\pi ≈ 3 \).

Более точное значение для \(\pi \) использовали древние египтяне. В Лондоне и Нью-Йорке хранятся две части древнеегипетского папируса, который называют «папирус Ринда». Папирус был составлен писцом Армесом примерно между 2000-1700 гг. до н.э.. Армес в своем папирусе написал, что площадь круга с радиусом \(r\) равна площади квадрата со стороной, равной \(\frac{8}{9} \) от диаметра окружности \(\frac{8}{9} \cdot 2r \), то есть \(\frac{256}{81} \cdot r^2 = \pi r^2 \). Отсюда \(\pi = 3,16\).

Древнегреческий математик Архимед (287-212 гг. до н.э.) впервые поставил задачу измерения круга на научную почву. Он получил оценку \(3\frac{10}{71} < \pi < 3\frac{1}{7}\), рассмотрев отношение периметров вписанного и описанного 96-угольника к диаметру окружности. Архимед выразил приближение числа \(\pi \) в виде дроби \(\frac{22}{7}\), которое до сих называется архимедовым числом.

Метод достаточно простой, но при отсутствии готовых таблиц тригонометрических функций потребуется извлечение корней. Кроме этого, приближение сходится к \(\pi \) очень медленно: с каждой итерацией погрешность уменьшается лишь вчетверо.

Аналитический период

Несмотря на это, до середины 17 века все попытки европейских учёных вычислить число \(\pi \) сводились к увеличению сторон многоугольника. Так например, голландский математик Лудольф ван Цейлен (1540-1610 гг.) вычислил приближенное значение числа \(\pi \) с точностью до 20-ти десятичных цифр.

На вычисление ему понадобилось 10 лет. Удваивая по методу Архимеда число сторон вписанных и описанных многоугольников, он дошел до \(60 \cdot 2^{29} \) – угольника с целью вычисления \(\pi \) с 20 десятичными знаками.

После смерти в его рукописях были обнаружены ещё 15 точных цифр числа \(\pi \). Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число \(\pi \) иногда называли «лудольфовым числом» или «константой Лудольфа».

Одним из первых, кто представил метод, отличный от метода Архимеда, был Франсуа Виет (1540-1603 гг.). Он пришел к результату , что круг, диаметр которого равен единице, имеет площадь:

\[\frac{1}{2 \sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}} } \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} \cdots }}}} \]

С другой стороны, площадь равна \(\frac{\pi}{4} \). Подставив и упростив выражение, можно получить следующую формулу бесконечного произведения для вычисления приближенного значения \(\frac{\pi}{2} \):

\[\frac{\pi}{2} = \frac{2}{\sqrt{2}} \cdot \frac{2}{\sqrt{2 + \sqrt{2}}} \cdot \frac{2}{\sqrt{2+ \sqrt{2 + \sqrt{2}}}} \cdots \]

Полученная формула представляет собой первое точное аналитическое выражение для числа \(\pi \). Кроме этой формулы, Виет, используя метод Архимеда, дал с помощью вписанных и описанных многоугольников, начиная с 6-угольника и заканчивая многоугольником с \(2^{16} \cdot 6 \) сторонами приближение числа \(\pi \) с 9 правильными знаками.

Английский математик Уильям Броункер (1620-1684 гг.), используя цепную дробь , получил следующие результаты вычисления \(\frac{\pi}{4}\):

\[\frac{4}{\pi} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \frac{9^2}{2 + \frac{11^2}{2 + \cdots }}}}}} \]

Данный метод вычисления приближения числа \(\frac{4}{\pi} \) требует довольно больших вычислений, чтобы получить хотя бы небольшое приближение.

Получаемые в результате подстановки значения то больше, то меньше числа \(\pi \), и каждый раз все ближе к истинному значению, но для получения значения 3,141592 потребуется совершить довольно большие вычисления.

Другой английский математик Джон Мэчин (1686-1751 гг.) в 1706 году для вычисления числа \(\pi \) со 100 десятичными знаками воспользовался формулой, выведенной Лейбницем в 1673 году, и применил её следующим образом:

\[\frac{\pi}{4} = 4 arctg\frac{1}{5} – arctg\frac{1}{239} \]

Ряд быстро сходится и с его помощью можно вычислить число \(\pi \) с большой точностью. Формулы подобного типа использовались для установки нескольких рекордов в эпоху компьютеров.

В XVII в. с началом периода математики переменной величины наступил новый этап в вычислении \(\pi \). Немецкий математик Готфрид Вильгельм Лейбниц (1646-1716 гг.) в 1673 году нашел разложение числа \(\pi \), в общем виде его можно записать следующим бесконечным рядом:

\[ \pi = 1 – 4(\frac{1}{3} + \frac{1}{5} – \frac{1}{7} + \frac{1}{9} – \frac{1}{11} + \cdots) \]

Ряд получается при подстановке x = 1 в \(arctg x = x – \frac{x^3}{3} + \frac{x^5}{5} – \frac{x^7}{7} + \frac{x^9}{9} – \cdots\)

Леонард Эйлер развивает идею Лейбница в своих работах, посвященных использованию рядов для arctg x при вычислении числа \(\pi \). В трактате «De variis modis circuli quadraturam numeris proxime exprimendi» (О различных методах выражения квадратуры круга приближенными числами), написанном в 1738 году, рассматриваются методы усовершенствования вычислений по формуле Лейбница.

Эйлер пишет о том, что ряд для арктангенса будет сходиться быстрее, если аргумент будет стремиться к нулю. Для \(x = 1\) сходимость ряда очень медленная: для вычисления с точностью до 100 цифр необходимо сложить \(10^{50}\) членов ряда. Ускорить вычисления можно, уменьшив значение аргумента. Если принять \(x = \frac{\sqrt{3}}{3}\), то получается ряд

\[ \frac{\pi}{6} = artctg\frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{3}(1 – \frac{1}{3 \cdot 3} + \frac{1}{5 \cdot 3^2} – \frac{1}{7 \cdot 3^3} + \cdots) \]

По утверждению Эйлера, если мы возьмем 210 членов этого ряда, то получим 100 верных знаков числа. Полученный ряд неудобен, потому что необходимо знать достаточно точное значение иррационального числа \(\sqrt{3} \). Также Эйлер в своих вычислениях использовал разложения арктангенсов на сумму арктангенсов меньших аргументов :

\[где x = n + \frac{n^2-1}{m-n}, y = m + p, z = m + \frac{m^2+1}{p} \]

Далеко не все формулы для вычисления \(\pi \), которые использовал Эйлер в своих записных книжках, были опубликованы. В опубликованных работах и записных книжках он рассмотрел 3 различных ряда для вычисления арктангенса, а также привел множество утверждений, касающихся количества суммируемых членов, необходимых для получения приближенного значения \(\pi \) c заданной точностью.

В последующие годы уточнения значения числа \(\pi \) происходили все быстрее и быстрее. Так, например, в 1794 году Георг Вега (1754-1802 гг.) определил уже 140 знаков , из который только 136 оказались верными.

Период компьютерных вычислений

XX век ознаменован совершенно новым этапом в вычислении числа \(\pi \). Индийский математик Сриниваса Рамануджан (1887-1920 гг.) обнаружил множество новых формул для \(\pi \). В 1910 году он получил формулу для вычисления \(\pi \) через разложение арктангенса в ряд Тейлора:

\[\pi = \frac{9801}{2\sqrt{2} \sum\limits_{k=1}^{\infty} \frac{(1103+26390k) \cdot (4k)!}{(4\cdot99)^{4k} (k!)^2}} .\]

При k=100 достигается точность в 600 верных цифр числа \(\pi \).

Появление ЭВМ позволило существенно увеличить точность получаемых значений за более короткие сроки. В 1949 году всего за 70 часов с помощью ENIAC группа ученых под руководством Джона фон Неймана (1903-1957 гг.) получила 2037 знаков после запятой числа \(\pi \) . Давид и Грегорий Чудновские в 1987 году получили формулу, с помощью которой смогли установить несколько рекордов в вычислении \(\pi \):

\[\frac{1}{\pi} = \frac{1}{426880\sqrt{10005}} \sum\limits_{k=1}^{\infty} \frac{(6k)!(13591409+545140134k)}{(3k)!(k!)^3(-640320)^{3k}}.\]

Каждый член ряда дает по 14 цифр. В 1989 году было получено 1 011 196 691 цифр после запятой. Данная формула хорошо подходит для вычисления \(\pi \) на персональных компьютерах. На данный момент братья являются профессорами в политехническом институте Нью-Йоркского университета.

Важным событием недавнего времени стало открытие формулы в 1997 году Саймоном Плаффом . Она позволяет извлечь любую шестнадцатеричную цифру числа \(\pi \) без вычисления предыдущих. Формула носит название «Формула Бэйли – Боруэйна – Плаффа» в честь авторов статьи, где формула была впервые опубликована. Она имеет следующий вид:

\[\pi = \sum\limits_{k=1}^{\infty} \frac{1}{16^k} (\frac{4}{8k+1} – \frac{2}{8k+4} – \frac{1}{8k+5} – \frac{1}{8k+6}) .\]

В 2006 году Саймон, используя PSLQ, получил несколько красивых формул для вычисления \(\pi \). Например,

\[ \frac{\pi}{24} = \sum\limits_{n=1}^{\infty} \frac{1}{n} (\frac{3}{q^n – 1} – \frac{4}{q^{2n} -1} + \frac{1}{q^{4n} -1}), \]

\[ \frac{\pi^3}{180} = \sum\limits_{n=1}^{\infty} \frac{1}{n^3} (\frac{4}{q^{2n} – 1} – \frac{5}{q^{2n} -1} + \frac{1}{q^{4n} -1}), \]

где \(q = e^{\pi}\). В 2009 году японские ученые, используя суперкомпьютер T2K Tsukuba System, получили число \(\pi \) c 2 576 980 377 524 десятичными знаками после запятой. Вычисления заняли 73 часа 36 минут. Компьютер был оснащен 640-ка четырех ядерными процессорами AMD Opteron, что обеспечило производительность в 95 триллионов операций в секунду.

Следующее достижение в вычислении \(\pi \) принадлежит французскому программисту Фабрису Беллару , который в конце 2009 года на своем персональном компьютере под управлением Fedora 10 установил рекорд, вычислив 2 699 999 990 000 знаков после запятой числа \(\pi \). За последние 14 лет это первый мировой рекорд, который поставлен без использования суперкомпьютера. Для высокой производительности Фабрис использовал формулу братьев Чудновских. В общей сложности вычисление заняло 131 день (103 дня расчеты и 13 дней проверка результата). Достижение Беллара показало, что для таких вычислений не обязательно иметь суперкомпьютер.

Всего через полгода рекорд Франсуа был побит инженерами Александром Йи и Сингеру Кондо. Для установления рекорда в 5 триллионов знаков после запятой числа \(\pi \) был также использован персональный компьютер, но уже с более внушительными характеристиками: два процессора Intel Xeon X5680 по 3,33 ГГц, 96 ГБ оперативной памяти, 38 ТБ дисковой памяти и операционная система Windows Server 2008 R2 Enterprise x64. Для вычислений Александр и Сингеру использовали формулу братьев Чудновских. Процесс вычисления занял 90 дней и 22 ТБ дискового пространства. В 2011 году они установили еще один рекорд , вычислив 10 триллионов десятичных знаков числа \(\pi \). Вычисления происходили на том же компьютере, на котором был поставлен их предыдущий рекорд и занял в общей сложности 371 день. В конце 2013 года Александр и Сингеру улучшили рекорд до 12,1 триллиона цифр числа \(\pi \), вычисление которых заняло у них всего 94 дня. Такое улучшение в производительности достигнуто благодаря оптимизации производительности программного обеспечения, увеличения количества ядер процессора и значительного улучшения отказоустойчивости ПО.

Текущим рекордом является рекорд Александра Йи и Сингеру Кондо, который составляет 12,1 триллиона цифр после запятой числа \(\pi \).

Таким образом, мы рассмотрели методы вычисления числа \(\pi \), используемые в древние времена, аналитические методы, а также рассмотрели современные методы и рекорды по вычислению числа \(\pi \) на компьютерах.

Список источников

  1. Жуков А.В. Вездесущее число Пи – М.:Изд-во ЛКИ, 2007 – 216 с.
  2. Ф.Рудио. О квадратуре круга, с приложением истории вопроса, составленной Ф.Рудио. / Рудио Ф. – М.: ОНТИ НКТП СССР, 1936. – 235c.
  3. Arndt, J. Pi Unleashed / J. Arndt, C. Haenel. – Springer, 2001. – 270p.
  4. Шухман, Е.В. Приближенное вычисление числа Пи с помощью ряда для arctg x в опубликованных и неопубликованных работах Леонарда Эйлера / Е.В. Шухман. – История науки и техники, 2008 – №4. – С. 2-17.
  5. Euler, L. De variis modis circuli quadraturam numeris proxime exprimendi/ Commentarii academiae scientiarum Petropolitanae. 1744 – Vol.9 – 222-236p.
  6. Шумихин, С. Число Пи. История длиною в 4000 лет / С. Шумихин, А. Шумихина. – М.: Эксмо, 2011. – 192с.
  7. Борвейн, Дж.М. Рамануджан и число Пи. / Борвейн, Дж.М., Борвейн П.Б. В мире науки. 1988 – №4. – С. 58-66.
  8. Alex Yee. Number world. Access mode: numberworld.org

Понравилось?

Расскажи