Благодаря силе кориолиса. Ускорение кориолиса

Сила Кориолиса

Своеобразие мира вращающихся систем не исчерпывается существованием радиальных сил тяжести. Познакомимся с еще одним интересным эффектом, теория которого была дана в 1835 году французом Кориолисом.

Поставим перед собой такой вопрос: как выглядит прямолинейное движение с точки зрения вращающейся лаборатории? План такой лаборатории изображен на рис. 26. Чертой, проходящей через центр, показана прямолинейная траектория какого-то тела. Мы рассматриваем тот случай, когда путь тела проходит через центр вращения нашей лаборатории. Диск, на котором размещена лаборатория, вращается равномерно; на рисунке показаны пять положений лаборатории по отношению к прямолинейной траектории. Так выглядит взаимное положение лаборатории и траектории тела через одну, две, три и т.д. секунды. Лаборатория, как вы видите, вращается против часовой стрелки, если смотреть на нее сверху.

На линии пути нанесены стрелки, соответствующие отрезкам, которые тело проходит за одну, две, три и т.д. секунды. За каждую секунду тело проходит одинаковый путь, так как речь идет о равномерном и прямолинейном движении (с точки зрения неподвижного наблюдателя).

Представьте себе, что движущееся тело – это свежевыкрашенный катящийся по диску шар. Какой след останется на диске? Наше построение дает ответ на этот вопрос. Отмеченные окончаниями стрелок точки с пяти рисунков перенесены на один чертеж. Остается соединить эти точки плавной кривой. Результат построения нас не удивит: прямолинейное и равномерное движение выглядит с точки зрения вращающегося наблюдателя криволинейным. Обращает на себя внимание такое правило: движущееся тело отклоняется на всем пути вправо по ходу движения. Предположим, что диск вращается по часовой стрелке, и предоставим читателю повторить построение. Оно покажет, что в этом случае движущееся тело с точки зрения вращающегося наблюдателя отклоняется влево по ходу движения.

Мы знаем, что во вращающихся системах появляется центробежная сила. Однако ее действие не может служить причиной искривления пути – ведь она направлена вдоль радиуса. Значит, во вращающихся системах кроме центробежной силы возникает еще дополнительная сила. Ее называют силой Кориолиса.

Почему же в предшествующих примерах мы не сталкивались с силой Кориолиса и превосходно обходились одной центробежной? Причина в том, что мы до сих пор не рассматривали движение тел с точки зрения вращающегося наблюдателя. А сила Кориолиса появляется только в этом случае. На тела, которые покоятся во вращающейся системе, действует лишь центробежная сила. Стол вращающейся лаборатории привинчен к полу – на него действует одна центробежная сила. А на мячик, который упал со стола и покатился по полу вращающейся лаборатории, кроме центробежной силы действует и сила Кориолиса.

От каких величин зависит значение силы Кориолиса? Его можно вычислить, но расчеты слишком сложны для того, чтобы приводить их здесь. Опишем поэтому лишь результат вычислений.

В отличие от центробежной силы, значение которой зависит от расстояния до оси вращения, сила Кориолиса не зависит от положения тела. Ее величина определяется скоростью движения тела, и при этом не только величиной скорости, но и ее направлением по отношению к оси вращения. Если тело движется вдоль оси вращения, то сила Кориолиса равна нулю. Чем больше угол между вектором скорости и осью вращения, тем больше сила Кориолиса; максимальное значение сила приме?т при движении тела под прямым углом к оси.

Как мы знаем, вектор скорости всегда можно разложить на какие-либо составляющие и рассмотреть раздельно два возникающих движения, в которых одновременно участвует тело.

Если разложить скорость тела на составляющие

– параллельную и перпендикулярную к оси вращения, то первое движение не будет подвержено действию силы Кориолиса. Значение силы Кориолиса F k определится составляющей скорости

Расчеты приводят к формуле

Здесь m – масса тела, а n – число оборотов, совершаемых вращающейся системой за единицу времени. Как видно из формулы, сила Кориолиса тем больше, чем быстрее вращается система и чем быстрее движется тело.

Расчеты устанавливают и направление силы Кориолиса. Эта сила всегда перпендикулярна к оси вращения и к направлению движения. При этом, как уже говорилось выше, сила направлена вправо по ходу движения в системе, вращающейся против часовой стрелки.

Действием силы Кориолиса объясняются многие интересные явления, происходящие на Земле. Земля – шар, а не диск. Поэтому проявления сил Кориолиса сложнее.

Эти силы будут сказываться как на движении вдоль земной поверхности, так и при падении тел на Землю.

Падает ли тело строго по вертикали? Не вполне. Только на полюсе тело падает строго по вертикали. Направление движения и ось вращения Земли совпадают, поэтому сила Кориолиса отсутствует. Иначе обстоит дело на экваторе; здесь направление движения составляет прямой угол с земной осью. Если смотреть со стороны северного полюса, то вращение Земли представится нам против часовой стрелки. Значит, свободно падающее тело должно отклониться вправо по ходу движения, т.е. на восток. Величина восточного отклонения, наибольшая на экваторе, уменьшается до нуля с приближением к полюсам.

Подсчитаем величину отклонения на экваторе. Так как свободно падающее тело движется равномерно-ускоренно, то сила Кориолиса растет по мере приближения к земле. Поэтому мы ограничимся примерным подсчетом. Если тело падает с высоты, скажем, 80 м, то падение продолжается около 4 с (по формуле t = sqrt(2h /g )). Средняя скорость при падении будет равна 20 м/с.

Это значение скорости мы и подставим в формулу кориолисова ускорения 4?nv . Значение n = 1 оборот за 24 часа переведем в число оборотов в секунду. В 24 часах содержится 24·3600 секунд, значит, n равно 1/86400 об/с и, следовательно, ускорение, которое создает сила Кориолиса, равно?/1080 м/с 2 . Путь, пройденный с таким ускорением за 4 с, равен (1/2)·(?/1080)·4 2 = 2,3 см. Это и есть величина восточного отклонения для нашего примера. Точный расчет, учитывающий неравномерность падения, дает несколько иную цифру – 3,1 см.

Если отклонение тела при свободном падении максимально на экваторе и равно нулю на полюсах, то обратную картину мы будем наблюдать в случае отклонения под действием кориолисовой силы тела, движущегося в горизонтальной плоскости.

Горизонтальная площадка на северном или южном полюсах ничем не отличается от вращающегося диска, с которого мы начали изучение силы Кориолиса. Тело, движущееся по такой площадке, будет отклоняться силой Кориолиса вправо по ходу движения на северном полюсе и влево по ходу движения на южном. Читатель без труда подсчитает, пользуясь той же формулой кориолисова ускорения, что пуля, выпущенная из ружья с начальной скоростью 500 м/с, отклонится от цели в горизонтальной плоскости за одну секунду (т.е. на пути 500 м) на отрезок, равный 3,5 см.

Но почему же отклонение в горизонтальной плоскости на экваторе должно равняться нулю? Без строгих доказательств понятно, что так должно быть. На северном полюсе тело отклоняется вправо по движению, на южном – влево, значит, посередине между полюсами, т.е. на экваторе, отклонение будет равно нулю.

Вспомним опыт с маятником Фуко. Маятник, колеблющийся на полюсе, сохраняет плоскость своих колебаний. Земля, вращаясь, уходит из-под маятника. Такое объяснение дает опыту Фуко звездный наблюдатель. А наблюдатель, вращающийся вместе с земным шаром, объяснит этот опыт силой Кориолиса. Действительно, сила Кориолиса направлена перпендикулярно к земной оси и перпендикулярно к направлению движения маятника; иначе говоря, сила перпендикулярна к плоскости колебания маятника и будет эту плоскость непрерывно поворачивать. Можно сделать так, чтобы конец маятника вычерчивал траекторию движения. Траектория представляет собой «розетку», показанную на рис. 27. На этом рисунке за полтора периода колебания маятника «Земля» поворачивается на четверть оборота. Маятник Фуко поворачивается много медленнее. На полюсе плоскость колебания маятника за одну минуту повернется на 1/4 градуса. На северном полюсе плоскость будет поворачиваться вправо по ходу маятника, на южном – влево.

На широтах центральной Европы эффект Кориолиса будет несколько меньше, чем на экваторе. Пуля в примере, который мы только что привели, отклонится не на 3,5 см, а на 2,5 см. Маятник Фуко повернется за одну минуту примерно на 1/6 долю градуса.

Должны ли учитывать силу Кориолиса артиллеристы? Пушка Берта, из которой немцы вели обстрел Парижа во время первой мировой войны, находилась в 110 км от цели. Отклонение Кориолиса достигает в этом случае 1600 м. Это уже не маленькая величина.

Если летающий снаряд будет отправлен на большое расстояние без учета силы Кориолиса, то он значительно отклонится от курса. Этот эффект велик не потому, что велика сила (для снаряда в 10 т, имеющего скорость 1000 км/ч, сила Кориолиса будет около 25 кГ), а потому, что сила действует непрерывно длительное время.

Конечно, влияние ветра на неуправляемый снаряд может быть не менее значительным. Поправка к курсу, которая дается пилотом, обусловлена действием ветра, эффектом Кориолиса и несовершенством самолета или самолета-снаряда.

Какие специалисты, кроме авиаторов и артиллеристов, должны принять эффект Кориолиса во внимание? К ним относятся, как ни странно, и железнодорожники. На железной дороге один рельс под действием кориолисовой силы истирается изнутри заметно больше другого. Нам ясно, какой именно: в северном полушарии это будет правый рельс (по ходу движения), в южном – левый. Лишены хлопот по этому поводу лишь железнодорожники экваториальных стран.

Размытие правых берегов в северном полушарии объясняется точно так же, как и истирание рельсов.

Отклонения русла во многом связаны с действием силы Кориолиса. Оказывается, реки северного полушария обходят препятствия с правой стороны.

Известно, что в район пониженного давления направляются потоки воздуха. Но почему такой ветер называется циклоном? Ведь корень этого слова указывает на круговое (циклическое) движение.

Так оно и есть – в районе пониженного давления возникает круговое движение воздушных масс (рис. 28). Причина заключается в действии силы Кориолиса. В северном полушарии все устремляющиеся к месту пониженного давления воздушные потоки отклоняются вправо по своему движению. Посмотрите на рис. 29 – вы видите, что это приводит к отклонению дующих в обоих полушариях от тропиков к экватору ветров (пассатов) к западу.

Почему же такая небольшая сила играет такую большую роль в движении воздушных масс?

Это объясняется незначительностью сил трения. Воздух легко подвижен, и малая, но постоянно действующая сила приводит к важным следствиям.

Из книги Физика: Парадоксальная механика в вопросах и ответах автора Гулиа Нурбей Владимирович

4. Движение и сила

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Возвращение чародея автора Келер Владимир Романович

Великая сила «пустяков» У Леночки Казаковой может оторваться пуговица от платья, но она от этого не перестанет быть Леночкой Казаковой. Законы науки, особенно законы физики, не допускают ни малейшего неряшества. Воспользовавшись аналогией, можно сказать, что законы

Из книги Межпланетные путешествия [Полёты в мировое пространство и достижение небесных тел] автора Перельман Яков Исидорович

Самая загадочная сила природы Не говорю уже о том, как мало у нас надежды найти когда-нибудь вещество, непроницаемое для тяготения. Причина тяготения нам неизвестна: со времен Ньютона, открывшего эту силу, мы ни на шаг не приблизились к познанию ее внутренней сущности. Без

Из книги Физика на каждом шагу автора Перельман Яков Исидорович

Лошадиная сила и работа лошади Мы часто слышим выражение «лошадиная сила» и привыкли к нему. Поэтому мало кто отдает себе отчет в том, что это старинное наименование совершенно неправильно. «Лошадиная сила» – не сила, а мощность и притом даже не лошадиная. Мощность – это

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Сила звука Как ослабевает звук с расстоянием? Физик ответит вам, что звук ослабевает «обратно пропорционально квадрату расстояния». Это означает следующее: чтобы звук колокольчика на тройном расстоянии был слышен так же громко, как на одинарном, нужно одновременно

Из книги Для юных физиков [Опыты и развлечения] автора Перельман Яков Исидорович

Сила – вектор Сила, так же как и скорость, есть векторная величина. Ведь она всегда действует в определенном направлении. Значит, и силы должны складываться по тем правилам, которые мы только что обсуждали.Мы часто наблюдаем в жизни примеры, иллюстрирующие векторное

Из книги Кто изобрел современную физику? От маятника Галилея до квантовой гравитации автора Горелик Геннадий Ефимович

Ускорение и сила Если на тело силы не действуют, то оно может двигаться только без ускорения. Напротив, действие на тело силы приводит к ускорению, и при этом ускорение тела будет тем большим, чем больше сила. Чем скорее мы хотим привести в движение тележку с грузом, тем

Из книги Как понять сложные законы физики. 100 простых и увлекательных опытов для детей и их родителей автора Дмитриев Александр Станиславович

Сила и потенциальная энергия при колебании При всяком колебании около положения равновесия на тело действует сила, «желающая» возвратить тело в положение равновесия. Когда точка удаляется от положения равновесия, сила замедляет движение, когда точка приближается к

Из книги Гиперпространство автора Каку Мичио

2. Центробежная сила Раскройте зонтик, уприте его концом в пол, закружите и бросьте внутрь мячик, скомканную бумагу, носовой платок – вообще какой-нибудь легкий и неломкий предмет. Вы убедитесь, что зонтик словно не желает принять подарка: мяч или бумажный ком сами

Из книги автора

Из книги автора

Глава 3 Гравитация - первая фундаментальная сила С небес на землю и обратно В современной физике говорят о четырех фундаментальных силах. Первой открыли силу гравитации. Известный школьникам закон всемирного тяготения определяет силу притяжения F между любыми массами

Из книги автора

73 Сила в сантиметрах, или Наглядно закон Гука Для опыта нам потребуются: воздушный шарик, фломастер. В школе проходят закон Гука. Жил такой знаменитый ученый, который изучал сжимаемость предметов и веществ и вывел свой закон. Закон этот очень простой: чем сильнее мы

Из книги автора

Сила = геометрия Несмотря на постоянные болезни, Риман в конечном счете изменил бытующие представления о значении силы. Еще со времен Ньютона ученые считали силу мгновенным взаимодействием удаленных друг от друга тел. Физики называли ее «дальнодействием», это означало,

Рассмотрим ускорение Кориолиса и его свойства. Оно определяется формулой (81)

Угловую скорость вращательной части движения подвижной системы отсчета, т.е. угловую скорость переносного движения, обозначили как .

Ускорение Кориолиса является результатом взаимного влия­ния двух движений: переносного и относительного. Часть его
получается вследствие изменения переносной скорости точки из-за относительного движения. Другая его часть, тоже
, есть результат изменения относительной скорости вследствие переносного движения.

Модуль ускорения Кориолиса в соответствии с (81) определяется выражением

. (84)

Для определения ускорения Кориолиса очень удобно правило Жуковского Н. Е . Оно основано на формуле (81). Пусть имеем точку
, движущуюся с относительной скоростью, (рис. 34). Построим плоскость
, перпендикулярную угловой скорости переносного вращения, и спроецируемна эту плоскость. Проекцию обозначим. Она является вектором; ее модуль

.

Ускорение Кориолиса выразится в форме

. (84")

Учитывая (81) и (84"), получаем правило Жуковского: модуль ускорения Кориолиса равен удвоенному произведению угловой скорости переносного вращения на модуль проекции относительной скорости на плоскость, перпендикулярную оси переносного вращения; чтобы получить направление ускорения Кориолиса, следует вектор проекции относительной скорости повернуть на 90° вокруг оси, параллельной оси переносного вращения, в направлении этого вращения.

Рассмотрим случаи обращения в нуль ускорения Кориолиса. Из (84) следует, что
, если:

1)
, т.е. переносное движение является поступательным;

2)
, т.е. в те моменты времени, в которые происходит изменение направления относительного движения;

3)
, т.е. когда скорость относительного движенияпараллельна угловой скорости переносного вращения.

Лекция № 5

2.4. Плоское (плоскопараллельное) движение твердого тела

Плоским движением твердого тела называют такое его движение, при котором каждая его точка все время движется в одной и той же плоскости. Плоскости, в которых движутся отдельные точки, параллельны между собой и параллельны одной и той же неподвижной плоскости. Поэтому плоское движение твердого тела часто называют плоскопараллельным движением. Траектории точек тела при плоском движении являются плоскими кривыми.

П
усть твердое тело совершает плоское движение, параллельное неподвижной плоскости(рис. 35). Тогда любая прямая, перпендикулярная этой плоскости и жестко скрепленная своими точками с движущимся телом, будет двигаться поступательно, т. е. все точки этой прямой движутся одинаково.

Значит, для изучения движения точек, лежащих на рассматриваемой прямой, достаточно изучить движение одной точки этой прямой, например точки
. Рассуждая аналогично для любой другой прямой, перпендикулярной плоскости и скрепленной с движущимся твердым телом, можно сделать вывод, что для изучения плоского движения твердого тела достаточно изучить движение точек этого тела, лежащих в какой-либо плоскости
, параллельной неподвижной плоскости , т.е. точек тела, лежащих в сечении рассматриваемого тела плоскостью
и образующих плоскую фигуру.

Таким образом, для изучения плоского движения твердого тела достаточно изучить движение плоской фигуры в ее плоскости, параллельной неподвижной плоскости . Положение фигуры на ее плоскости полностью определяется положением отрезка прямой линии, жестко скрепленной с этой плоской фигурой. Различные по форме твердые тела, совершающие плоское движение, имеют в сечениях разные плоские фигуры. В общем случае за плоскую фигуру примем всю плоскость и, следовательно, рассмотрим движение этой подвижной плоскости по другой, неподвижной плоскости.

Для характеристики вращательной части плоского движения твердого тела вокруг подвижной оси, проходящей через выбранный полюс, аналогично случаю вращения твердого тела вокруг неподвижной оси можно ввести понятия угловой скорости
и углового ускорения. Если угол поворота вокруг подвижной оси, проходящей через полюс, обозначить, то

,
.

Так как вращательная часть движения не зависит от выбора полюса, то и характеристики этой части движения – угловая скорость и угловое ускорение – также не зависят от выбора полюса.

При плоском движении тела угловую скорость и угловое ускорение можно считать векторами, направленными по подвижной оси, перпендикулярной плоскости фигуры и проходящей через выбранный полюс. Вектор угловой скорости
при плоском движении фигуры направлен по подвижной оси так, чтобы с конца его стрелки можно было видеть вращение фигуры против часовой стрелки. Вектор углового ускоренияпри ускоренном вращении фигуры совпадает с направлением вектора угловой скорости
, а при замедленном вращении эти векторы имеют противоположные направления. Вектор углового ускорения является первой производной по времени от вектора угловой скорости, т. е.
.

При движении тела относительно вращающейся системы отсчета, кроме центростремительной и центробежной сил, появляется еще одна сила, называемая силой Кориолиса или кориолисовой силой инерции (Г. Кориолис (1792 – 1843) – французский физик).

Появление кориолисовой силы можно обнаружить на следующем примере. Возьмем горизонтально расположенный диск, который может вращаться вокруг вертикальной оси. Прочертим на диске радиальную прямую ОА (рис. 4.10).


Рис. 4.10

Запустим в направлении от О к А шарик со скоростью . Если диск не вращается, шарик должен катиться вдоль ОА . Если же диск привести во вращение в направлении, указанном стрелкой, то шарик будет катиться по кривой ОВ , причем его скорость относительно диска быстро изменяет свое направление. Следовательно, по отношению к вращающейся системе отсчета шарик ведет себя так, как если бы на него действовала сила , перпендикулярная направлению движения шарика.

Сила Кориолиса не является «настоящей» в смысле механики Ньютона. При рассмотрении движений относительно инерциальной системы отсчета такая сила вообще не существует. Она вводится искусственно при рассмотрении движений в системах отсчета, вращающихся относительно инерциальных, чтобы придать уравнениям движения в таких системах формально такой же вид, что и в инерциальных системах отсчета.

Чтобы заставить шарик катиться вдоль ОА , нужно сделать направляющую, выполненную в виде ребра. При качении шарика направляющее ребро действует на него с некоторой силой. Относительно вращающейся системы (диска), шарик движется с постоянной по направлению скоростью. Это можно объяснить тем, что эта сила уравновешивается приложенной к шарику силой инерции:

(4.5.5)
Здесь – сила Кориолиса , также являющаяся силой инерции, – угловая скорость вращения диска.

Сила Кориолиса вызывает кориолисово ускорение . Выражение для этого ускорения имеет вид

(4.5.6)
Ускорение направлено перпендикулярно векторам и и максимально, если относительная скорость точки ортогональна угловой скорости вращения подвижной системы отсчета. Кориолисово ускорение равно нулю, если угол между векторами и равен нулю или π, либо если хотя бы один из этих векторов равен нулю.

Следовательно, в общем случае, при использовании уравнений Ньютона во вращающейся системе отсчета, возникает необходимость учитывать центробежную, центростремительную силы инерции, а также кориолисову силу.

Таким образом, всегда лежит в плоскости, перпендикулярной к оси вращения. Сила Кориолиса возникает только в случае, когда тело изменяет свое положение по отношению к вращающейся системе отсчета.

Влияние кориолисовых сил необходимо учитывать в ряде случаев при истолковании явлений, связанных с движением тел относительно земной поверхности. Например, при свободном падении тел на них действует кориолисова сила, обусловливающая отклонение к востоку от линии отвеса. Эта сила максимальна на экваторе и обращается в нуль на полюсах. Летящий снаряд также испытывает отклонения, обусловленные кориолисовыми силами инерции. Например, при выстреле из орудия, направленного на север, снаряд будет отклоняться к востоку в северном полушарии и к западу – в южном. При стрельбе вдоль экватора силы Кориолиса будут прижимать снаряд к Земле, если выстрел произведен в восточном направлении.

Сила Кориолиса действует на тело, движущееся вдоль меридиана в северном полушарии вправо и в южном – влево (рис. 4.11).

Это приводит к тому, что у рек подмывается всегда правый берег в северном полушарии и левый – в южном. Эти же причины объясняют неодинаковый износ рельсов железнодорожных путей.

Силы Кориолиса проявляются и при качаниях маятника (маятник Фуко). Для простоты предположим, что маятник расположен на полюсе (рис. 4.12). На северном полюсе сила Кориолиса будет направлена вправо по ходу маятника. В итоге траектория движения маятника будет иметь вид розетки.

Как следует из рисунка, плоскость качаний маятника поворачивается относительно Земли в направлении часовой стрелки, причем за сутки она совершает один оборот. Относительно гелиоцентрической системы отсчета дело обстоит так: плоскость качаний остается неизменной, а Земля поворачивается относительно нее, делая за сутки один оборот.

Таким образом, вращение плоскости качаний маятника Фуко дает непосредственное доказательство вращения Земли вокруг своей оси.


Представьте, что кто-то, находясь на Северном полюсе, бросил мяч кому-то, кто находится на экваторе. Пока мяч летел, Земля немного повернулась вокруг своей оси, и ловящий успел сместиться к востоку. Если бросающий, целясь мячом, не учел этого движения Земли, мяч упал западнее (или левее) ловящего. С точки зрения человека на экваторе получается, что мяч летел левее, чем надо, с самого начала - как только его выпустил из рук бросающий, - и до тех пор, пока не приземлился.

Согласно законам механики Ньютона, чтобы движущееся прямолинейно тело отклонилось от изначально заданной траектории, на него должна действовать какая-то внешняя сила. Значит, ловящий на экваторе должен сделать вывод, что брошенный мяч отклонился от прямолинейной траектории под действием некоей силы. Если бы мы смогли посмотреть на летящий мяч из космоса, мы бы увидели, что на самом деле никакая сила на мяч не действовала. Отклонение же траектории было вызвано тем, что Земля успела повернуться под мячом, пока он летел по прямой. Таким образом, действует в подобной ситуации какая-то сила или нет, - это целиком зависит от системы отсчета, в которой находится наблюдатель.

И подобное явление неизбежно возникает, когда есть какая-нибудь вращающаяся система координат - например, Земля. Для описания этого явления физики часто используют выражение фиктивная сила, имея в виду, что сила «реально» отсутствует, просто наблюдателю во вращающейся системе отсчета кажется, что она действует (другой пример фиктивной силы - это центробежная сила). И противоречий здесь нет никаких, поскольку оба наблюдателя единодушны относительно реальной траектории полета мяча и уравнений, ее описывающих. Расходятся они лишь в терминах, которые они используют для описания этого движение.

Фиктивная сила, которая действует в приведенном выше примере, называется силой Кориолиса - в честь французского физика Гаспара Кориолиса, впервые описавшего этот эффект.

Интересно, что именно сила Кориолиса определяет направление вращения вихрей циклонов, которые мы наблюдаем на снимках, полученных с метеоспутников. Изначально воздушные массы начинают прямолинейно устремляться из областей высокого атмосферного давления в области пониженного атмосферного давления, однако сила Кориолиса заставляет их закручиваться по спирали. (С тем же успехом можно утверждать, что воздушные потоки продолжают двигаться прямолинейно, но, поскольку Земля под ними поворачивается, нам, находящимся на поверхности планеты, кажется, что они движутся по спирали.) Вернемся к примеру с бросанием мяча с полюса к экватору. Нетрудно понять, что в Северном и Южном полушариях сила Кориолиса действует на движущееся тело в прямо противоположных направлениях. Именно поэтому в Северном полушарии вихри циклонов кажутся закрученными против часовой стрелки, а в Южном - по часовой стрелке.

Отсюда происходит бытующее в народе убеждение, что вода в канализационных отверстиях ванн и раковин в двух полушариях вращается в противоположных направлениях, - якобы это обусловлено эффектом Кориолиса. (Помню, когда я сам был студентом, мы всей группой, включая одного аргентинца, не один час провели в мужском туалете физического факультета Стэнфордского университета, наблюдая за потоками воды в раковине, в надежде подтвердить или опровергнуть эту гипотезу.) На самом же деле, хотя и верно, что сила Кориолиса действует противоположно в двух полушариях, направление закручивания воды в сливной воронке лишь отчасти определяется этим эффектом. Дело в том, что вода долгое время течет по водопроводным трубам, при этом в потоке воды образуются течения, которые, хоть их и трудно увидеть простым глазом, продолжают закручивать струю воды и тогда, когда она льется в раковину. Кроме того, когда вода уходит в сливное отверстие, могут создаваться похожие течения. Именно они определяют направление движения воды в воронке, поскольку силы Кориолиса оказываются гораздо слабее этих течений. В обычной жизни направление закручивания воды в сливной воронке в северном и южном полушариях больше зависит от конфигурации канализационной системы, чем от действия природных сил.

Однако все-таки нашлась группа экспериментаторов, которой хватило терпения повторить этот опыт в «чистых» условиях. Они взяли идеально симметричную раковину сферической формы, устранили канализационные трубы, позволив воде проходить сквозь сливное отверстие свободно, оборудовали сливное отверстие автоматической заслонкой, которая открывалась лишь после того, как в воде успокаивались любые остаточные токи, - и увидели-таки эффект Кориолиса в действии! Несколько раз им даже удалось увидеть, как вода сначала под слабым внешним воздействием закручивалась в одну сторону, а затем силы Кориолиса брали верх, и направление спирали менялось на противоположное!

И Франческо Мария Гримальди в 1651 году .

Энциклопедичный YouTube

  • 1 / 5

    Если в какой-либо инерциальной системе отсчёта материальная точка (МТ) равномерно движется вдоль радиуса, равномерно вращающегося вокруг перпендикулярной к нему оси, и её скорость направлена в сторону от центра вращения, то при этом вместе с увеличением расстояния от центра вращения возрастает и компонента скорости тела, направленная перпендикулярно радиусу. Значит, в данном случае компонента ускорения точки, перпендикулярная радиусу, отлична от нуля. Эта компонента ускорения МТ в инерциальной системе отсчёта и представляет собой ускорение Кориолиса .

    При рассмотрении того же самого движения в неинерциальной системе отсчёта , вращающейся вместе с радиусом, наблюдаемая картина будет другой. Действительно, в этой системе отсчёта скорость МТ не изменяется и, соответственно, компонента её ускорения, перпендикулярная радиусу, равна нулю. Значит, движение выглядит так, как будто во вращающейся системе отсчёта на МТ действует дополнительная сила, направленная противоположно ускорению Кориолиса и компенсирующая его. Эта дополнительная «сила», вводимая для удобства описания движения, но в действительности отсутствующая, и есть сила Кориолиса . Понятно, что данная «сила» позволяет учесть влияние вращения подвижной системы отсчёта на относительное движение МТ, но при этом никакому реальному взаимодействию МТ с другими телами не соответствует.

    Более строго - ускорение Кориолиса есть удвоенное векторное произведение вектора угловой скорости вращения системы координат на вектор скорости движения МТ относительно вращающейся системы координат . Соответственно, сила Кориолиса равна произведению массы МТ на её ускорение Кориолиса, взятому со знаком минус .

    Определение

    Пусть имеются две системы отсчёта, одна из которых (S) {\displaystyle (S)} инерциальная, а другая (S ′) {\displaystyle \left(S\,"\right)} движется относительно первой произвольным образом и в общем случае является неинерциальной. Будем также рассматривать движение произвольной материальной точки массы m {\displaystyle m} . Её ускорение по отношению к первой системе отсчёта обозначим , а по отношению ко второй - .

    Связь между ускорениями a → a {\displaystyle {\vec {a}}_{a}} и a → r {\displaystyle {\vec {a}}_{r}} следует из теоремы Кориолиса (см. ниже):

    a → a = a → r + a → e + a → K , {\displaystyle {\vec {a}}_{a}={\vec {a}}_{r}+{\vec {a}}_{e}+{\vec {a}}_{K},}

    где a → e {\displaystyle {\vec {a}}_{e}} - перено́сное ускорение, а a → K {\displaystyle {\vec {a}}_{K}} - ускорение Кориолиса (кориолисово ускорение, поворотное ускорение). Напомним, что переносным ускорением называют ускорение той точки системы S ′ {\displaystyle S\,"} относительно системы S {\displaystyle S} , в которой в данный момент находится рассматриваемая материальная точка .

    После умножения на массу точки и учёта второго закона Ньютона m a → a = F → {\displaystyle m{\vec {a}}_{a}={\vec {F}}} , данное соотношение можно представить в виде

    m a → r = F → + (− m a → e) + (− m a → K) . {\displaystyle m{\vec {a}}_{r}={\vec {F}}+(-m{\vec {a}}_{e})+(-m{\vec {a}}_{K}).}

    Величину (− m a → e) {\displaystyle (-m{\vec {a}}_{e})} называют переносной силой инерции , а величину (− m a → K) {\displaystyle (-m{\vec {a}}_{K})} - силой Кориолиса (кориолисовой силой). Обозначив их F → e {\displaystyle {\vec {F}}_{e}} и F → K {\displaystyle {\vec {F}}_{K}} соответственно, можно записать

    m a → r = F → + F → e + F → K . {\displaystyle m{\vec {a}}_{r}={\vec {F}}+{\vec {F}}_{e}+{\vec {F}}_{K}.}

    Полученное выражение выражает основной закон динамики для неинерциальных систем отсчёта.

    Из кинематики известно, что

    a → K = 2 [ ω → × v → r ] , {\displaystyle {\vec {a}}_{K}=2\left[{\vec {\omega }}\times {\vec {v}}_{r}\right],}

    где ω → {\displaystyle {\vec {\omega }}} - угловая скорость вращения неинерциальной системы отсчёта S ′ {\displaystyle S\,"} , - скорость движения рассматриваемой материальной точки в этой системе отсчёта; квадратными скобками обозначена операция векторного произведения . С учётом этого для силы Кориолиса выполняется

    F → K = − 2 m [ ω → × v → r ] . {\displaystyle {\vec {F}}_{K}=-2\,m\,\left[{\vec {\omega }}\times {\vec {v}}_{r}\right].}

    Замечания

    Теорема Кориолиса

    Заметим, что в частном случае вращательного движения инерциальной системы отсчета относительно начала координат для того, чтобы точка относительно неинерциальной системы отсчёта двигалась прямолинейно по радиусу к оси вращения (см. рис.), необходимо приложить к ней силу, которая будет противодействующей суммы силы Кориолиса − 2 m [ ω → × v → r ] {\displaystyle -2m\left[{\vec {\omega }}\times {\vec {v}}_{r}\right]} , переносной вращательной силы − m [ ε → × R → ] {\displaystyle -m\left[{\vec {\varepsilon }}\times {\vec {R}}\right]} и переносной силы инерции поступательного движения системы отсчёта − m a → 0 {\displaystyle -m{\vec {a}}_{0}} . Составляющая же ускорения [ ω → × [ ω → × R → ] ] {\displaystyle \left[{\vec {\omega }}\times \left[{\vec {\omega }}\times {\vec {R}}\right]\right]} не отклонит тело от этой прямой, так как является осестремительным переносным ускорением и всегда направлена по этой прямой. Действительно, если рассматривать уравнение такого движения, то после компенсации в нём вышеупомянутых сил получится уравнение [ ω → × [ ω → × R → ] ] + a → r = 0 {\displaystyle \left[{\vec {\omega }}\times \left[{\vec {\omega }}\times {\vec {R}}\right]\right]+{\vec {a}}_{r}=0} , которое если умножить векторно на , то с учетом [ R → × [ ω → × [ ω → × R → ] ] ] = 0 {\displaystyle \left[{\vec {R}}\times \left[{\vec {\omega }}\times \left[{\vec {\omega }}\times {\vec {R}}\right]\right]\right]=0} получим относительно v → r {\displaystyle {\vec {v}}_{r}} дифференциальное уравнение [ R → × d r v → r d t ] ≡ 0 {\displaystyle \left[{\vec {R}}\times {\frac {{\stackrel {~}{d_{r}}}{\vec {v}}_{r}}{dt}}\right]\equiv 0} , имеющее при любых R → {\displaystyle {\vec {R}}} и v → r {\displaystyle {\vec {v}}_{r}} общим решением [ R → × v → r ] = C o n s t → {\displaystyle \left[{\vec {R}}\times {\vec {v}}_{r}\right]={\vec {Const}}} , которое и является уравнением такой прямой - [ R → × v → r ] = 0 → {\displaystyle \left[{\vec {R}}\times {\vec {v}}_{r}\right]={\vec {0}}} .

    Обсуждение

    Правило Жуковского

    Сила Кориолиса не инвариантна относительно перехода из одной системы отсчёта в другую. Она не подчиняется закону действия и противодействия . Движение тела под действием силы Кориолиса аналогично движению во внешнем силовом поле. Сила Кориолиса всегда является внешней по отношению к любому движению системы материальных тел.

    Сила Кориолиса и закон сохранения момента импульса

    Если вращающаяся лаборатория, принимаемая за неинерциальную систему отсчёта, имеет конечный момент инерции , то в соответствии с законом сохранения момента импульса при движении тела по радиусу, перпендикулярному оси вращения, угловая скорость вращения будет увеличиваться (при движении тела к центру) или уменьшаться (при движении тела от центра). Рассмотрим эту ситуацию с точки зрения неинерциальной системы.

    Хорошим примером может быть человек, который перемещается в радиальном направлении по вращающейся карусели (например, держась за ведущий к центру поручень). При этом с точки зрения человека он при движении к центру будет совершать работу против центробежной силы (эта работа пойдёт на увеличение энергии вращения карусели). На него также будет действовать сила Кориолиса, которая стремится отклонить его движение от радиального направления («сносит» его вбок), и противодействуя сносу (прилагая поперечное усилие к поручню), он будет раскручивать карусель.

    При движении от центра центробежная сила будет совершать работу над человеком (за счёт уменьшения энергии вращения), а противодействие силе Кориолиса будет тормозить карусель.

    Сила Кориолиса в природе и технике

    Сила Кориолиса, вызванная вращением Земли, может быть замечена при наблюдении за движением маятника Фуко .

    На одноколейных железных дорогах поезда обычно ходят в обоих направлениях, поэтому последствия действия силы Кориолиса оказываются одинаковыми для обоих рельс. Иначе обстоят дела на двухколейных дорогах. На таких дорогах по каждой колее поезда движутся только в одном направлении, вследствие чего действие силы Кориолиса приводит к тому, что правые по ходу движения рельсы изнашиваются сильнее, чем левые. Очевидно, что в