Стохастическая математическая модель. Математические модели в экономике и программировании. Детерминированные и стохастические системы

Технические системы. Параметрами технических объектов являются движущие объекты, объекты энергетики, объекты химической промышленности, объекты машиностроения, бытовая техника и многие другие. Объекты технических систем хорошо изучены в теории управления.

Экономические объекты. Экономическими объектами являются: цех, завод, предприятия различных отраслей. В качестве одной из переменных в них выступают экономические показатели - например - прибыль.

Биологические системы. Живые системы поддерживают свою жизнедеятельность благодаря заложенным в них механизмам управления.

Детерминированные и стохастические системы

Если внешние воздействия, приложенные к системе (управляющие и возмущающие) являются определенными известными функциями времени u=f(t). В этом случае состоянии системы описываемой обыкновенными дифференциальными уравнениями, в любой момент времени t может быть однозначно описано по состоянию системы в предшествующий момент времени. Системы для которых состояние системы однозначно определяется начальными значениями и может быть предсказано для любого момента времени называются детерминированными.

Стохастические системы - системы изменения в которых носят случайный характер. Например воздействие на энергосистему различных пользователей. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.

Случайные воздействия могут прикладываться к системе из вне, или возникать внутри некоторых элементов (внутренние шумы). Исследование систем при наличии случайных воздействий можно проводить обычными методами, минимизировав шаг моделирования чтобы не пропустить влияния случайных параметров. При этом так как максимальное значение случайной величины встречается редко (в основном в технике преобладает нормальное распределение), то выбор минимального шага в большинстве моментов времени не будет обоснован.

В подавляющем большинстве случаев при проектировании систем закладываются не максимальным а наиболее вероятным значением случайного параметра. В этом случае поучается более рациональная система, заранее предполагая ухудшение работы системы в отдельные промежутки времени. Например установка катодной защиты.

Расчет систем при случайных воздействиях производится с помощью специальных статистических методов. Вводятся оценки случайных параметров, выполненные на основании множества испытаний. Например карта поверхности уровня грунтовых вод СПб.

Статистические свойства случайной величины определяют по ее функции распределения или плотности вероятности.

Открытые и закрытые системы

Понятие открытой системы ввел Л. фон Берталанфи. Основные отличительные черты открытых систем - способность обмениваться с внешней средой энергией и информацией. Закрытые (замкнутые) системы изолированны от внешней среды (с точностью принятой в модели).

Хорошо и плохо организованные системы

Хорошо организованные системы. Представить анализируемый объект или процесс в виде «хорошо организованной системы» означает определить элементы системы, их взаимосвязь, правила объединения в более крупные компоненты, т. е. определить связи между всеми компонентами и целями системы, с точки зрения которых рассматривается объект или ради достижения которых создается система. Проблемная ситуация может быть описана в виде математического выражения, связывающего цель со средствами, т. е. в виде критерия эффективности, критерия функционирования системы, который может быть представлен сложным уравнением или системой уравнений. Решение задачи при представлении ее в виде хорошо организованной системы осуществляется аналитическими методами формализованного представления системы.

Примеры хорошо организованных систем: солнечная система, описывающая наиболее существенные закономерности движения планет вокруг Солнца; отображение атома в виде планетарной системы, состоящей из ядра и электронов; описание работы сложного электронного устройства с помощью системы уравнений, учитывающей особенности условий его работы (наличие шумов, нестабильности источников питания и т. п.).

Для отображения объекта в виде хорошо организованной системы необходимо выделять существенные и не учитывать относительно несущественные для данной цели рассмотрения компоненты: например, при рассмотрении солнечной системы не учитывать метеориты, астероиды и другие мелкие по сравнению с планетами элементы межпланетного пространства.

Описание объекта в виде хорошо организованной системы применяется в тех случаях, когда можно предложить детерминированное описание и экспериментально доказать правомерность его применения, адекватность модели реальному процессу. Попытки применить класс хорошо организованных систем для представления сложных многокомпонентных объектов или многокритериальных задач плохо удаются: они требуют недопустимо больших затрат времени, практически нереализуемы и неадекватны применяемым моделям.

Плохо организованные системы. При представлении объекта в виде «плохо организованной или диффузной системы» не ставится задача определить все учитываемые компоненты, их свойства и связи между ними и целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые находятся на основе исследования не всего объекта или класса явлений, а на основе определенней с помощью некоторых правил выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого выборочного исследования получают характеристики или закономерности (статистические, экономические) и распространяют их на всю систему в целом. При этом делаются соответствующие оговорки. Например, при получении статистических закономерностей их распространяют на поведение всей системы с некоторой доверительной вероятностью.

Подход к отображению объектов в виде диффузных систем широко применяется при: описании систем массового обслуживания, определении численности штатов на предприятиях и учреждениях, исследовании документальных потоков информации в системах управления и т. д.

Самоорганизующиеся системы. Отображение объекта в виде самоорганизующейся системы - это подход, позволяющий исследовать наименее изученные объекты и процессы. Самоорганизующиеся системы обладают признаками диффузных систем: стохастичностью поведения, нестационарностью отдельных параметров и процессов. К этому добавляются такие признаки, как непредсказуемость поведения; способность адаптироваться к изменяющимся условиям среды, изменять структуру при взаимодействии системы со средой, сохраняя при этом свойства целостности; способность формировать возможные варианты поведения и выбирать из них наилучший и др. Иногда этот класс разбивают на подклассы, выделяя адаптивные или самоприспосабливающиеся системы, самовосстанавливающиеся, самовоспроизводящиеся и другие подклассы, соответствующие различным свойствам развивающихся систем.

Примеры: биологические организации, коллективное поведение людей, организация управления на уровне предприятия, отрасли, государства в целом, т. е. в тех системах, где обязательно имеется человеческий фактор.

При применении отображения объекта в виде самоорганизующейся системы задачи определения целей и выбора средств, как правило, разделяются. При этом задача выбора целей может быть, в свою очередь, описана в виде самоорганизующейся системы, т. е. структура функциональной части АСУ, структура целей, плана может разбиваться так же, как и структура обеспечивающей части АСУ (комплекс технических средств АСУ) или организационная структура системы управления.

Большинство примеров применения системного анализа основано на представлении объектов в виде самоорганизующихся систем.

Любому реальному процессу свойственны случайные колебания, вызываемые физической изменчивостью каких- либо факторов во времени. Кроме того, могут существовать случайные внешние воздействия на систему. Поэтому при равном среднем значении входных в параметров в различные моменты времени выходные параметры будут неодинаковы. Следовательно, если случайные воздействия на исследуемую систему существенны, необходимо разрабатывать вероятностную (стохастическую) модель объекта, учитывая статистические законы распределения параметров системы и выбирая соответствующий математический аппарат.

При построении детерминированных моделей случайными факторами пренебрегают, учитывая лишь конкретные условия решаемой задачи, свойства и внутренние связи объекта (по этому принципу построены практически все разделы классической физики)

Идея детерминистических методов - в использовании собственной динамики модели при эволюции системы.

В нашем курсе эти методы представляют: метод молекулярной динамики , преимуществами которого являться: точность и определенность численного алгоритма; недостатком - трудоемкость из- за подсчета сил взаимодействия между частицами (для системы N частиц на каждом шаге нужно выполнить
операций подсчета этих сил).

При детерминистическом подходе задаються, и интегрируются по времени уравнения движения. Мы будем рассматривать системы из многих частиц. Положение частиц дают вклад потенциальной энергии в полную энергию системы, а их скорости определяют вклад кинетической энергии. Система движется вдоль траектории с постоянной энергией в фазовом пространстве (далее будут пояснения). Для детерминированных методов естественным является микроканонический ансамбль, энергия которого - это интеграл движения. Кроме того, можно исследовать и системы, для которых интегралом движения являться температура и (или) давление. В этом случае система незамкнута, и ее можно представить в контакте с тепловым резервуаром (канонический ансамбль). Для ее моделирования можно использовать подход, при котором мы ограничиваем ряд степеней свободы системы (например, задаем условие
).

Как мы уже отмечали, в случае, когда процессы в системе происходят непредсказуемо, такие события и связанные с ними величины называют случайными , а алгоритмы моделирования процессов в системе - вероятностными (стохастическими) . Греческое stoohastikos - означает буквально “тот, кто может угадать”.

Стохастические методы используют несколько иной подход, чем детерминистические: требуется насчитать лишь конфигурационную часть задачи. Уравнения для импульса системы всегда можно проинтегрировать. Проблема, которая затем встает - каким образом вести переходы от одной конфигурации к другой, которые в детерминистическом подходе определяться импульсом. Такие переходы в стохастических методах осуществляться при вероятностной эволюции в марковском процессе . Марковский процесс является вероятностным аналогом собственной динамики модели.

Этот подход имеет то преимущество, что позволяет моделировать системы, не имеющие какой - бы то ни было собственной динамики.

В отличие от детерминистических, стохастические методы на ПК реализуют проще, быстрее, однако для получения близких к истинным величин необходима хорошая статистика, что требует моделирования большого ансамбля частиц.

Примером полностью стохастического метода является метод Монте-Карло . Стохастические методы используют важную концепцию марковского процесса (марковской цепи). Марковский процесс является вероятностным аналогом процесса в классической механике. Марковская цепь характеризуется отсутствием памяти, т. е. статистические характеристики ближайшего будущего определяться только настоящим, без учета прошлого.

Практичне заняття 2.

Модель случайного блуждания

Пример (формальный)

Предположим, что в узлах двумерной решетки в произвольных позициях размещены частицы. На каждом временном шаге частица “прыгает” в одну из блажащих позиций. Значит, частица имеет возможность выбора направления прыжка в любое из четырех ближайших мест. После прыжка частица "не помнит", откуда она прыгнула. Этот случай соответствует случайному блужданию и является марковской цепью. Результатом на каждом шаге является новое состояние системы частиц. Переход из одного состояния в другое зависит только от предыдущего состояния, т. е. вероятность нахождения системы в состоянии i зависит только от состояния i-1.

Какие же физические процессы в твердом теле напоминают нам (подобие) описанной формальной модели случайного блуждания?

Конечно же, диффузионные, т. е. самые, процессы, механизмы которых мы рассматривали курсе тепло - массопереноса (3 курс). В качестве примера вспомним обычную классическую самодиффузию в кристалле, когда, не меняя своих видимых свойств атомы периодически меняют места временной оседлости и блуждают по решетке, с помощью так называемого “вакансионного” механизма. Он же - один из важнейших механизмов диффузии в сплавах. Явление миграции атомов в твердых телах играют решающую роль во многих традиционных и нетрадиционных технологиях - металлургии, металлообработке, создании полупроводников и сверхпроводников, защитных покрытий и тонких пленок.

Его открыл Роберт Аустен в 1896 году, наблюдая диффузию золота и свинца. Диффузия - процесс перераспределения концентраций атомов в пространстве путем хаотической (тепловой) миграции. Причины , с точки зрения термодинамики, могут быть две: энтропийная (всегда) и энергетическая (иногда). Энтропийная причина - это увеличение хаоса при перемешивании атомов резного сорта. Энергетическая - способствует образованию сплава, когда выгоднее быть рядом атомом разного сорта, и способствует диффузионному распаду, когда энергетический выиграш, обеспечивается размещением вместе атомов одного сорта.

Наиболее распространенными механизмами диффузии являются:

    вакансионный

    межузловой

    механизм вытеснения

Для реализации вакансионного механизма необходима хотя бы одна вакансия. Миграция вакансий осуществляется путем перехода в незанятый узел одного из соседних атомов. Атом же может осуществить диффузионный скачок, если рядом с ним оказалась вакансия. Вакансия см, с периодом тепловых колебаний атома в узле решеткис, при температуре Т=1330 К (на 6 К < точки плавления), число скачков, которое совершает вакансия в 1с, путь за одну секунду-см=3 м (=10 км/ч). По прямой же путь, проходимый вакансиейсм, т. е. в 300 раз короче пути по ломаной.

Природе понадобилось. чтобы вакансия в течении 1с раз изменила место оседлости, прошла по ломаной 3м, а сместилась по прямой всего лишь на 10 мкм. Атомы ведут себя спокойнее вакансий. Но и они миллион раз в секунду меняют место оседлости и движутся со скоростью примерно 1м/час.

Так. что достаточно одной вакансии на несколько тысяч атомов, чтобы при температуре, близкой к плавлению, перемещать атомы на микро уровне.

Сформируем теперь модель случайного блуждания для явления диффузии в кристалле. Процесс блуждания атома - хаотический и непредсказуемый. Однако для ансамбля блуждающих атомов должны проявляться статистические закономерности. Мы рассмотрим некоррелированные скачки.

Это значит, что если
и
- перемещение атомов приi и j-м скачках, то после усреднения по ансамблю блуждающих атомов:

(среднее произведение= произведению средних. Если блуждания полностью случайны, все направления равноправны и
=0.)

пусть каждая частица ансамбля совершает N элементарных скачков. Тогда ее полное перемещение равно:

;

а средний квадрат перемещения

Так как корреляции нет, то второе слагаемое =0.

Пусть каждый скачок имеет одинаковую длину h и случайное направление, а среднее число скачков в единицу времени- v. Тогда

Очевидно, что

Назовем величину
- коэффициентом диффузии блуждающих атомов. Тогда
;

Для трехмерного случая -
.

Мы получили параболический закон диффузии - средний квадрат смещения пропорционален времени блужданий.

Именно эту задачу нам предстоит решить на следующей лабораторной работе - моделирование случайных одномерных блужданий.

Численная модель.

Мы задаем ансамбль из М частиц, каждая из которых совершает N шагов, независимо друг от друга, вправо или влево с одинаковой вероятностью. Длина шага = h.

Для каждой частицы вычисляем квадрат смещения
заN шагов. Затем проводим усреднение по ансамблю -
. Величина
, если
, т. е. Средний квадрат смещения пропорционален времени случайных блужданий
- среднее время одного шага) - параболический закон диффузии.

Вероятностно-детерминированные математические прогнозирующие модели графиков энергетических нагрузок являются комбинацией статистических и детерминированных моделей. Именно эти модели позволяют обеспечить наилучшую точность прогнозирования, адаптивность к изменяющемуся процессу электропотребления .

Они базируются на концепции стандартизованного моделирования нагрузки , т.е. аддитивной декомпозиции фактической нагрузки на стандартизованный график (базовой составляющей, детерминированного тренда) и остаточную составляющую :

где t – время внутри суток; d – номер суток, например, в году.

В стандартной составляющей при моделировании также осуществляют аддитивное выделение отдельных составляющих, учитывающих : изменение средней сезонной нагрузки ; недельную цикличность изменения электропотребления ; трендовую составляющую, моделирующую дополнительные эффекты, связанные с изменением времени восхода и захода солнца от сезона к сезону ; составляющую, учитывающую зависимость электропотребления от метеофакторов , в частности температуры и т.п.

Рассмотрим подробнее подходы моделирования отдельных составляющих на основе упомянутых выше детерминированных и статистических моделей .

Моделирование средней сезонной нагрузки зачастую осуществляют с использованием простого скользящего усреднения :

где N – число обычных регулярных (рабочих дней), содержащихся в n прошедших неделях. , так как из недель исключаются «специальные», «нерегулярные дни», праздники и т.п. Осуществляется ежедневное обновление путем усреднения данных за n прошедших недель.

Моделирование недельной цикличности также осуществляют скользящим усреднением вида

с обновлением еженедельно путем усреднения данных за n прошедших недель, либо используя экспоненциально взвешенное скользящее среднее :

где – эмпирически определяемый параметр сглаживания ().

В работе для моделирования и используется семь составляющих , для каждого дня недели, причем каждое определяется отдельно с использованием модели экспоненциального сглаживания.

Авторы работы для моделирования используют двойное экспоненциальное сглаживание типа Холта – Винтерса. В работе для моделирования используют гармоническое представление вида

с параметрами , оцениваемыми по эмпирическим данным (значение «52» определяет число недель в году). Однако задача адаптивного оперативного оценивания этих параметров в указанной работе не решена полностью.

Моделирование , в ряде случаев осуществляют с помощью конечных рядов Фурье : с недельным периодом , с суточным периодом , либо с раздельным моделированием рабочих и выходных дней соответственно с периодами пять и двое суток :

Для моделирования трендовой составляющей используют либо полиномы 2-го – 4-го порядков , либо различные нелинейные эмпирические функции, например, вида :

где – полином четвертой степени, описывающий относительно медленные сглаженные изменения нагрузки в дневные часы по сезонам; , , – функции моделирующие эффекты, связанные с изменением времени восхода и захода солнца по сезонам.

Для учета зависимости электропотребления от метеофакторов в ряде случаев вводят дополнительную составляющую . В работе теоретически обосновывается включение в модель, но возможности моделирования температурного эффекта при этом рассматриваются лишь в ограниченном объеме . Так, для представления температурной составляющей для условий Египта используется полиномиальная модель

где – температура воздуха в t-й час.

Применяется регрессионный метод для «нормализации» максимумов и провалов реализации процесса с учетом температуры, при этом нормализованные данные представляются одномерной моделью авторегрессии интегрированного скользящего среднего (АРИСС) .

Используют также для моделирования с учетом температуры рекурсивный фильтр Калмана, в который включаются внешние факторы – прогноз температуры. Либо используют в краткосрочном диапазоне полиномиальную кубическую интерполяцию часовых нагрузок и при этом в модели учитывают влияние температуры .

Для учета среднесуточных прогнозов температуры, различных метеоусловий на реализации анализируемого процесса и в то же время повышения устойчивости модели предлагается использовать особую модификацию модели скользящего среднего

,

где для различных метеоусловий, связанных с вероятностями формируется ряд из m графиков нагрузки , а прогноз определяется как условное математическое ожидание. Вероятности уточняются по методу Байеса по мере поступления новых фактических значений нагрузки и факторов в течении суток.

Моделирование остаточной составляющей осуществляют как с использованием одномерных моделей, так и многомерных, учитывающих метеорологические и другие внешние факторы. Так, в качестве одномерной (однофакторной) модели зачастую используют модель авторегрессии АР(k) порядка k

,

где – остаточный белый шум. Для прогнозирования часовых (получасовых) отсчетов используют модели АР(1), АР(2) и даже АР(24) . Даже в случае использования обобщенной модели АРИСС для все равно ее применение сводится к моделям АР(1), АР(2) как для пятиминутных , так и часовых измерений нагрузки .

Иной однофакторной моделью моделирования составляющей является модель простого или двойного экспоненциального сглаживания . Эта модель позволяет эффективно выявлять краткосрочные тренды в процессе изменения остаточной нагрузки . Простота, экономичность, рекурсивность и вычислительная эффективность обеспечивают методу экспоненциального сглаживания широкое применение. С помощью простого экспоненциального сглаживания по при различных постоянных и определяют две экспоненциальные средние и . Прогноз остаточной составляющей с упреждением определяют по формуле

1. Детерминированные и вероятностные математические модели в экономике. Преимущества и недостатки

Методы исследования экономических процессов базируются на использовании математических - детерминированных и вероятностных - моделей, представляющих изучаемый процесс, систему или вид деятельности. Такие модели дают количественную характеристику проблемы и служат основой для принятия управленческого решения при поисках оптимального варианта. Насколько обоснованы эти решения, являются ли они лучшими из возможных, учтены ли и взвешены все факторы, определяющие оптимальное решение, каков критерий, позволяющий определить, что данное решение действительно наилучшее, - таков круг вопросов, имеющих большое значение для руководителей производства, и ответ на которые можно найти с помощью методов исследования операций [Чесноков С. В. Детерминационный анализ социально-экономических данных. - М.: Наука, 1982, стр. 45].

Одним из принципов формирования системы управления является метод кибернетических (математических) моделей. Математическое моделирование занимает промежуточное положение между экспериментом и теорией: нет необходимости строить реальную физическую модель системы, ее заменит математическая модель. Особенность формирования системы управления заключается в вероятностном, статистическом подходе к процессам управления. В кибернетике принято, что любой процесс управления подвержен случайным, возмущающим воздействиям. Так, на производственный процесс оказывают влияния большое количество факторов, учесть которые детерминированным образом невозможно. Поэтому считается, что на производственный процесс воздействуют случайные сигналы. В силу этого планирование работы предприятия может быть только вероятностным.

По этим причинам часто, говоря о математическом моделировании экономических процессов, имеют в виду именно вероятностные модели.

Опишем каждый из типов математических моделей.

Детерминированные математические модели характеризуются тем, что описывают связь некоторых факторов с результативным показателем как функциональную зависимость, т. е. в детерминированных моделях результативный показатель модели представлен в виде произведения, частного, алгебраической суммы факторов, или в виде любой другой функции. Данный вид математических моделей наиболее распространен, поскольку, будучи достаточно простыми в применении (по сравнению вероятностными моделями), позволяет осознать логику действия основных факторов развития экономического процесса, количественно оценить их влияние, понять, какие факторы и в какой пропорции возможно и целесообразно изменить для повышения эффективности производства.

Вероятностные математические модели принципиально отличаются от детерминированных тем, что в вероятностных моделях взаимосвязь между факторами и результирующим признаком вероятностная (стохастическая): при функциональной зависимости (детерминированные модели) одному и тому же состоянию факторов соответствует единственное состояние результирующего признака, тогда как в вероятностных моделях одному и тому же состоянию факторов соответствует целое множество состояний результирующего признака [Толстова Ю. Н. Логика математического анализа экономических процессов. - М.: Наука, 2001, с. 32-33].

Преимущество детерминированных моделей в простоте их применения. Основной недостаток - низкая адекватность реальной действительности, т. к., как было отмечено выше, большинство экономических процессов носит вероятностный характер.

Достоинством вероятностных моделей является то, что они, как правило, больше соответствуют реальной действительности (более адекватны), чем детерминированные. Однако, недостатком вероятностных моделей является сложность и трудоемкость их применения, так что во многих ситуациях достаточно бывает ограничиться детерминированными моделями.

Впервые постановка задачи линейного программирования в виде предложения по составлению оптимального плана перевозок; позволяющего минимизировать суммарной километраж, была дана в работе советского экономиста А. Н. Толстого в 1930 году.

Систематические исследования задач линейного программирования и разработка общих методов их решения получили дальнейшее развитие в работах российских математиков Л. В. Канторовича, В. С. Немчинова и других математиков и экономистов. Также методам линейного программирования посвящено много работ зарубежных и, прежде всего, американских ученых.

Задача линейного программирования состоит в максимизации (минимизации) линейной функции.

, где

при ограничениях

причем все

Замечание. Неравенства могут быть и противоположного смысла. Умножением соответствующих неравенств на (-1) можно всегда получить систему вида (*).

Если число переменных системы ограничений и целевой функции в математической модели задачи равно 2, то её можно решить графически.

Итак, надо максимизировать функцию

к удовлетворяющей системе ограничений.

Обратимся к одному из неравенств системы ограничений.

С геометрической точки зрения все точки, удовлетворяющие этому неравенству, должны либо лежать на прямой

, либо принадлежать одной из полуплоскостей, на которые разбивается плоскость этой прямой. Для того чтобы выяснить это, надо проверить какая из них содержит точку ().

Замечание 2. Если

, то проще взять точку (0;0).

Условия неотрицательности

также определяют полуплоскости соответственно с пограничными прямыми . Будем считать, что система неравенств совместна, тогда полуплоскости, пересекаясь, образуют общую часть, которая является выпуклым множеством и представляет собой совокупность точек, координаты которых являются решением данной системы - это множество допустимых решений. Совокупность этих точек (решений) называется многоугольником решений. Он может быть точкой, лучом, многоугольником, неограниченной многоугольной областью. Таким образом, задача линейного программирования состоит в нахождении такой точки многоугольника решений, в которой целевая функция принимает максимальное (минимальное) значение. Эта точка существует тогда, когда многоугольник решений не пуст и на нем целевая функция ограничена сверху (снизу). При указанных условиях в одной из вершин многоугольника решений целевая функция принимает максимальное значение. Для определения данной вершины построим прямую (где h - некоторая постоянная). Чаще всего берется прямая . Остается выяснить направление движения данной прямой. Это направление определяется градиентом (антиградиентом) целевой функции. в каждой точке перпендикулярен прямой , поэтому значение f будет возрастать при перемещении прямой в направлении градиента (убывать в направлении антиградиента). Для этого параллельно прямой проводим прямые, смещаясь в направлении градиента (антиградиента).

Эти построения будем продолжать до тех пор, пока прямая не пройдет через последнюю вершину многоугольника решений. Эта точка определяет оптимальное значение.

Итак, нахождение решения задачи линейного программирования геометрическим методом включает следующие этапы:

Строят прямые, уравнения которых получаются в результате замены в ограничениях знаков неравенств на знаки точных равенств.

Находят полуплоскости, определяемые каждым из ограничений задачи.

Находят многоугольник решений.

Строят вектор

.

Строят прямую

.

Строят параллельные прямые

в направлении градиента или антиградиента, в результате чего находят точку, в которой функция принимает максимальное или минимальное значение, либо устанавливают неограниченность сверху (снизу) функции на допустимом множестве.

Определяют координаты точки максимума (минимума) функции и вычисляют значение целевой функции в этой точке.

Задача о рациональном питании (задача о пищевом рационе)

Постановка задачи

Ферма производит откорм скота с коммерческой целью. Для простоты допустим, что имеется всего четыре вида продуктов: П1, П2, П3, П4; стоимость единицы каждого продукта равна соответственно С1, С2, С3, С4. Из этих продуктов требуется составить пищевой рацион, который должен содержать: белков - не менее b1 единиц; углеводов - не менее b2 единиц; жиров - не менее b3 единиц. Для продуктов П1, П2, П3, П4 содержание белков, углеводов и жиров (в единицах на единицу продукта) известно и задано в таблице, где aij (i=1,2,3,4; j=1,2,3) - какие-то определённые числа; первый индекс указывает номер продукта, второй - номер элемента (белки, углеводы, жиры).