Теорема бернулли примеры. Международный студенческий научный вестник

Если производится несколько испытаний, причем вероятность события А в каждом испытании не зависит от исходов других испытаний, то такие испытания называют независимыми относительно события А .

В разных независимых испытаниях событие А может иметь либо различные вероятности, либо одну и ту же вероятность. Будем далее рассматривать лишь такие независимые испытания, в которых событие А имеет одну и ту же вероятность.

Ниже воспользуемся понятием сложного события, понимая под ним совмещение нескольких отдельных событий, которые называют простыми .

Пусть производится n независимых испытаний, в каждом из которых событие А может появиться либо не появиться. Условимся считать, что вероятность события A в каждом испытании одна и та же, а именно равна р . Следовательно, вероятность ненаступления события А в каждом испытании также постоянна и равна q = 1 - p .

Поставим перед собой задачу вычислить вероятность того, что при n испытаниях событие А осуществится ровно k раз и, следовательно, не осуществится n - k раз. Важно подчеркнуть, что не требуется, чтобы событие А повторилось ровно k раз в определенной последовательности.

Например, если речь идет о появлении события А три раза в четырех испытаниях, то возможны следующие сложные события: ААА, ААА, ААА, ААА . Запись ААА означает, что в первом, втором и третьем испытаниях событие А наступило, а в четвертом испытании оно не появилось, т.е. наступило противоположное событие А; соответственный смысл имеют и другие записи.

Искомую вероятность обозначим Р п (k) . Например, символ Р 5 (3) означает вероятность того, что в пяти испытаниях событие появится ровно 3 раза и, следовательно, не наступит 2 раза.

Поставленную задачу можно решить с помощью так называемой формулы Бернулли.

Вывод формулы Бернулли . Вероятность одного сложного события, состоящего в том, что в п испытаниях событие А наступит k раз и не наступит п - k раз, по теореме умножения вероятностей независимых событий равна p k q n - k . Таких сложных событий может быть столько, сколько можно составить сочетаний из п элементов по k элементов, т.е. С n k .

Так как эти сложные события несовместны , то по теореме сложения вероятностей несовместных событий искомая вероятность равна сумме вероятностей всех возможных сложных событий . Поскольку же вероятности всех этих сложных событий одинаковы, то искомая вероятность (появления k раз события А в п испытаниях) равна вероятности одного сложного события, умноженной на их число:

Полученную формулу называют формулой Бернулли .

Пример 1 . Вероятность того, что расход электроэнергии в течение одних суток не превысит установленной нормы, равна р = 0,75 . Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.


Решение . Вероятность нормального расхода электроэнергии в продолжение каждых из 6 суток постоянна и равна р = 0,75 . Следовательно, вероятность перерасхода электроэнергии в каждые сутки также постоянна и равна q = 1 - р = 1 - 0,75 = 0,25.

Искомая вероятность по формуле Бернулли равна:

Не будем долго размышлять о высоком — начнем сразу с определения.

— это когда производится n однотипных независимых опытов, в каждом из которых может появиться интересующее нас событие A, причем известна вероятность этого события P(A) = p. Требуется определить вероятность того, что при проведении n испытаний событие A появится ровно k раз.

Задачи, которые решаются по схеме Бернулли, чрезвычайно разнообразны: от простеньких (типа «найдите вероятность, что стрелок попадет 1 раз из 10») до весьма суровых (например, задачи на проценты или игральные карты). В реальности эта схема часто применяется для решения задач, связанных с контролем качества продукции и надежности различных механизмов, все характеристики которых должны быть известны до начала работы.

Вернемся к определению. Поскольку речь идет о независимых испытаниях, и в каждом опыте вероятность события A одинакова, возможны лишь два исхода:

  1. A — появление события A с вероятностью p;
  2. «не А» — событие А не появилось, что происходит с вероятностью q = 1 − p.

Важнейшее условие, без которого схема Бернулли теряет смысл — это постоянство. Сколько бы опытов мы ни проводили, нас интересует одно и то же событие A, которое возникает с одной и той же вероятностью p.

Между прочим, далеко не все задачи в теории вероятностей сводятся к постоянным условиям. Об этом вам расскажет любой грамотный репетитор по высшей математике. Даже такое нехитрое дело, как вынимание разноцветных шаров из ящика, не является опытом с постоянными условиями. Вынули очередной шар — соотношение цветов в ящике изменилось. Следовательно, изменились и вероятности.

Если же условия постоянны, можно точно определить вероятность того, что событие A произойдет ровно k раз из n возможных. Сформулируем этот факт в виде теоремы:

Пусть вероятность появления события A в каждом опыте постоянна и равна р. Тогда вероятность того, что в n независимых испытаниях событие A появится ровно k раз, рассчитывается по формуле:

где C n k — число сочетаний, q = 1 − p.

Эта формула так и называется: . Интересно заметить, что задачи, приведенные ниже, вполне решаются без использования этой формулы. Например, можно применить формулы сложения вероятностей. Однако объем вычислений будет просто нереальным.

Задача. Вероятность выпуска бракованного изделия на станке равна 0,2. Определить вероятность того, что в партии из десяти выпущенных на данном станке деталей ровно k будут без брака. Решить задачу для k = 0, 1, 10.

По условию, нас интересует событие A выпуска изделий без брака, которое случается каждый раз с вероятностью p = 1 − 0,2 = 0,8. Нужно определить вероятность того, что это событие произойдет k раз. Событию A противопоставляется событие «не A», т.е. выпуск бракованного изделия.

Таким образом, имеем: n = 10; p = 0,8; q = 0,2.

Итак, находим вероятность того, что в партии все детали бракованные (k = 0), что только одна деталь без брака (k = 1), и что бракованных деталей нет вообще (k = 10):

Задача. Монету бросают 6 раз. Выпадение герба и решки равновероятно. Найти вероятность того, что:

  1. герб выпадет три раза;
  2. герб выпадет один раз;
  3. герб выпадет не менее двух раз.

Итак, нас интересует событие A, когда выпадает герб. Вероятность этого события равна p = 0,5. Событию A противопоставляется событие «не A», когда выпадает решка, что случается с вероятностью q = 1 − 0,5 = 0,5. Нужно определить вероятность того, что герб выпадет k раз.

Таким образом, имеем: n = 6; p = 0,5; q = 0,5.

Определим вероятность того, что герб выпал три раза, т.е. k = 3:

Теперь определим вероятность того, что герб выпал только один раз, т.е. k = 1:

Осталось определить, с какой вероятностью герб выпадет не менее двух раз. Основная загвоздка — во фразе «не менее». Получается, что нас устроит любое k, кроме 0 и 1, т.е. надо найти значение суммы X = P 6 (2) + P 6 (3) + … + P 6 (6).

Заметим, что эта сумма также равна (1 − P 6 (0) − P 6 (1)), т.е. достаточно из всех возможных вариантов «вырезать» те, когда герб выпал 1 раз (k = 1) или не выпал вообще (k = 0). Поскольку P 6 (1) нам уже известно, осталось найти P 6 (0):

Задача. Вероятность того, что телевизор имеет скрытые дефекты, равна 0,2. На склад поступило 20 телевизоров. Какое событие вероятнее: что в этой партии имеется два телевизора со скрытыми дефектами или три?

Интересующее событие A — наличие скрытого дефекта. Всего телевизоров n = 20, вероятность скрытого дефекта p = 0,2. Соответственно, вероятность получить телевизор без скрытого дефекта равна q = 1 − 0,2 = 0,8.

Получаем стартовые условия для схемы Бернулли: n = 20; p = 0,2; q = 0,8.

Найдем вероятность получить два «дефектных» телевизора (k = 2) и три (k = 3):

\[\begin{array}{l}{P_{20}}\left(2 \right) = C_{20}^2{p^2}{q^{18}} = \frac{{20!}}{{2!18!}} \cdot {0,2^2} \cdot {0,8^{18}} \approx 0,137\\{P_{20}}\left(3 \right) = C_{20}^3{p^3}{q^{17}} = \frac{{20!}}{{3!17!}} \cdot {0,2^3} \cdot {0,8^{17}} \approx 0,41\end{array}\]

Очевидно, P 20 (3) > P 20 (2), т.е. вероятность получить три телевизора со скрытыми дефектами больше вероятности получить только два таких телевизора. Причем, разница неслабая.

Небольшое замечание по поводу факториалов. Многие испытывают смутное ощущение дискомфорта, когда видят запись «0!» (читается «ноль факториал»). Так вот, 0! = 1 по определению.

P. S. А самая большая вероятность в последней задаче — это получить четыре телевизора со скрытыми дефектами. Подсчитайте сами — и убедитесь.

Смотрите также:

Спасибо, что читаете и делитесь с другими

При решении вероятностных задач часто приходится сталкиваться с ситуациями, в которых одно и тоже испытание повторяется многократно и исход каждого испытания независим от исходов других. Такой эксперимент еще называется схемой повторных независимых испытаний или схемой Бернулли .

Примеры повторных испытаний:

1) многократное извлечение из урны одного шара при условии, что вынутый шар после регистрации его цвета кладется обратно в урну;

2) повторение одним стрелком выстрелов по одной и той же мишени при условии, что вероятность удачного попадания при каждом выстреле принимается одинаковой (роль пристрелки не учитывается).

Итак, пусть в результате испытания возможны два исхода : либо появится событие А , либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы; вероятность появления события $А$ в каждом отдельно взятом или единичном испытании постоянна и от испытания к испытанию не изменяется (т.е. испытания проводятся в одинаковых условиях). Обозначим вероятность появления события $А$ в единичном испытании буквой $р$, т.е. $p=P(A)$, а вероятность противоположного события (событие $А$ не наступило) — буквой $q=P(\overline{A})=1-p$.

Тогда вероятность того, что событие А появится в этих n испытаниях ровно k раз, выражается формулой Бернулли

$$P_n(k)=C_n^k \cdot p^k \cdot q^{n-k}, \quad q=1-p.$$

Распределение числа успехов (появлений события) носит название биномиального распределения .

Онлайн-калькуляторы на формулу Бернулли

Некоторые наиболее популярные типы задач, в которых используется формула Бернулли, разобраны в статьях и снабжены онлайн-калькулятором, вы можете перейти к ним по ссылкам:

Примеры решений задач на формулу Бернулли

Пример. В урне 20 белых и 10 черных шаров. Вынули 4 шара, причем каждый вынутый шар возвращают в урну перед извлечением следующего и шары в урне перемешивают.

Формула Бернулли. Решение задач

Найти вероятность того, что из четырех вынутых шаров окажется 2 белых.

Решение. Событие А – достали белый шар. Тогда вероятности
, .
По формуле Бернулли требуемая вероятность равна
.

Пример. Определить вероятность того, что в семье, имеющей 5 детей, будет не больше трех девочек. Вероятности рождения мальчика и девочки предполагаются одинаковыми.

Решение. Вероятность рождения девочки
, тогда .

Найдем вероятности того, что в семье нет девочек, родилась одна, две или три девочки:

, ,

, .

Следовательно, искомая вероятность

.

Пример. Среди деталей, обрабатываемых рабочим, бывает в среднем 4% нестандартных. Найти вероятность того, что среди взятых на испытание 30 деталей две будут нестандартными.

Решение. Здесь опыт заключается в проверке каждой из 30 деталей на качество.

Событие А — «появление нестандартной детали», его вероятность , тогда . Отсюда по формуле Бернулли находим
.

Пример. При каждом отдельном выстреле из орудия вероятность поражения цели равна 0,9. Найти вероятность того, что из 20 выстрелов число удачных будет не менее 16 и не более 19.

Решение. Вычисляем по формуле Бернулли:

Пример. Независимые испытания продолжаются до тех пор, пока событие А не произойдет k раз. Найти вероятность того, что потребуется n испытаний (n ³ k), если в каждом из них .

Решение. Событие В – ровно n испытаний до k -го появления события А – есть произведение двух следующий событий:

D – в n -ом испытании А произошло;

С – в первых (n–1) -ом испытаниях А появилось (к-1) раз.

Теорема умножения и формула Бернулли дают требуемую вероятность:

Надо заметить, что использование биномиального закона зачастую связано с вычислительными трудностями. Поэтому с возрастанием значений n и m становится целесообразным применение приближенных формул (Пуассона, Муавра-Лапласа), которые будут рассмотрены в следующих разделах.

Видеоурок формулу Бернулли

Для тех, кому нагляднее последовательное видеообъяснение, 15-минутный ролик:

Формула полной вероятности: теория и примеры решения задач

Формула полной вероятности и условные вероятности событий

Формула полной вероятности является следствием основных правил теории вероятностей — правила сложения и правила умножения.

Формула полной вероятности позволяет найти вероятность события A , которое может наступить только с каждым из n исключающих друг друга событий , образующих полную систему, если известны их вероятности , а условные вероятности события A относительно каждого из событий системы равны .

События также называются гипотезами, они являются исключающими друг друга. Поэтому в литературе можно также встретить их обозначение не буквой B , а буквой H (hypothesis).

Для решения задач с такими условиями необходимо рассмотреть 3, 4, 5 или в общем случае n возможностей наступления события A — с каждым событий .

По теоремам сложения и умножения вероятностей получаем сумму произведений вероятности каждого из событий системы на условную вероятность события A относительно каждого из событий системы.

21 Испытания Бернулли. Формула Бернулли

То есть, вероятность события A может быть вычислена по формуле

или в общем виде

,

которая и называется формулой полной вероятности .

Формула полной вероятности: примеры решения задач

Пример 1. Имеются три одинаковых на вид урны: в первой 2 белых шара и 3 чёрных, во второй — 4 белых и один чёрный, в третьей — три белых шара. Некто подходит наугад к одной из урн и вынимает из неё один шар. Пользуясь формулой полной вероятности , найти вероятность того, что этот шар будет белым.

Решение. Событие A — появление белого шара. Выдвигаем три гипотезы:

— выбрана первая урна;

— выбрана вторая урна;

— выбрана третья урна.

Условные вероятности события A относительно каждой из гипотез:

, , .

Применяем формулу полной вероятности, в результате — требуемая вероятность:

.

Пример 2. На первом заводе из каждых 100 лампочек производится в среднем 90 стандартных, на втором — 95, на третьем — 85, а продукция этих заводов составляет соответственно 50%, 30% и 20% всех электролампочек, поставляемых в магазины некоторого района. Найти вероятность приобретения стандартной электролампочки.

Решение. Обозначим вероятность приобретения стандартной электролампочки через A , а события, заключающиеся в том, что приобретённая лампочка изготовлена соответственно на первом, втором и третьем заводах, через . По условию известны вероятности этих событий: , , и условные вероятности события A относительно каждого из них: , , . Это вероятности приобретения стандартной лампочки при условии её изготовления соответственно на первом, втором, третьем заводах.

Событие A наступит, если произойдут или событие K — лампочка изготовлена на первом заводе и стандартна, или событие L — лампочка изготовлена на втором заводе и стандартна, или событие M — лампочка изготовлена на третьем заводе и стандартна.

Других возможностей наступления события A нет. Следовательно, событие A является суммой событий K , L и M , которые являются несовместимыми. Применяя теорему сложения вероятностей, представим вероятность события A в виде

а по теореме умножения вероятностей получим

то есть, частный случай формулы полной вероятности .

Подставив в левую часть формулы значения вероятностей, получаем вероятность события A :

Нет времени вникать в решение? Можно заказать работу!

Пример 3. Производится посадка самолёта на аэродром. Если позволяет погода, лётчик сажает самолёт, пользуясь, помимо приборов, ещё и визуальным наблюдением. В этом случае вероятность благополучной посадки равна . Если аэродром затянут низкой облачностью, то лётчик сажает самолёт, ориентируясь только по приборам. В этом случае вероятность благополучной посадки равна ; .

Приборы, обеспечивающие слепую посадку, имеют надёжность (вероятность безотказной работы) P . При наличии низкой облачности и отказавших приборах слепой посадки вероятность благополучной посадки равна ; . Статистика показывает, что в k % случаев посадки аэродром затянут низкой облачностью. Найти полную вероятность события A — благополучной посадки самолёта.

Решение. Гипотезы:

— низкой облачности нет;

— низкая облачность есть.

Вероятности этих гипотез (событий):

;

Условная вероятность .

Условную вероятность снова найдём по формуле полной вероятности с гипотезами

— приборы слепой посадки действуют;

— приборы слепой посадки отказали.

Вероятности этих гипотез:

По формуле полной вероятности

Пример 4. Прибор может работать в двух режимах: нормальном и ненормальном. Нормальный режим наблюдается в 80% всех случаев работы прибора, а ненормальный — в 20% случаев. Вероятность выхода прибора из строя за определённое время t равна 0,1; в ненормальном 0,7. Найти полную вероятность выхода прибора из строя за время t .

Решение. Вновь обозначаем вероятность выхода прибора из строя через A . Итак, относительно работы прибора в каждом режиме (события ) по условию известны вероятности: для нормального режима это 80% (), для ненормального — 20% (). Вероятность события A (то есть, выхода прибора из строя) в зависимости от первого события (нормального режима) равна 0,1 (); в зависимости от второго события (ненормального режима) — 0,7 (). Подставляем эти значения в формулу полной вероятности (то есть, сумму произведений вероятности каждого из событий системы на условную вероятность события A относительно каждого из событий системы) и перед нами — требуемый результат.

1

1. Боголюбов А.Н. Математики. Механики: биографический справочник. – Киев: Наукова думка, 1983.

2. Гулай Т.А., Долгополова А.Ф., Литвин Д.Б. Анализ и оценка приоритетности разделов математических дисциплин, изучаемых студентами экономических специальностей аграрных вузов // Вестник АПК Ставрополья. – 2013. – № 1 (9). – С. 6-10.

3. Долгополова А.Ф., Гулай Т.А., Литвин Д.Б. Перспективы применения математических методов в экономических исследованиях // Аграрная наука, творчество, рост. – 2013. – С. 255-257.

В математике довольно часто встречаются задачи, в которых присутствует большое количество повторений одного и того же условия, испытания или эксперимента. Результатом каждого испытания будет считаться совершенно другой результат от наступившего предыдущего. Зависимости в результатах так же наблюдаться не будет. В качестве результата испытания можно различить несколько возможностей элементарных последствий: возникновение события (А) или же возникновение события, которое дополняет А.

Тогда попробуем предположить, что вероятность возникновения события Р(А) регулярна и равна р (0<р<1).

Примерами такого испытания может быть большое количество задач, таких как подбрасывание монетки, извлечение из темного мешка черно-белых шаров или же рождение черно-белых кроликов.

Такой эксперимент называют конфигурацией повторных независимых испытаний или схемой Бернулли.

Якоб Бернулли родился в семье фармацевта. Отец пытался наставить сына на медицинский путь, но Я. Бернулли увлекся математикой самостоятельно, а позже это стало его профессией. Ему принадлежат различные трофеи в работах на темы по теории вероятностей и чисел, рядов и дифференциальном исчислении. Изучив теорию вероятности по одной изработ Гюйгенса «О расчетах в азартной игре», Якоб увлекся этим. В данной книге не было даже четкого определения концепции «вероятность». Именно Я. Бернулли ввел в математику большую часть современных понятий теории вероятностей. Так же Бернулли первымвыразил свой вариант закона больших чисел. Имя Якоба носят различные работы, теоремы и схемы: «Числа Бернулли», «Многочлен Бернулли», «Дифференциальное уравнение Бернулли», «Распределение Бернулли» и «Уравнение Бернулли».

Вернемся к повторениям. Как уже было указано выше, то в итоге различных испытаний возможны два исхода: либо появится событие А, либо противоположность этому событию. Сама схема Бернулли обозначает производство n-го количества типовых вольных опытов, и в каждом из этих опытов может появится нужное нам событие А (вероятность этого события известна: Р(А)=р), вероятность противоположного события событию А обозначена за q=P(A)=1-p. Требуется определение вероятности, что при проведении испытаний неизвестного количества событие А появится ровно k раз.

Важно помнить о главном условии при решении задач при помощи схемы Бернулли-это постоянство. Без него схема теряет всякий смысл.

Этой схемой можно пользоваться для решения задач различного уровня сложности: от простых (та же монетка) до сложных (проценты). Однако чаще схема Бернулли применяется в решении таких задач, которые связаны с контролем свойств различной продукции и уверенности в самых разных механизмах. Только для решения задачи до начала работы должны быть известны заранее все условия и значения.

Не все задачи в теории вероятностей сводятся к постоянству в условиях. Даже если взять в пример черные и белые шары в темном мешке: при вытягивании одного шара соотношение количества и цветов шариков в мешке изменилось, а значит изменилась и сама вероятность.

Однако если же условия у нас постоянны, то мы можем точно определить требуемую от нас вероятность того, что событие А произойдет ровно kраз из n возможных.

Этот факт Якоб Бернулли скомпоновал в теорему, которую впоследствии стали называть его именем. «Теорема Бернулли» является одной из главных теорем в теории вероятности. Впервые ее опубликовали в труде Я.Бернулли «Искусство предположений». Что же представляет из себя эта теорема? «Если вероятность р наступления события А в каждом испытании постоянна, то вероятность Рk,n того, что событие наступит k раз в n испытаниях, не зависящих друг от друга равна: , где q=1-p».

В доказательство действенности формулы можно привести задачи.

Задача № 1:

Из n стеклянных банок за месяц хранения k разбиваются. Наугад взяли m банок. Найти вероятность, что среди этих банок l не разобьются. n=250, k=10, m=8,l=4.

Решение: Имеем схему Бернулли со значениями:

p=10/250=0,04 (вероятность того, что банки разобьются);

n=8 (число испытаний);

k=8-4=4 (количество разбитых банок).

Используем формулу Бернулли

Получили:

Ответ: 0,0141

Задача № 2:

Вероятность изготовления неисправного изделия на производстве равна 0,2. Найти вероятность того, что из 10 изготовленных на этом производстве изделий ровно k должны быть исправны. Выполнить решение для k = 0, 1, 10.

Нам интересно событие A - изготовление исправных деталей, случающееся раз в час с вероятностью p=1-0,2=0,8. Надо найти вероятность того, что данное событие совершится k раз. Событию A противоположно событие «не A», т.е. изготовление неисправного изделия.

Следовательно, мы имеем: n=10; p=0,8; q=0,2.

В итоге найдем вероятность того, что из 10 изготовленных изделий все изделия неисправны (k=0), что одно изделие исправно (k=1), что неисправных нет вообще (k=10):

В заключении хотелось бы отметить, что в современности многие ученые пытаются доказать, что «формула Бернулли» не соответствует законам природы и можно решить задачи, не применяя ее к использованию. Конечно это возможно, большинство задач по теории вероятности возможно выполнить без формулы Бернулли, главное не запутаться в больших объемах цифр.

Библиографическая ссылка

Хомутова Е.А., Калиниченко В.А. ФОРМУЛА БЕРНУЛЛИ В ТЕОРИИ ВЕРОЯТНОСТИ // Международный студенческий научный вестник. – 2015. – № 3-4.;
URL: http://eduherald.ru/ru/article/view?id=14141 (дата обращения: 12.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Повторные независимые испытания называются испытаниями Бернулли, если каждое испытание имеет только два возможных исхода и вероятности исходов остаются неизменными для всех испытаний.

Обычно эти два исхода называются “успехом” (У) или “неудачей” (Н) и соответствующие вероятности обозначают p и q . Ясно, что p  0, q ³ 0 и p +q =1.

Пространство элементарных событий каждого испытания состоит из двух событий У и Н.

Пространство элементарных событий n испытаний Бернулли содержит 2 n элементарных событий, представляющих собой последовательности (цепочки) из n символов У и Н. Каждое элементарное событие является одним из возможных исходов последовательности n испытаний Бернулли. Поскольку испытания независимы, то, по теореме умножения, вероятности перемножаются, то есть вероятность любой конкретной последовательности - есть произведение, полученное при замене символов У и Н на p и q соответственно, то есть, например: Р ()={У У Н У Н... Н У }=p p q p q ... q q p .

Отметим, исход испытания Бернулли часто обозначают 1 и 0, и тогда элементарное событие в последовательности n испытаний Бернулли - есть цепочка, состоящая из нолей и единиц. Например:  =(1, 0, 0, ... , 1, 1, 0).

Испытания Бернулли представляют собой важнейшую схему, рассматриваемую в теории вероятностей. Эта схема названа в честь швейцарского математика Я. Бернулли (1654-1705), в своих работах глубоко исследовавших эту модель.

Основная задача, которая нас будет здесь интересовать: какова вероятность того события, что в n испытаниях Бернулли произошло m успехов?

При выполнении указанных условий вероятность того, что при проведении независимых испытаний событиебудет наблюдаться ровноm раз (неважно, в каких именно опытах), определяется по формуле Бернулли :

(21.1)

где - вероятность появленияв каждом испытании, а
- вероятность того, что в данном опыте событиене произошло.

Если рассматривать P n (m) как функцию m , то она задает распределение вероятностей, которое называется биномиальным. Исследуем эту зависимость P n (m) от m , 0£m £n .

События B m (m = 0, 1, ..., n ), состоящие в различном числе появлений события А в n испытаниях, несовместны и образуют полную группу. Следовательно,
.

Рассмотрим соотношение:

=
=
=
.

Отсюда следует, что P n (m+1 )>P n (m), если (n - m)p > (m+1)q , т.е. функция P n (m ) возрастает, если m < np - q . Аналогично, P n (m+1) < P n (m), если (n - m)p < (m+1)q , т.е. P n (m) убывает, если m > np - q .

Таким образом, существует число m 0 ,при котором P n (m) достигает наибольшего значения. Найдем m 0 .

По смыслу числа m 0 имеем P n (m 0)³P n (m 0 -1) и P n (m 0) ³P n (m 0 +1), отсюда

, (21.2)

. (21.3)

Решая неравенства (21.2) и (21.3) относительно m 0 , получаем:

p / m 0 ³ q /(n - m 0 +1) Þ m 0 £ np + p ,

q /(n - m 0 ) ³ p /(m 0 +1) Þ m 0 ³ np - q .

Итак, искомое число m 0 удовлетворяет неравенствам

np - q £ m 0 £np+p. (21.4)

Так как p +q =1, то длина интервала, определяемого неравенством (21.4), равна единице и имеется, по крайней мере, одно целое число m 0 , удовлетворяющее неравенствам (21.4):

1) если np - q - целое число, то существуют два значения m 0 , а именно: m 0 = np - q и m 0 = np - q + 1 = np + p ;

2) если np - q - дробное, то существует одно число m 0 , а именно единственное целое, заключенное между дробными числами, полученными из неравенства (21.4);

3) если np - целое число, то существует одно число m 0 , а именно m 0 = np .

Число m 0 называется наиболее вероятным или наивероятнейшим значением (числом) появления события A в серии из n независимых испытаний.

Пусть производится независимых испытаний, в каждом из которых вероятность появления событияА равна р . Другими словами, пусть имеет место схема Бернулли. Можно ли предвидеть какова будет примерно относительная частота появлений события? Положительный ответ на этот вопрос даёт теорема, доказанная Я.Бернулли 1 , которая получила название «закона больших чисел» и положила начало теории вероятностей как науки 2 .

ТЕОРЕМА Бернулли : Если в каждом из независимых испытаний, проводимых в одинаковых условиях, вероятностьр появления события А постоянна, то относительная частота появления события А сходится по вероятности к вероятности р – появления данного события в отдельном опыте, то есть

.

Доказательство . Итак, имеет место схема Бернулли,
. Обозначим через
дискретную случайную величину – число появлений событияА в -ом испытании. Ясно, что каждая из случайных величин может принимать лишь два значения:1 (событие А наступило) с вероятностью р и 0 (событие А не наступило) с вероятностью
, то есть

(
)

Р

р

Нетрудно найти

Можно ли применить к рассматриваемым величинам теорему Чебышева? Можно, если случайные величины попарно независимы и дисперсии их равномерно ограничены. Оба условия выполняются. Действительно, попарная независимость величин
следует из того, что испытания независимы. Далее 3
при
и, следовательно, дисперсии всех величин ограничены, например числом
. Кроме того, заметим, что каждая из случайных величин
при появлении событияА в соответствующем испытании принимает значение, равное единице. Следовательно, сумма
равна числу
- появлений событияА в испытаниях, а значит

,

то есть дробь
равна относительной частотепоявлений события А в испытаниях.

Тогда, применяя теорему Чебышева к рассматриваемым величинам, получим:

что и требовалось доказать.

Замечание 1 : Теорема Бернулли является простейшим частным случаем теоремы Чебышева.

Замечание 2 : На практике часто неизвестные вероятности приходится приближённо определять из опыта, то для проверки согласия теоремы Бернулли с опытом было проведено большое число опытов. Так, например, французский естествоиспытатель XVIII века Бюффон бросил монету 4040 раз. Герб выпал при этом 2048 раз. Частота появления герба в опыте Бюффона приближённо равна 0,507. Английский статистик К.Пирсон бросал монету 12 000 раз и при этом наблюдал 6019 выпадений герба. Частота выпадения герба в этом опыте Пирсона равна 0,5016. В другой раз он бросил монету 24 000 раз, и герб при этом выпал 12 012 раз; частота выпадения герба при этом оказалась равной 0,5005. Как видим, во всех приведённых опытах частота лишь немного уклонилась от вероятности 0,5 – появления герба в результате одного бросания монеты.

Замечание 3 : Было бы неправильным на основании теоремы Бернулли сделать вывод, что с ростом числа испытаний относительная частота неуклонно стремится к вероятности р ; другими словами, из теоремы Бернулли не вытекает равенство
. В теоремеречь идёт лишь о вероятности того, что при достаточно большом числе испытаний относительная частота будет как угодно мало отличаться от постоянной вероятности появления события в каждом испытании. Таким образом, сходимость относительной частоты к вероятности р отличается от сходимости в смысле обычного анализа. Для того чтобы подчеркнуть это различие, вводят понятие «сходимости по вероятности» . Точнее, различие между указанными видами сходимости состоит в следующем: если стремится при
кр как пределу в смысле обычного анализа , то, начиная с некоторого
и для всех последующих значений, неуклонно выполняется неравенство
;если же стремится по вероятности к р при
, то для отдельных значенийнеравенство может и не выполняться.

    Теоремы Пуассона и Маркова

Замечено, если условия опыта меняются , то свойство устойчивости относительной частоты появления события А сохраняется. Это обстоятельство доказано Пуассоном.

ТЕОРЕМА Пуассона : При неограниченном увеличении числа независимых испытаний, проводимых в переменных условиях, относительная частота появления события А сходится по вероятности к среднему арифметическому вероятностей появления данного события в каждом из опытов, то есть

.

Замечание 4 : Нетрудно убедиться, что теорема Пуассона является частным случаем теоремы Чебышева.

ТЕОРЕМА Маркова : Если последовательность случайных величин
(как угодно зависимых) такова, что при

,

то,
выполняется условие:
.

Замечание 5 : Очевидно, если случайные величин
попарно независимы, то условие Маркова принимает вид: при

.

Отсюда видно, что теорема Чебышева является частным случаем теоремы Маркова.

    Центральная предельная теорема (Теорема Ляпунова)

Рассмотренные теоремы закона больших чисел касаются вопросов приближения некоторых случайных величин к определённым предельным значениям независимо от их закона распределения. В теории вероятностей, как уже отмечалось, существует другая группа теорем, касающихся предельных законов распределения суммы случайных величин. Общее название этой группы теорем – центральная предельная терема . Различные её формы различаются условиями, накладываемыми на сумму составляющих случайных величин. Впервые одна из форм центральной предельной теоремы была доказана выдающимся русским математиком А.М.Ляпуновым в 1900 году с использованием специально разработанного им метода характеристических функций.

ТЕОРЕМА Ляпунова : Закон распределения суммы независимых случайных величин
приближается к нормальному закону распределения при неограниченном увеличении(то есть, при
), если выполняются следующие условия:


,

Следует отметить, что центральная предельная теорема справедлива не только для непрерывных, но и для дискретных случайных величин. Практическое значение теоремы Ляпунова огромно. Опыт показывает, что закон распределения суммы независимых случайных величин, сравнимых по своему рассеиванию, достаточно быстро приближается к нормальному. Уже при числе слагаемых порядка десяти закон распределения суммы можно заменить на нормальный (в частности, примером такой суммы может быть среднее арифметическое наблюдаемых значений случайных величин, то есть
).

Частным случаем центральной предельной теоремы является теорема Лапласа. В ней, как вы помните, рассматривается случай, когда случайные величины
дискретны, одинаково распределены и принимают только два возможных значения: 0 и 1.

Далее, вероятность того, что заключено в интервале
можно вычислить по формуле

.

Используя функцию Лапласа, последнюю формулу можно записать в удобном для расчётов виде:

где
.

ПРИМЕР . Пусть производится измерение некоторой физической величины. Любое измерение даёт лишь приближённое значение измеряемой величины, так как на результат измерения оказывают влияние очень многие независимые случайные факторы (температура, колебания прибора, влажность и др.). Каждый из этих факторов порождает ничтожную «частную ошибку». Однако, поскольку число этих факторов очень велико, совокупное их действие порождает уже заметную «суммарную ошибку».

Рассматривая суммарную ошибку как сумму очень большого числа взаимно независимых частных ошибок, мы вправе заключить, что суммарная ошибка имеет распределение, близкое к нормальному. Опыт подтверждает справедливость такого заключения.

2 Доказательство, предложенное Я.Бернулли, было сложным; более простое доказательство было дано П.Чебышевым в 1846 году.

3 Известно, что произведение двух сомножителей, сумма которых есть величина постоянная, имеет наибольшее значение при равенстве сомножителей.