Водородное соединение марганца формула. Соединения марганца. Растворимость перманганатов щелочных металлов в воде

] интерпретировал ее как 0-0 полосу перехода, связанного с основным состоянием молекулы. К тому же электронному переходу он отнес более слабые полосы 620нм (0-1) и 520нм (1-0). Невин [ 42NEV, 45NEV ] выполнил анализ вращательной и тонкой структуры полос 568 и 620нм (5677 и 6237Å) и определил тип электронного перехода 7 Π - 7 Σ. В последующих работах [ 48NEV/DOY, 52NEV/CON, 57HAY/MCC ] выполнен анализ вращательной и тонкой структуры еще нескольких полос перехода 7 Π - 7 Σ (A 7 Π - X 7 Σ +) MnH и MnD.

Методы лазерной спектроскопии высокого разрешения позволили проанализировать сверхтонкую структуру линий в 0-0 полосе A 7 Π - X 7 Σ + , обусловленную наличием ядерного спина у изотопа марганца 55 Mn (I=2.5) и протона 1 H (I=1/2) [ 90VAR/FIE, 91VAR/FIE, 92VAR/GRA, 2007GEN/STE ].

Вращательная и тонкая структура нескольких полос MnH и MnD в ближней ИК и фиолетовой области спектра была проанализирована в работах [ 88BAL, 90BAL/LAU, 92BAL/LIN ]. Установлено, что полосы принадлежат четырем квинтетным переходам с общим нижним электронным состоянием: b 5 Π i - a 5 Σ + , c 5 Σ + - a 5 Σ + , d 5 Π i - a 5 Σ + и e 5 Σ + - a 5 Σ + .

Колебательно-вращательный спектр MnH и MnD получен в работах . Выполнен анализ вращательной и тонкой структуры колебательных переходов (1-0), (2-1), (3-2) в основном электронном состоянии X 7 Σ + .

Спектры MnH и MnD в низкотемпературной матрице исследовались в работах [ 78VAN/DEV, 86VAN/GAR, 86VAN/GAR2, 2003WAN/AND ]. Колебательные частоты MnH и MnD в твердом аргоне [ 78VAN/DEV, 2003WAN/AND ], неоне и водороде [ 2003WAN/AND ] близки к величине ΔG 1/2 в газовой фазе. Величина матричного сдвига (максимальная в аргоне для MnH ~ 11 см ‑1) типична для молекул с относительно ионным характером связи.

Спектр электронного парамагнитного резонанса, полученный в [ 78VAN/DEV ], подтвердил симметрию основного состояния 7 Σ. Параметры сверхтонкой структуры, полученные в [ 78VAN/DEV ], уточнены в [ 86VAN/GAR, 86VAN/GAR2 ] при анализе спектра электронно-ядерного двойного резонанса.

Фотоэлектронный спектр анионов MnH - и MnD - получен в работе [ 83STE/FEI ]. В спектре идентифицированы переходы, как в основное состояние нейтральной молекулы, так и возбужденные с энергией T 0 = 1725±50 см ‑1 и 11320±220 см ‑1 . Для первого возбужденного состояния наблюдалась колебательная прогрессия от v = 0 до v = 3, определены колебательные постоянные w e = 1720±55 см ‑1 и w e x e = 70±25 см ‑1 . Симметрия возбужденных состояний не определена, сделаны лишь предположения на основе теоретических представлений [ 83STE/FEI, 87MIL/FEI ]. Данные, полученные позже из электронного спектра [ 88BAL, 90BAL/LAU ], и результаты теоретического расчета [ 89LAN/BAU ] однозначно показали, что возбужденные состояния в фотоэлектронном спектре – это a 5 Σ + и b 5 Π i .

Ab initio расчеты MnH выполнены различными методами в работах [ 73BAG/SCH, 75BLI/KUN, 81DAS, 83WAL/BAU, 86CHO/LAN, 89LAN/BAU, 96FUJ/IWA, 2003WAN/AND, 2004RIN/TEL, 2005BAL/PET, 2006FUR/PER, 2006KOS/MAT ]. Во всех работах получены параметры основного состояния, которые достаточно хорошо, по мнению авторов, согласуются с экспериментальными данными.

В расчет термодинамических функций были включены: а) основное состояние X 7 Σ + ; б) экспериментально наблюдавшиеся возбужденные состояния; в) состояния d 5 Δ и B 7 Σ + , рассчитанные в [ 89LAN/BAU ]; г) синтетические (оцененные) состояния, учитывающие прочие связанные состояния молекулы до 40000 см -1 .

Колебательные постоянные основного состояния MnH и MnD получены в [ 52NEV/CON, 57HAY/MCC ] и с очень высокой точностью в [ 89URB/JON, 91URB/JON, 2005GOR/APP ]. В табл. Mn.4 представлены значения из [ 2005GOR/APP ].

Вращательные постоянные основного состояния MnH и MnD получены в работах [ 42NEV, 45NEV, 48NEV/DOY, 52NEV/CON, 57HAY/MCC, 74PAC, 75KOV/PAC, 89URB/JON, 91URB/JON, 92VAR/GRA, 2005GOR/APP, 2007GEN/STE ]. Различия в значениях B 0 лежат в пределах 0.001 см ‑1 , B e – в пределах 0.002 см ‑1 . Они обусловлены разной точностью измерений и разными методами обработки данных. В табл. Mn.4 представлены значения из [ 2005GOR/APP ].

Энергии наблюдавшихся возбужденных состояний получены следующим образом. Для состояния a 5 Σ + принято значение T 0 из [ 83STE/FEI ] (см. выше по тексту). Для других квинтетных состояний в табл. Mn.4 приведены энергии, полученные прибавлением к T 0 a 5 Σ + величин T = 9429.973 см ‑1 и T = 11839.62 см ‑1 [ 90BAL/LAU ], T 0 = 20880.56 см ‑1 и T 0 = 22331.25 см ‑1 [ 92BAL/LIN ]. Для состояния A 7 Π приведено значение T e из [ 84ХЬЮ/ГЕР ].

Энергия состояния d 5 D , рассчитанная в [ 89LAN/BAU ], уменьшена на величину 2000 см ‑1 , что соответствует разности между экспериментальной и расчетной энергией состояния b 5 Π i . Энергия B 7 Σ + оценена прибавлением к экспериментальной энергии A 7 Π разности энергий этих состояний на графике потенциальных кривых [ 89LAN/BAU ].

Колебательные и вращательные константы возбужденных состояний MnH в расчетах термодинамических функций не использовались и приведены в таблице Mn.4 для справки. Колебательные константы приведены по данным работ [ 83STE/FEI ] (a 5 Σ +), [ 90BAL/LAU ] (c 5 Σ +), [ 92BAL/LIN ] (d 5 Π i , e 5 Σ +), [ 84ХЬЮ/ГЕР ] (A 7 Π). Вращательные константы приведены по данным работ [ 90BAL/LAU ] (b 5 Π i , c 5 Σ +), [ 92BAL/LIN ] (a 5 Σ + , d 5 Π i , e 5 Σ +), [ 92VAR/GRA ] (B 0 и D 0 A 7 Π) и [ 84ХЬЮ/ГЕР ] (a 1 A 7 Π).

Для оценки энергий не наблюдавшихся электронных состояний была использована ионная модель Mn + H - . Согласно модели, ниже 20000 см ‑1 молекула не имеет других состояний, кроме тех, что уже учтены, т.е. тех состояний, которые наблюдались в эксперименте и/или получены в расчете [ 89LAN/BAU ]. Выше 20000 см ‑1 модель предсказывает большое количество дополнительных электронных состояний, принадлежащих трем ионным конфигурациям: Mn + (3d 5 4s)H - , Mn + (3d 5 4p)H - и Mn + (3d 6)H - . Эти состояния хорошо сопоставляются с состояниями, рассчитанными в [ 2006KOS/MAT ]. Энергии состояний, оцененные по модели, отчасти точнее, поскольку учитывают экспериментальные данные. В связи с большим количеством оцененных состояний выше 20000 см ‑1 , они объединены в синтетические состояния при нескольких уровнях энергии (см. примечание табл.Mn.4).

Термодинамические функции MnH(г) были вычислены по уравнениям (1.3) - (1.6) , (1.9) , (1.10) , (1.93) - (1.95) . Значения Q вн и ее производных рассчитывались по уравнениям (1.90) - (1.92) с учетом четырнадцати возбужденных состояний в предположении, что Q кол.вр (i ) = (p i /p X)Q кол.вр (X ) . Колебательно-вращательная статистическая сумма состояния X 7 Σ + и ее производные вычислялись по уравнениям (1.70) - (1.75) непосредственным суммированием по уровням энергии. В расчетах учитывались все уровни энергии со значениями J < J max ,v , где J max ,v находилось из условий (1.81) . Колебательно-вращательные уровни состояния X 7 Σ + вычислялись по уравнениям (1.65) , значения коэффициентов Y kl в этих уравнениях, были рассчитаны по соотношениям (1.66) для изотопической модификации, соответствующей естественной смеси изотопов водорода из молекулярных постоянных 55 Mn 1 H, приведенных в табл. Mn.4 . Значения коэффициентов Y kl , а также величины v max и J lim приведены в табл. Mn.5 .

Основные погрешности рассчитанных термодинамических функций MnH(г) обусловлены методом расчета. Погрешности в значениях Φº(T ) при T = 298.15, 1000, 3000 и 6000 К оцениваются в 0.16, 0.4, 1.1 и 2.3 Дж× K ‑1 × моль ‑1 , соответственно.

Термодинамические функции MnH(г) ранее вычислялись без учета возбужденных состояний до 5000 К в работе [ 74SCH ] и с учетом возбужденных состояний до 6000 К в [

D ° 0 (MnH) = 140 ± 15 кДж× моль ‑1 = 11700 ± 1250 см ‑1 .

Бинарные соединения.

«Би»- означает два. Бинарные соединения состоят из атомов двух ХЭ.

Оксиды.

Бинарные соединения, состоящие из двух ХЭ, один из которых кислород в степени окисления - 2 («минус» два) называются оксидами.

Оксиды -очень распространённый тип соединений, содержащихся в земной коре и во Вселенной.

Названия оксидов образуются по схеме:

Название оксида = "оксид" + название элемента в родительном падеже + (степень окисления- римская цифра), если переменная, если постоянная, то не ставим.

Примеры оксидов. У некоторых есть тривиальное (историческое) название.

1. H 2 O - оксид водорода вода

CO 2 - оксид углерода (IV) углекислый газ (диоксид углерода)

CO –оксид углерода(II) угарный газ (монооксид углерода)

Na 2 O - оксид натрия

Al 2 O 3 - оксид алюминия глинозём

CuO - оксид меди(II)

FeO - оксид железа(II)

Fe 2 О 3 - оксид железа(III) гематит (красный железняк)

Cl 2 O 7 - оксид хлора(VII)

Cl 2 O 5 - оксид хлора(V)

Cl 2 O- оксид хлора(I)

SO 2 - оксид серы (IV) сернистый газ

SO 3 - оксид серы(VI)

CaO - оксид кальция негашёная известь

SiO 2 - оксид кремния песок (кремнезём)

MnO - оксид марганца(II)

N2O- оксид азота (I) «веселящий газ»

NO- оксид азота (II)

N2O3- оксид азота (III)

NO2- оксид азота (IV) «лисий хвост»

N2O5- оксид азота (V)

Индексы в формуле расставляем с учётом степени окисления ХЭ:

Записать оксиды, расставить степени окисления ХЭ. Уметь по названию составлять формулу оксида .

Другие бинарные соединения.

Летучие водородные соединения.

В ПС внизу есть горизонтальная строка "Летучие водородные соединения".
Там перечислены формулы: RH4 RH3 RH2 RH
Каждая формула относится к своей группе.

Например, написать формулу летучего водородного соединения N(азот).

Находим его в ПС и смотрим, какая формула записана под V группой.

Там RH3. Вместо R подставляем элемент азот, получается аммиак NH3.

Так как до «8» азоту нужно 3 электрона он оттягивает их у трёх водородов степень окисления у азота -3 , а у водорода +

SiH4 – силан бесцветный газ с неприятным запахом
PH3 – фосфин ядовитый газ с запахом гнилой рыбы

AsH 3 – арсин ядовитый газ с чесночным запахом
H2S - сероводород ядовитый газ с запахом тухлых яиц
HCl – хлороводород газ с резким запахом, дымящий в воздухе, его раствор в воде называют соляной кислотой. В малых концентрациях содержится в желудочном соке.

NH3 аммиак газ с резким раздражающим запахом.

Его раствор в воде называется нашатырным спиртом .

Гидриды металлов.

Дома: параграф 19 , упр. 3,4 письменно. Формулы, как они образуются, названия бинарных соединений из конспекта знать.

Первые систематические исследования растворимости водорода в марганце принадлежат Люкемейеру-Хассе и Шенку. Они показали, что изменение растворимости сопровождается α⇔β-превращением. Так как они проводили эксперименты с марганцем промышленной чистоты, то, возможно, неудивительно, что полученные ими результаты не согласуются с количественными значениями, установленными в более поздних работах, проведенных на марганце высокой степени чистоты.
Обстоятельные исследования в температурном интервале от 20 до 1300° выполнены Сивертсом и Морицем на дистилляте марганца, а также Поттером и Люкенсом на электролитическом дистиллированном марганце. В обоих случаях при различных температурах измерялось давление водорода, находящегося в равновесии с предварительно полностью дегазированным металлом.
В обеих работах были получены очень близкие результаты. На рис. 79 приведены данные Сивертса и Морица относительно объема водорода, адсорбированного 100 г марганца в температурном интервале от 20 до 1300° при нагреве и охлаждении двух образцов чистого марганца.

Растворимость водорода в α-модификации марганца вначале уменьшается, а затем увеличивается при повышении температуры. Растворимость водорода в β-марганце заметно выше, чем в α-марганце, следовательно, превращение β→α-сопровождается заметным увеличением адсорбции водорода. Растворимость в β-марганце растет с температурой.
β→γ-превращение также сопровождается увеличением растворимости водорода, которая в γ-марганце, так же как и в β-марганце, растет с температурой. Превращение сопровождается уменьшением растворимости. Растворимость водорода в δ-марганце растет до температуры плавления, а растворимость водорода в жидком марганце заметно выше его растворимости в любой из модификаций марганца в твердом состоянии.
Таким образом, изменение растворимости водорода в различных аллотропических модификациях марганца позволяет разработать простой и изящный метод исследований температур аллотропических превращений, а также их гистерезиса при различных скоростях нагрева и охлаждения.
Результаты Поттера и Люкенса, в общем, весьма близки к результатам Сивертса и Морица, в чем можно убедиться, рассматривая данные табл. 47. Сходимость результатов весьма хорошая, если не считать изменения растворимости в α-фазе в интервале температур от комнатной до 500°: Сивертс и Мориц нашли, что растворимость намного выше, чем следует из данных Поттера и Люкенса. Причина такого расхождения неясна.


Поттер и Люкенс нашли, что при постоянной температуре растворимость водорода (V) меняется с изменением давления (P) по зависимости:

где К - постоянная.
Ни один исследователь не нашел никаких гидридов марганца.
Содержание водорода в электролитическом марганце. Поскольку водород осаждается на катоде во время электрического осаждения, то неудивительно, что полученный таким образом металл должен содержать водород.
Содержание водорода в электролитическом марганце и вопросы, связанные с его удалением, изучали Поттер, Хэйз и Люкенс. Исследовали обычный электролитический марганец промышленной чистоты, который предварительно выдерживали в течение трех месяцев при комнатной температуре.
Измерения освобождаемого (выделяемого) объема водорода производили при температурах до 1300°; результаты приведены на рис. 80.
При нагреве до 200° выделяется очень мало газа, но уже при 300° освобождается весьма значительный объем. Немногим больше выделяется при 400°, однако при последующем нагреве количество освобождаемого водорода немного изменяется, за исключением тех случаев, когда растворимость меняется в связи с аллотропическими превращениями марганца.
Найдено, что марганец содержит приблизительно 250 см3 водорода на 100 г металла. При нагреве до 400° в течение 1 часа на воздухе при нормальном давлении удаляется 97% того количества, которое может быть удалено. Как и следовало ожидать, при уменьшении внешнего давления требуется меньшая продолжительность нагрева для удаления того же количества водорода.
Полагают, что водород, присутствующий в марганце, образует пересыщенный твердый раствор внедрения. Влияние водорода на параметры решетки α-марганца изучали Поттер и Губер; наблюдается определенное расширение (увеличение) решетки (табл. 48), составляющее 0,0003% при 1 см3 водорода на 100 г металла.
Нагрев для удаления водорода вызывает сжатие (уменьшение) решетки (табл. 49).

Точные измерения параметров решетки на образцах с высоким содержанием водорода весьма затруднительны, так как получается размытая дифракционная картина. Поттер и Губер связывают это с неоднородным распределением газа в металле. Эта размытость не растет с увеличением содержания водорода и даже несколько уменьшается при более высоких содержаниях водорода. Установлено, что электролитический марганец не может быть получен с содержанием водорода более чем 615 см3 на 100 г, что соответствует двум атомам водорода на элементарную ячейку α-марганца. При равномерном распределении водорода в металле можно ожидать равной степени искажения элементарных решеток и дифракционная картина должна содержать четкие линии.

Общий обзор

Марганец - элемент VIIB подгруппы IV-го периода. Электронное строение атома 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 2 , наиболее характерные степени окисления в соединениях - от +2 до +7.

Марганец принадлежит к довольно распространенным элементам, составляя 0,1 % (массовая доля) земной коры. В природе встречается тoлько в виде соединений, основные минералы - пиролюзит (диоксид марганца MnO 2 .), гаусканит Mn 3 O 4 и браунит Mn 2 O 3 .

Физические свойства

Марганец - серебристо-белый твердый хрупкий металл. Его плотность 7,44 г/см 3 , температура плавления 1245 o С. Известны четыре кристаллические модификации марганца.

Химические свойства

Марганец – активный металл, ряду напряжений он находится между алюминием и цинком. На воздухе марганец покрывается тонкой оксидной пленкой, предохраняющей его от дальнейшего окисления даже при нагревании. В мелкораздробленном состоянии марганец окисляется легко.

3Mn + 2O 2 = Mn 3 O 4 – при прокаливаии на воздухе

Вода при комнатной температуре действует на марганец очень медленно, при нагревании - быстрее:

Mn + H 2 O = Mn(OH) 2 + H 2

Он растворяется в разбавленных соляной и азотной кислотах, а также в горячей серной кислоте (в холодной H 2 SO 4 он практически нерастворим):

Mn + 2HCl = MnCl 2 + H 2 Mn + H 2 SO 4 = MnSO 4 + H 2

Получение

Марганец получают:

1. электролизом раствора MnSО 4 . При электролитическом методе руду восстанавливают, а затем растворяют в смеси серной кислоты с сульфатом аммония. Получающийся раствор подвергают электролизу.

2. восстановлением из его оксидов кремнием в электрических печах.

Применение

Марганец применяется:

1. в производстве легированных сталей. Марганцовистая сталь, содержащая до 15 % марганца, обладает высокими твердостью и прочностью.

2. марганец входит в состав ряда сплавов на основе магния; он повышает их стойкость против коррозии.

Оксиды магранца

Марганец образует четыре простых оксида - MnO , Mn 2 O 3 , MnO 2 и Mn 2 O 7 и смешанный оксид Mn 3 O 4 . Первые два оксида обладают основными свойствами, диоксид марганца MnO 2 амфотерен, а высший оксид Mn 2 O 7 является ангидридом марганцовой кислоты HMnO 4 . Известны также производные марганца (IV), но соответствующий оксид MnO 3 не получен.

Соединения марганца (II)

Степени окисления +2 соответствуют оксид марганца (II) MnO , гидроксид марганца Mn(OH) 2 и соли марганца (II).

Оксид марганца(II) получается в виде зеленого порошка при восстановлении других оксидов марганца водородом:

MnO 2 + H 2 = MnO + H 2 O

или при термическом разложении оксалата или карбоната марганца без доступа воздуха:

MnC 2 O 4 = MnO + CO + CO 2 MnCO 3 = MnO + CO 2

При действии щелочей на растворы солей марганца (II) выпадает белый осадок гидроксидa марганца Mn(OH)2:

MnCl 2 + NaOH = Mn(OH) 2 + 2NaCl

На воздухе он быстро темнеет, окисляясь в бурый гидроксид марганца(IV) Mn(OH)4:

2Mn(OH) 2 + O 2 + 2H 2 O =2 Mn(OH) 4

Оксид и гидроксид марганца (II) проявляют основные свойства, легко растворяются в кислотах:

Mn(OH)2 + 2HCl = MnCl 2 + 2H 2 O

Соли при марганца (II) образуются при растворении марганца в разбавленных кислотах:

Mn + H 2 SO 4 = MnSO 4 + H 2 - при нагревании

или при действии кислот на различные природные соединения марганца, например:

MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O

В твердом виде соли марганца (II) розового цвета, растворы этих солей почти бесцветны.

При взаимодействии с окислителями все соединения марганца (II) проявляют восстановительные свойства.

Соединения марганца (IV)

Самым устойчивым соединением марганца (IV) является темно-бурый диоксид марганца MnO 2 . Он легко образуется как при окислении низших, так и при восстановлении высших соединений марганца.

MnO 2 - амфотерный оксид, но и кислотные, и основные свойства выражены у него очень слабо.

В кислой среде диоксид марганца –сильный окислитель. При нагревании сконцентрированными кислотами идут реакции:

2MnO 2 + 2H 2 SO 4 = 2MnSO 4 + O 2 + 2H 2 O MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O

причем на первой стадии во второй реакции сначала образуется неустойчивый хлорид марганца (IV), который затем распадается:

MnCl 4 = MnCl 2 + Cl 2

При сплавлении MnO 2 со щелочами или основными оксидами получают манганиты, например:

MnO 2 +2KOH = K 2 MnO 3 + H 2 O

При взаимодействии MnO 2 с концентрированной серной кислотой образуется сульфат марганца MnSO 4 и выделяется кислород:

2Mn(OH) 4 + 2H2SO 4 = 2MnSO 4 + O 2 + 6H 2 O

Взаимодействие MnO 2 с более сильными окислителями приводит к образованию соединений марганца (VI) и (VII), например при сплавлении с хлоратом калия образуется манганат калия:

3MnO 2 + KClO 3 + 6KOH = 3K2MnO 4 + KCl + 3H 2 O

а при действии диоксида полония в присутствии азотной кислоты – марганцевая кислота:

2MnO 2 + 3PoO 2 + 6HNO 3 = 2HMnO 4 + 3Po(NO 3) 2 + 2H 2 O

Применение MnO 2

В качестве окислителя MnO 2 применяют при получении хлора из соляной кислоты и в сухих гальванических элементах.

Соединения марганца(VI) и (VII)

При сплавлении диоксида марганца с карбонатом и нитратом калия получается зеленый сплав, из которого можно выделить темно-зеленые кристаллы манганата калия K 2 MnO 4 - соли очень нестойкой марганцовистой кислоты H 2 MnO 4 :

MnO 2 + KNO 3 + K 2 CO 3 = K 2 MnO 4 + KNO 2 + CO 2

в водном растворе манганаты самопроизвольно превращаются в соли марганцовой кислоты HMnO4 (перманганаты) с одновременным образованием диоксида марганца:

3K 2 MnO 4 + H 2 O = 2KMnO 4 + MnO 2 + 4KOH

при этом цвет раствора меняется с зеленого на малиновый и образуется темно-бурый осадок. В присутствии щелочи манганаты устойчивы, в кислой среде переход манганата в перманганат происходит очень быстро.

При действии сильных окислителей (например, хлора) на раствор манганата последний полностью превращается в перманганат:

2K 2 MnO 4 + Cl 2 = 2KMnO 4 + 2KCl

Перманганат калия KMnO 4 - наиболее известная соль марганцовой кислоты. Представляет собой темно-фиолетовые кристаллы, умеренно растворимые в воде.Как и все соединения марганца (VII), перманганат калия - сильный окислитель. Он легко окисляет многие органические вещества, превращает соли железа(II) в соли железа (III), сернистую кислоту окисляет в серную, из соляной кислоты выделяет хлор и т. д.

В окислительно-восстановительных реакциях KMnO 4 (ион MnO 4 - )может восстанавливаться в различной степени. В зависимости от рН среды продукт восстановления может представлять собою ион Mn 2+ (в кислой среде), MnO 2 (в нейтральной или в слабо щелочной среде) или ион MnO4 2- (в сильно щелочной среде), например:

KMnO4 + KNO 2 + KOH = K 2 MnO 4 + KNO 3 + H 2 O - в сильнощелочной среде 2KMnO 4 + 3KNO 2 + H 2 O = 2MnO 2 + 3KNO 3 + 2KOH – в нейтральной или слабощелочной 2KMnO 4 + 5KNO 2 + 3H 2 SO 4 = 2MnSO 4 + K 2 SO 4 + 5KNO 3 + 3H 2 O – в кислой среде

При нагревании в сухом виде перманганат калия уже при температуре около 200 o С разлагается согласно уравнению:

2KMnO 4 = K 2 MnO 4 + MnO 2 + O 2

Соответствующая перманганатам свободная марганцовая кислота HMnO 4 в безводном состоянии не получена и известна только в растворе. Концентрацию ее раствора можно довести до 20%. HMnO 4 - очень сильная кислота, в водном растворе полностью диссоциированная на ионы.

Оксид марганца (VII), или марганцовый ангидрид, Mn 2 O 7 может быть получен действием концентрированной серной кислоты на перманганат калия: 2KMnO 4 + H 2 SO 4 = Mn 2 O 7 + K 2 SO 4 + H 2 O

Марганцовый ангидрид - зеленовато-бурая маслянистая жидкость. Очень неустойчив: при нагревании или при соприкосновении с горючими веществами он со взрывом разлагается на диоксид марганца и кислород.

Как энергичный окислитель перманганат калия широко применяют в химических лабораториях и производствах, он служит также дезинфицирующим средством, Реакцией термического разложения перманганата калия пользуются в лаборатории для получения кислорода.