Средства наблюдения за звездами древних греков. Зарождение астрономиии астрономическая деятельность в древнем мире. Историография древнегреческой астрономии

1. О начале и связях с другими регионами. Наиболее ранние известные астрономические тексты в Китае (на гадальных пластинках - черепашьих панцирях и лопаточных костях) относятся к XV в. до н. э. На них уже отмечены группы ярких звезд - «Огненные» (Скорпион), «Птичьи» (Гидра) и др. Наиболее древние известные китайские книги частично астрономического содержания относятся к середине 1 тыс. до н. э. Это «Шуцзин» (Книга преданий) и «Шицзин» (Книга песен) , составленные под редакцией выдающегося китайского мыслителя Конфуция (Кун-цзы, 551-479 гг.), современника Анаксагора. События, описываемые в них, начинаются со времен легендарной династии Ся (конец 3 тыс. - нач. 2 тыс. до н. э.). В частности, сообщается, что уже тогда при дворе правителя существовали две официальные должности астрономов - чиновников. Современный китайский исследователь относит начало истории китайской астрономии к XII в. до н. э. , когда уже существовали государственные контакты с Египтом, а еще раньше - с Вавилоном. Позднее, как уже говорилось, сложились условия для более тесных связей с Индией (со II в. до н. э.) и с Римом (I в. н. э.).

2. Наблюдения звездного неба. На рубеже 2-1 тыс. до н. э. китайские астрономы разделили область неба, в которой перемещались Солнце, Луна и планеты, на 28 участков-созвездий (явно для слежения за перемещением Луны) и, кроме того, на четыре «сезонных» участка по три созвездия в каждом (аналог Зодиака). Как и в Египте, этот пояс созвездий был ближе к небесному экватору.

Уже к VI в. до н. э. китайцы выделили Млечный Путь как некое явление неизвестной природы. Его называли «Молочным Путем», «Серебряной Рекой», «Небесной Рекой» и т. д. Все названия, кроме первого, пришли явно из фольклорной китайской астрономии. Сходство первого с греческим любопытно.

Наиболее ранний известный список свыше 800 звезд с указанием эклиптических координат для 120 из них составили Гань Гун (он же Гань Дэ ) и Ши Шэнь приблизительно в 355 г. До н. э. (т. е. на сто лет раньше Тимохариса и Аристилла в Греции). Первый был автором астрологического сочинения «Синьчжан» (Гадание по звездам), а второй астрономом-наблюдателем и автором, быть может, первого в Китае специального астрономического сочинения «Тяньвэнь» (Астрономия). Их звездный каталог включал содержание обеих этих книг и назывался «Книга, звезд Гань и Ши».

Знаменитый астроном Чжан Хэн (78-139) разделил все небо на 124 созвездия и оценил общее число звезд, ясно видимых одновременно, в 2,5 тысячи. Все небо китайцы делили на 5 участков-зон: четыре по странам света и пятая - центральная. Число слабых звезд в этой пятой части Чжан Хэн оценивал в 10 тысяч (видимо, традиционное у китайцев обозначение «очень большого» числа). Напомним, что современник Чжан Хэна Птолемей, вслед за Гиппархом, делил небо на 48 созвездий.

3. Служба смены сезонов. Понятие сезонов выработалось в Китае, как и везде, из сельскохозяйственной практики. В дальнейшем было подмечено, что каждый сезон сочетается с появлением на небе в момент захода Солнца тех или иных ярких звезд или их компактных групп - созвездий. Еще на костяных табличках эпохи Шан-Инь (XVIII-XIII вв.) смена сезонов записывалась по положению Солнца в разных созвездиях, а рубежами сезонов назывались звезды а Скорпиона, а Ориона, Плеяды и созвездие Большой Медведицы.

Особенный интерес представляет последняя метка. В этом случае имелось в виду вечернее положение на небе ручки «ковша», различно ориентированной в разные сезоны. Из-за расположения всего созвездия более близко к Северному полюсу мира той эпохи (ос Дракона) ручка Ковша как бы вращалась вокруг полюса . Внимательно присмотревшись к смене положений - ориентации созвездия в момент захода Солнца, не трудно увидеть астрономический источник древнейшего символа - «знака вечности» - известного по его санскритскому названию как «свастика» (рис. 6). Происхождению этого загадочного символа посвящена немалая литература. Его истолковывают как символическое изображение солнечных лучей, как символ вращения неба. Есть и попытки реконструировать его из положений на небе Большой Медведицы. Но, насколько известно, причина особого внимания в данном случае к этому именно созвездию (кроме его заметности) в литературе не отражена. Если же древние китайцы действительно использовали его как своеобразную стрелку небесных «часов», как указатель вечно повторяющейся смены сезонов, возникновение характерного «знака вечности» становится понятным.

К древнейшим временам - эпохе легендарного императора Яо (3 тыс. до н. э.) - относят определение продолжительности сезонов и солнечного тропического года. Продолжительность его была установлена сначала в 365 дней. К V-III вв. оценка была уточнена (365, 25 дн.).

4. Инструменты, обсерватории. С III в. до н. э. в Китае использовались солнечные и водяные часы. Последние в I-II вв. употреблялись и для приведения в движение глобусов (Чжан Хэн). Это был, по существу, первый часовой механизм при астрономическом инструменте. К III в. до н. э. относится изобретение китайцами компаса. (Он был устроен в виде способного свободно поворачиваться на гладкой подставке ковша-ложки, ручка которого указывала на юг. В этом можно видеть некоторое подтверждение особой роли ковша Большой Медведицы в китайской астрономии.)

В I-II вв. в Китае в ходу были армиллярные сферы, теория и изготовление которых, как считают, принадлежали также Чжан Хэну. Окружность в них делилась на 365 1/4 градуса (градус определялся как часть окружности, проходимая Солнцем за сутки, - 0,98546 европейского, или 59′ 11,266″; он делился на 100 частей).

Уже в XII в. до н. э. астрономические наблюдения в Китае велись со специальных площадок-обсерваторий (сохранились остатки древнейшей - Чжоугунской).

5. Календарь, летосчисление. Различные системы календарей, лунных и солнечных употреблялись в Китае по меньшей мере с XV в. до н. э. Согласование лунного и солнечного календарей было значительно улучшено к VII в. до н. э., когда в Китае был открыт 19-летний лунно-солнечный цикл (во всяком случае он был известен здесь уже к 595 г. до н. э., т. е. раньше, чем в Вавилоне, и за полтора столетия до Метона). За начало года было принято зимнее солнцестояние, за начало месяца - новолуние, суток полночь. Сутки делились на 12 «двойных часов» и, кроме того, по десятичной системе - на сто частей. Длина дня и ночи в частях изменялась от сезона к сезону. Названием двойных часов обозначались и месяцы. Время от времени проводились реформы времени.

За начало летосчисления в Древнем Китае была принята расчетная дата, когда в день зимнего солнцестояния начало суток (полночь) совпадало с началом месяца - новолунием, а все пять планет находились в одной стороне неба. Историческое летосчисление в Китае, по некоторым сведениям (правда, полулегендарного характера), велось с 3 тыс. до н. э., с эпохи императора Хуанди (2696-2597). Именно тогда была введена циклическая система счета лет по принципу «ганьчжи» («ствол и ветви»). Каждому году придавалось название одного из 12 животных (сравни Зодиак из 12 созвездий) и одновременно одной из пяти основных стихий - элементов материального земного мира. Получился повторяющийся цикл их сочетаний - 60 лет. Его удобство состояло в непрерывности счета (наподобие счета в гражданском египетском календаре или в так называемых юлианских днях). Циклический счет лет употреблялся в Китае до революции 1911 г. Но при описании истории Китая летосчисление начинали каждый раз от воцарения новой династии.

6. Астрология и служба неба , связанная с ней, появились в Китае по меньшей мере с эпохи Шан-Инь. В ее задачи входило слежение за движением планет и регистрация всех неожиданных явлений на небе - появления комет, новых звезд, падающих звезд, болидов. К неожиданным относили сначала и затмения, пока не убедились в их цикличности. Но не менее важным стало их предсказание.

Стремление вовремя принять небесный сигнал заставляло императоров держать при себе чиновников-астрономов, ответственность которых была очень велика. В хрониках сохранились записи о датах солнечных затмений с 22.Х.2137 г. до н. э., после которого согласно легенде были казнены два незадачливых астронома Хо и Хи, не сумевших его правильно предсказать. С 720 г. до н. э. за 2,5 века было отмечено 37 затмений Солнца, из которых 33 подтвердились современными ретроспективными расчетами.

Китайские астрономы первыми зарегистрировали пятна на Солнце (в 301 г. до н. э.). С I в, до н. э. до XII в. они были замечены более ста раз. Отмечалось, что пятна «прячутся» через несколько дней. Таким образом, китайцы первыми зарегистрировали явления, связанные с вращением Солнца (но не поняли этого). Как считают отдельные исследователи, они первыми отметили в начале XIV в. н. э. и протуберанцы. Однако приводимое описание этого явления представляется сомнительным.

Любопытно, что в календарях II-I вв. до н. э. не говорилось ничего о солнечных затмениях, - очевидно, потому, что китайцы тогда воспринимали затмения и появление пятен на Солнце как указание на несправедливое правление императора. Однако уже в III в. н. э. в новом календаре Ян Вэя указывался и тип затмения, и район его видимости.

Хорошо поставленная в Древнем Китае государственная служба систематического непрерывного слежения за небом и фиксирование всех небесных явлений оказали неоценимую услугу астрономам последующих эпох, особенно нашего времени. В китайских хрониках отмечены появления новых звезд («звёзды-гостьи»), начиная с 532 г. до н.э., включая и ту, что в 134 г. до н.э. наблюдал Гиппарх. Появление комет отмечалось как феномен «звезд-метел». Наиболее ранняя запись о комете относится к 1058/1057 г. до н. э. Это самое древнее из известных наблюдение кометы Галлея. (А начиная с 240 г. до н. э. китайцы не пропустили ни одного ее возвращения.) Китайские астрономы первыми отметили и характерные направления хвостов комет - прочь от Солнца, но не пытались объяснить это. В целом же кометы рассматривались как вестники несчастья.

Начиная с VII в. до н. э. отмечались также звездные дожди, хотя далеко не столь регулярно.

7. Зарождение теоретической астрономии в Китае. Китайские астрономы VIII-V вв. уже знали о пересечении путей Солнца и Луны, т. е. о существовании «лунных узлов» и даже об их перемещении по небу. Они установили, что затмения происходят лишь тогда, когда Луна и Солнце одновременно оказываются близ этих точек. Ян Вэй первым подметил, что, если Луна приходит к пересечению с Солнцем в начале месяца (в новолуние), возможно солнечное затмение, а если в середине - лунное. В III в. до н. э. китайцы могли предсказывать даты и тип затмения. Чжан Хэн первым в Китае сделал заключение, что Луна светит отраженным от Солнца светом, и правильно объяснил явление лунных затмений.

В I в. н. э. было сделано еще одно из крупнейших открытий в древнекитайской астрономии - астроном Цзя Куй обнаружил неравномерность движения Луны, а позднее Лю Хун очень точно (с ошибкой всего около минуты) измерил период возвращения ее к точке наиболее медленного движения (аномалистический месяц). (Более раннее измерение его принадлежит Гиппарху, результаты которого уточнил затем Птолемей.)

В IV в. до н. э. китайцы измерили сидерический период Юпитера, оценив его в 12 лет (вместо 11,86), и пытались ввести на этом основании летосчисление по 12-ричной системе счета, но безуспешно. В III в. до н. э. китайские астрономы знали о синодических и сидерических периодах движения всех планет и к I в. до н. э. с высокой точностью измерили их для Марса, Юпитера и Сатурна (см. таблицу, в скобках - современные данные).

Уже в XII в. до н. э. китайцы знали «теорему Пифагора». Под. влиянием китайской математики, где главными фигурами считались круг и квадрат, и в натурфилософии Китая сложились представления, что «все вещи и окружающие явления состоят из кругов и квадратов» .

Таблица. Синодические (в сутках, слева) и сидерические (в годах) периоды движения планет, найденные в Древнем Китае

Марс 780,50(779,94) 1,88 (1,88)
Юпитер 398,7 (398,88) 11,92(11,86)
Сатурн 377,60(378,09) 29,79(29,46)

В целом китайская астрономия в древности была феноменологической и не стремилась проникнуть в причины явлений. Характерно в этом отношении заключение, сделанное в книге Мэн-цзы (372-289): «Независимо от того, как высоко небо и как далеки звезды, если только мы изучим связанные с ними явления, мы можем, сидя у себя дома, предсказывать солнцестояние на тысячу лет вперед» . Отсюда следует, что Вселенная воспринималась как отлаженный, устойчивый, вечный механизм.

8. Астрономическая и физическая картина мира. Общие представления в Вселенной у китайцев сформировались уже в конце 3 тыс. до н. э. Как и у других народов древности, они имели вначале мифологический характер. Центром мира считалась даже не просто Земля, а Китайская империя («Поднебесная» или «Серединная империя»), историю которой в летописях вели со времени... создания небесным повелителем Паньгу Солнца, Луны, звезд, всякой живности и самого человека из камня.

В древнекитайской модели Вселенной (трактат IV в. до н. э.) Земля представлялась плоской, четырехугольной, неподвижной, а небо - круглым куполом, вращающимся над Землей вокруг точки севера. При помощи гномона якобы определялась высота неба (80 тыс. ли, 1 ли = 576 м), сторона «квадрата» Земли (810 тыс. ли). Небо, по сравнению с размерами Земли, довольно низко «висело» над ней (представление о близости неба к Земле в начале существования Вселенной характерно для многих древнейших космологических и космогонических мифов, например Океании, Индии, Филиппин).

Совершенно иные представления о строении и масштабах Вселенной изложил в своей теории мира «хунтянь» (беспредельное небо) старший современник Птолемея Чжан Хэн. Он представлял Вселенную безграничной в пространстве и времени. Небо же изображалось в форме яйца, где Земля играла роль желтка (т. е была сферической!), и считалось намного большим, чем Земля. На его поверхности и «внутри» него мыслилась вода.

Чжан Хэн дал четкую кинематическую модель видимых движений Солнца и звездного неба. Последнее представлялось вращающимся вокруг оси, проходящей через северный и южный полюсы мира. Все светила он считал шарообразными. Солнце в его модели движется среди созвездий, и его путь наклонен к небесному экватору на 24 (китайских) градуса.

История физико-космогонических представлений в Древнем Китае, дошедшая до нас в хрониках династий, начинается с эпохи династии Шан-Инь. В эту эпоху зародилось и к VIII-VII вв. приобрело философскую форму (одновременно с аналогичным процессом в Древней Греции!) учение о пяти земных (т. е. «грубых») первоэлементах-стихиях («унсин»), несколько отличавшихся от древнегреческих. Это были вода, огонь, металл, дерево и земля. Их число связывают с древним делением на пять сторон света. Число элементов соответствовало и числу подвижных звезд-планет. Символически это представлялось в сочетаниях вода-Меркурий-север, огонь-Марс-юг, металл-Венера-запад, дерево-Юпитер-восток, земля-Сатурн-центр. Но был еще и шестой, небесный первоэлемент «ци» (воздух, эфир).

Тогда же, в VIII-VII вв., появляется идея всеобщего изменения в природе и возникновения самой Вселенной в результате борьбы двух противоположных начал или принципов - положительного, светлого, активного, мужского («ян») и отрицательного» темного, пассивного, женского начала («инь»).


Наиболее ранние учения, связанные с определенными именами, дошли до нас с VI в. до н. э. Космологические и космогонические элементы содержались в наиболее авторитетном в Древнем Китае этико-политическом учении Конфуция, согласно которому первоначалом всего существующего была божественная воля. Но в том же VI в. до н. э. в Китае другой философ, Цзы Хань, высказал идею, что все земные первоэлементы порождены особым тонким небесным первоэлементом «ци». А его современник Сянгун утверждал даже существование шести видов «ци», через посредство которых небо проявляет себя и влияет на Землю и людей. Эта «ян-ци», «инь-ци», ветер и дождь, свет и тьма. От нарушения в природе, их чередования и соотношения происходят несчастья. Человек не должен поэтому неосмотрительно вмешиваться в устройство окружающей природы - разрушать горы, менять режим рек, чтобы не нарушать гармонию шести «ци».

Сама идея «ци» была высказана еще в VII в. до н. э. неким придворным историографом династии Чжоу, который начал поиски причины явлений в самой природе. Всеобъемлющее ци он считал неразрывным соединением двух частей - ян-ци и инь-ци. Учение о ци было попыткой объяснить всю действительность естественными причинами и соответствовало утверждению материального единства мира.

В VI в. до н. э. китайский натурфилософ Лао Цзы создал свое учение о возникновении и развитии всех вещей независимо от «воли неба», по естественным законам, главными среди которых была борьба противоположностей (ян и инь) и направляющий события принцип «дао» (буквально - путь). Под этим последним термином разумелся естественный круговорот событий, закономерность в мире вещей. Вместе с тем «дао» представляли и первоисточником всего сущего, как нечто вечное, единое, беспредельное, «родившееся прежде неба и Земли» и являющееся «матерью всех вещей». Иногда его толковали как судьбу, «жизненный путь всех вещей». Но постепенно дао приобретало более обобщенный философский смысл закономерности, необходимости.

В IV в. до н. э. в учении Ши Мо идея единства противоположностей выразилась в утверждении парности всех вещей и качеств: наличие левой и правой стороны, существование тепла и холода, влажности и сухости и т. п. Ши Мо учил, что лишь благодаря «соединению разнородного» возникают все вещи, а «соединение однородного лишает их продолжения». В книге «Шицзин» зарождались, еще в антропоморфной, одушевленной форме, элементы диалектического мышления, представления об изменении в природе от ступени к ступени через борьбу противоположных качеств, о смене одних качеств другими. Там же была предпринята попытка физически объяснить связь Неба и Земли: через взаимодействие небесного ци и некоего земного ци путем подъема одного и опускания другого.

В IV-III вв. китайские натурфилософы Куэй Ши и Гунсунь Лун развили учение о единстве мира, его бесконечности в пространстве и времени. Спустя четыре столетия эти идеи, как мы видели, возродил астроном Чжан Хэн. Философ-конфуцианец III в. до н. э. Сунь Цзы (296-238) основал материалистическое направление в конфуцианстве. Он утверждал, что небо не имеет сверхъестественной силы и материально, что и небо, и Земля, и все светила и явления, как например смена дня и ночи, времен года, метеорологические явления - грозы, дожди, бури - всё это части и явления самой природы, вызываемые ее естественными чаконами (возможно, с этими «еретическими» идеями и были связаны упоминавшиеся гонения на конфуцианство в III в. до н. э.).

Чрезвычайно любопытно в наше время звучит учение китайского философа II в. до н. э. Лю Аня о том, что вся Вселенная, Земля и небо возникли «из пустоты», что первоосновой всего сущего является «первоначальный жизненный [т. е., видимо, внутренне активный, саморазвивающийся, самодвижущийся. - А.Е. , Ф.Ц. ] эфир». Речь шла о том же ци, но уже как о качественно более сложном образовании. Таким образом, «пустота» (как и в наши дни!) оказывалась весьма условной. По Лю Аню, из легкой составляющей эфира образовались небесные тела и само небо, а из тяжелой - Земля. (Идеи эти явно перекликаются с аристотелевскими.) Но существенную роль в возникновении всех вещей продолжает играть, по учению Лю Аня, борьба противоположностей - ян и инь.

В I в. н. э. появилось глубокое материалистическое учение о Вселенной великого китайского философа Ван Чуня, изложенное в его книге «Критические рассуждения». В прежние эпохи «ци» истолковывали нередко как «воздух». Теперь же Ван Чунь, развивая в материалистическом направлении учение Лао Цзы (даосизм), утверждал вечное существование ци как особой первичной тонкой материальной субстанции, а принципу дао отводилась роль главного закона развития действительности (но уже не первоисточника мира). Отвергалось действие в природе сверхъестественных сил и утверждался принцип самодвижения и саморазвития материи. Утверждая беспредельность и вечность Вселенной в целом, Ван Чунь сделал естественный в таком случае, логичный вывод о ее неизменности в целом (впервые такую идею высказал древнегреческий философ Парменид в VII в. до н. э., см. ниже). Но Ван Чунь распространил последний вывод и на ограниченное образование - Землю, утверждая, что вечными и неизменными должны быть и небо и Земля.

Чертой натурфилософии, общей всем древним цивилизациям, в том числе и в Китае, было восприятие природы, мира как единого закономерного целого, в чем решающую роль сыграли астрономические наблюдения.

К сожалению, усилившаяся с веками замкнутость, самоизоляция китайской цивилизации надолго выключила китайскую науку из обмена идеями с европейской наукой. Между тем натурфилософские, содержавшие уже элементы диалектики космолого-космогонические концепции являются не менее ценным наследием древнекитайских мыслителей, нежели высокоценимые в наше время и действительно очень информативные списки затмений или редких нерегулярных астрономических явлений, вроде появлений новых звезд и комет.

Примечания

Они были уничтожены (вместе с 460 учеными!) в III в. до н. э. при гонениях на конфуцианство; восстановлены уцелевшими учеными по памяти.

Сергей Житомирский

Античная астрономия занимает в истории науки особое место. Именно в Древней Греции были заложены основы современного научного мышления. За семь с половиной столетий от Фалеса и Анаксимандра, сделавших первые шаги в осмыслении Вселенной, до Клавдия Птолемея, создавшего математическую теорию движения светил, античные учёные прошли огромный путь, на котором у них не было предшественников. Астрономы античности использовали данные, полученные задолго до них в Вавилоне. Однако для их обработки они создали совершенно новые математические методы, которые были взяты на вооружение средневековыми арабскими, а позднее и европейскими астрономами.

Вселенная в традиционной греческой мифологии

Как представляли себе мир греки в VIII в. до н. э., можно судить по поэме фиванского поэта Гесиода «Теогония» (О происхождении богов). Рассказ о возникновении мира он начинает так

Прежде всего во вселенной

Хаос зародился, а следом

Широкогрудая Гея, всеобщий приют

безопасный... Гея - Земля - родила себе

равное ширью Звёздное небо, Урана, чтоб точно

покрыл её всюду.

Небо утверждено на плоской Земле. На чём же тогда держится сама Земля? А ни на чём. Оказывается, под ней простирается огромное пустое пространство - Тартар, ставший тюрьмой для титанов, побеждённых богами.

Подземь их сбросили столь глубоко, сколь далёко до неба, Ибо настолько от нас отстоит

многосумрачный Тартар. Если бы, медную взяв наковальню,

метнуть её с неба, В девять дней и ночей до земли бы

она долетела, Если бы, медную взяв наковальню,

с земли её сбросить, В девять дней и ночей долетела б до Тартара тяжесть.

В представлениях древних греков Вселенная разделялась Землёй на светлую и тёмную части: верхняя была небом, а в нижней царил Эреб - подземный мрак. Считалось, что туда не заглядывает Солнце. Днём оно объезжает небо на колеснице, а ночью плывёт в золотой чаше по окружающему Землю океану к месту восхода. Конечно, такая картина мира не слишком подходила для объяснения движений небесных светил; впрочем, она для этого и не предназначалась.

Календарь и звёзды

В Древней Греции, как и в странах Востока, в качестве религиозного и гражданского использовался лунно-солнечный календарь. В нём начало каждого календарного месяца должно было располагаться как можно ближе к новолунию, а средняя продолжительность календарного года по возможности соответствовать промежутку времени между весенними равноденствиями («тропический год», как его называют сегодня). При этом месяцы по 30 и 29 дней чередовались. Но 12 лунных месяцев примерно на треть месяца короче года. Поэтому, чтобы выполнить второе требование, время от времени приходилось прибегать к интеркаляциям - добавлять в отдельные годы дополнительный, тринадцатый, месяц.

Вставки делались нерегулярно правительством каждого полиса -города-государства. Для этого назначались специальные лица, которые следили за величиной отставания календарного года от солнечного. В разделённой на мелкие государства Греции календари имели местное значение - одних названий месяцев в греческом мире существовало около 400. Математик и музыковед Аристоксен (354–300 до н. э.) писал о календарном беспорядке: «Десятый день месяца у коринфян - это пятый у афинян и восьмой у кого-нибудь ещё».

Простой и точный, 19-летний цикл, использовавшийся ещё в Вавилоне, предложил в 433 г. до н. э. афинский астроном Метон. Этот цикл предусматривал вставку семи дополнительных месяцев за 19 лет; его ошибка не превышала двух часов за один цикл.

Земледельцы, связанные с сезонными работами, издревле пользовались ещё и звёздным календарём, который не зависел от сложных движений Солнца и Луны. Гесиод в поэме «Труды и дни», указывая своему брату Персу время проведения сельскохозяйственных работ, отмечает их не по лунно-солнечному календарю, а по звёздам:

Лишь на востоке начнут восходить Атлантиды Плеяды, Жать поспешай, а начнут заходить - за сев принимайся. Вот высоко средь неба уж Сириус

встал с Орионом, Уж начинает Заря розоперстая

видеть Арктура, Режь, о Перс, и домой уноси

виноградные гроздья.

Таким образом, хорошее знание звёздного неба, которым в современном мире мало кто может похвастаться, древним грекам было необходимо и, очевидно, широко распространено. По-видимому, этой науке детей учили в семьях с раннего возраста.

Лунно-солнечный календарь использовался и в Риме. Но здесь царил ещё больший «календарный произвол». Длина и начало года зависели от понтификов (от лат. pontifices), римских жрецов, которые нередко пользовались своим правом в корыстных целях. Такое положение не могло удовлетворить огромную империю, в которую стремительно превращалось Римское государство. В 46 г. до н. э. Юлий Цезарь (100–44 до н. э.), исполнявший обязанности не только главы государства, но и верховного жреца, провёл календарную реформу. Новый календарь по его поручению разработал александрийский математик и астроном Созиген, по происхождению грек. За основу он взял египетский, чисто солнечный, календарь. Отказ от учёта лунных фаз позволил сделать календарь достаточно простым и точным. Этот календарь, названный юлианским, использовался в христианском мире до введения в католических странах в XVI в. уточнённого григорианского календаря. Летосчисление по юлианскому календарю началось в 45 г. до н. э. На 1 января перенесли начало года (раньше первым месяцем был март). В благодарность за введение календаря сенат постановил переименовать месяц квинтилис (пятый), в котором родился Цезарь, в юлиус - наш июль. В 8 г. н. э. в честь следующего императора, Октавиана Августа, месяц сек-стилис (шестой), был переименован в августус. Когда Тиберию, третьему принцепсу (императору), сенаторы предложили назвать его именем месяц септембр (седьмой), он будто бы отказался, ответив: «А что будет делать тринадцатый принцепс».

Новый календарь оказался чисто гражданским, религиозные праздники в силу традиции по-прежнему справлялись в соответствии с фазами Луны. И в настоящее время праздник Пасхи согласовывается с лунным календарём, причём для расчёта его даты используется цикл, предложенный ещё Метоном.

Фалес и предсказание затмения

Фалёс (конец VII - середина VI в. до н. э.) жил в греческом торговом городе Милете, расположенном в Малой Азии. С античных времён историки называют Фалеса «отцом философии». К сожалению, его сочинения до нас не дошли. Известно лишь, что он стремился найти естественные причины явлений, считал началом всего воду и сравнивал Землю с куском дерева, плавающим в воде.

Геродот, рассказывая о войне восточных государств Лидии и Мидии, сообщал: «Так с переменным успехом продолжалась эта война, и на шестой год во время одной битвы день превратился в ночь. Это солнечное затмение предсказал ионянам Фалес Милетский и даже точно определил заранее год, в который оно наступит. Когда лидийцы и мидяне увидели, что день обратился в ночь, то поспешно заключили мир».

Это затмение, согласно современным расчётам, произошло 28 мая 585 г. до н. э. Чтобы установить периодичность затмений, вавилонским астрологам потребовалось не одно столетие. Вряд ли Фалес мог обладать достаточными данными, чтобы сделать предсказание самостоятельно.

Ещё большую пользу астрономии Фалес принёс как математик. По-видимому, он первым пришёл к мысли о необходимости поиска математических доказательств. Он, например, доказывал теорему о равенстве углов при основании равнобедренного треугольника, т. е. вещи, на первый взгляд очевидные. Ему важен был не сам результат, а принцип логического построения. Для астрономии весьма существенно и то, что Фалес стал основоположником геометрического изучения углов.

Фалес мог бы первым сказать: «Не знающий математики да не входит в храм астрономии».

Анаксиманар

Анаксимандр Милетский (около 610 - после 547 до н. э.) был учеником и родственником Фалеса. Как и его учитель, он занимался не только науками, но также делами общественными и торговыми. Его книги «О природе» и «Сферы» не сохранились, и об их содержании мы знаем по пересказам читавших. Мир Анаксимандра необычен. Небесные светила учёный считал не отдельными телами, а окошками в непрозрачных оболочках, скрывающих огонь. Земля, по его мысли, имела вид части колонны, на поверхности которой, плоской или круглой, живут люди. Она парит в центре мира, ни на что не опираясь. Окружают Землю исполинские трубчатые кольца-торы, наполненные огнём. В самом близком кольце, где огня немного, имеются небольшие отверстия - - планеты. Во втором кольце с более сильным огнём находится одно большое отверстие - Луна. Оно может частично или полностью перекрываться (так философ объяснял смену лунных фаз и затмения светила). Гигантское отверстие размером с Землю есть и в третьем, дальнем, кольце. Сквозь него сияет самый сильный огонь - Солнце. Возможно, Вселенную Анаксимандра замыкала полная сфера с россыпью отверстий, через которые проглядывал огонь, окружавший её. Эти-то отверстия люди и называли «неподвижными звёздами». Неподвижны они, естественно, только относительно друг друга. Эта первая в истории астрономии геоцентрическая модель Вселенной с жёсткими орбитами светил, охватывающими Землю, позволяла понять геометрию движений Солнца, Луны и звёзд.

Анаксимандр стремился не только геометрически точно описать мир, но и понять его происхождение. Философ считал началом всего существующего апейрон - «беспредельное»: «некая природа бесконечного, из которой рождаются небосводы и находящиеся в них космосы». Вселенная, по Анаксимандру, развивается сама по себе, без вмешательства олимпийских богов.

Возникновение Вселенной философ представлял себе примерно так: апейрон порождает враждующие стихии - «горячее» и «холодное». Их материальное воплощение - огонь и вода. Противоборство стихий в возникшем космическом вихре привело к появлению и разделению веществ. В центре вихря оказалось «холодное» - Земля, окружённая водой и воздухом, а снаружи - огонь. Под действием огня верхние слои воздушной оболочки превратились в твёрдую кору. Эту сферу затвердевшего аэра (воздуха) стали распирать пары кипящего земного океана. Оболочка не выдержала и раздулась, «оторвалась», как сказано в одном из источников. При этом она должна была оттеснить основную массу огня за пределы нашего мира. Так возникла сфера неподвижных звёзд, а самими звёздами стали поры во внешней оболочке.

Астроном - это человек, интересующийся космическими процессами и явлениями. Что означает - быть астрономом? Кто первый задался вопросами о загадках неба? О первых и великих астрономах узнайте в нашей статье.

Астроном - это…

Людей всегда интересовало, что скрывается высоко за облаками и как же все устроено там, в межзвездном пространстве. Астроном - это человек, который призван не только задавать эти вопросы, но и отвечать на них. Это специалист в астрономии - науке о Вселенной, всех процессах и взаимосвязях, которые в ней происходят. А для этого необходимо обладать терпением, наблюдательностью, а главное - значительными знаниями в различных областях наук. Поэтому астроном - это прежде всего ученый.

Профессиональные астрономы должны обладать знаниями по физике, математике, а иногда и химии. Они работают в исследовательских центрах и обсерваториях, анализируя информацию о космических телах, их движениях и других явлениях, которую получают из собственных наблюдений, данных спутников, используя при этом различные приборы. Профессия эта включает в себя более узкие специализации, например, планетолог, астрофизик, астрохимик, космолог.

Первые астрономы

Наблюдая за ночным небосводом, люди заметили, что рисунок на нем меняется в зависимости от сезонов. Тогда они поняли, что земные и небесные процессы взаимосвязаны, и начали разгадывать их секрет. Первыми известными астрономами были шумеры и вавилоняне. Они научились предсказывать лунные затмения и измерять траектории движения планет, записывая наблюдения на глиняных табличках.

Египтяне ещё в IV веке до н. э. начали делить небо на созвездия и гадать по небесным светилам. В Древнем Китае прилежно отмечали все удивительные явления, такие как кометы, затмения, метеоры, новые звезды. Впервые комета упоминается в 631 году до нашей эры. В Древней Индии успехов было немного, хотя в V веке индийский астроном установил, что планеты вращаются вокруг своей оси.

Наблюдениями за звездами и планетами занимались инки, майя, кельтские друиды, древние греки. Последние сыпали как правильными, так и смешными теориями и предположениями. Например, Полюс Земли был далеко от Полярной звезды, а утренняя и вечерняя Венера считались разными звездами. Хотя некоторые были вполне точны, например, полагал, что Солнце больше Земли, и верил в гелиоцентризм. Эратосфен измерил земную окружность и наклон эклиптики к экватору.

Революция Коперника

Николай Коперник - ученый-астроном, который считается одним из зачинателей До него, в эпоху средневековья, астрономы в основном подстраивали свои наблюдения под принятую церковью и обществом Птолемея. Хотя отдельные личности, как Николай Кузанский или Георг Пурбах, все же выдвигали достойные гипотезы и расчеты, научные рассуждения носили достаточно отвлеченный характер.

В труде «О вращении небесных сфер», опубликованном в 1543 году, Коперник предлагает гелиоцентрическую модель. Согласно этому, Солнце является звездой, вокруг которой движется Земля и остальные планеты. Данную гипотезу поддерживали ещё в Древней Греции, но все это были лишь предположения.

Коперник в своем труде предоставил четкие аргументы и логические заключения. Его идею продолжили развивать многие великие астрономы, такие как Джордано Бруно, Галилео Галилей, Кеплер, Ньютон. Не все его мысли были верны. Так, Коперник считал, что орбиты планет круговые, Вселенная ограничивается Солнечной системой, однако его труд перевернул прежнее научное представления мира.

Галилео Галилей

Неоценимый вклад в астрономическую науку внес Галилео Галилей - итальянский астроном, физик, математик и философ. Одной из самых известных его заслуг является изобретение телескопа. Ученый создал первый в мире оптический прибор с линзами, чтобы наблюдать за небом.

Благодаря телескопу физик-астроном определил, что поверхность Луны не гладкая, как считали раньше. Обнаружил, что на Солнце есть пятна, облака Млечного Пути являются многочисленными тусклыми звездами, а вокруг Юпитера вращается несколько планет.

Галилей был ярым сторонником теорий Коперника. Он был убежден, что Земля вращается не только вокруг Солнца, но и вокруг своей оси, чем вызывает приливы и отливы океана. Это стало причиной многолетней борьбы с церковью.

Телескоп признали неисправным, а богохульнические идеи неверными. Перед инквизицией Галилео вынужден был отречься от своих доводов. Именно ему приписывают знаменитую фразу, которую он якобы произнес позже: «И все-таки она вертится!»

Иоганн Кеплер

Ученый-астроном Иоганн Кеплер считал, что астрономия является ответом на загадки тайной связи между космосом и человеком. Своими знаниями он пользовался, чтобы предсказывать погоду и урожайность. Он также поддерживал идеи Коперника, благодаря которым смог продвинуться ещё дальше в научных достижениях.

Кеплеру удалось объяснить видимую неравномерность движения планет, на основе трех выведенных им законов. Он ввел понятие орбит, форму которых определил как эллипс. Ученый также вывел уравнение, которое позволяет рассчитать положение небесных тел.

Все научные взгляды Кеплера совмещались с мистицизмом. Подобно пифагорейцам, он придерживался мнения о существовании особой гармонии в движении космических тел и пытался найти её числовое значение. Увлеченный тайным смыслом, он несколько компрометировал свои научные достижения, которые в конечном итоге были весьма точны.

Экзаменационныйреферат

на тему

«Астрономия

Древней Греции»



Выполнила

Ученица11а класса

ПересторонинаМаргарита


Преподаватель

ЖбанниковаТатьяна Владимировна


Киров,2002

План
I Вступление.

IIАстрономия древних греков.

1. На пути к истине, через познание.

2. Аристотель и геоцентрическая система мира.

3. Тот самый Пифагор.

4. Первый гелиоцентрист.

5. Труды Александрийских астрономов

6. Аристарх: совершенный метод (истинные его труды и успехи ; рассуждения выдающегося ученого ; в еликаятеория - неудача, как следствие ) ;

7. “Phaenomena” Евклида и основныеэлементы небесной сферы.

8. Самая яркая “звезда”александрийского неба.

9. Календарь и звезды древней греции.

III Заключение: роль астрономов древней Греции.


Вступление

…Аристарх Самосский в своих «Предложениях»-

допускал,что звезды, Солнце не изменяют

своего положения в пространстве, что Земля

движется по окружности около Солнца,

находящегося в центре ее пути, и что

центр сферы неподвижных звезд

совпадает с центром Солнца.

Архимед. Псамит.

Оценивая проделанныйчеловечеством путь в поисках истины о Земле, мы вольно или невольно обращаемсяк древним грекам. Многое зародилось у них, но и через них немало дошло до насот других народов. Так распорядилась история: научные представления итерриториальные открытия египтян, шумеров и прочих древневосточных народовнередко сохранились лишь в памяти греков, а от них стали известны последующимпоколениям. Яркий пример тому - подробные известия о финикийцах, населявшихузкую полосу восточного побережья Средиземного моря и в ІІ-І тысячелетиях до н.э. открывших Европу и приморские районы Северо-западной Африки. Страбон,римский ученый и грек по происхождению, в своей семнадцатитомной «Географии»написал: «До настоящего времени эллины многое заимствуют у египетских жрецов ихалдеев». А ведь Страбон скептически относился к своим предшественникам, в том числеи к египтянам.

Расцвет греческойцивилизации приходится на период между V Iвеком до н.э. и серединой II века до н. э. Хронологически он почти совпадает со временем существованияклассической Греции и эллинизма. Это время с учетом нескольких столетий, когдаподнялась, процветала и погибла Римская империя, называется античным Егоисходным рубежом принято считать VII-II века до н.э., когда быстро развивались полисы-греческие города-государства. Этаформа государственного устройства стала отличительной чертой греческого мира.

Развитие знанийу греков не имеет аналогов истории того времени. Масштабы постижения наукможно представить хотя бы по тому факту, что менее чем за три столетия (!)прошла свой путь греческая математика – от Пифагора до Евклида, греческаяастрономия – от Фалеса до Евклида, греческое естествознание – от Анаксимандрадо Аристотеля и Феофраста, греческая география – от Геккатея Милетского доЭратосфена и Гиппарха и т. д..

Открытие новыхземель, сухопутные или морские странствия, военные походы, перенаселения вблагодатные районы – все это нередко мифологизировалось. В поэмах с присущимгрекам художественным мастерством мифическое соседствовало с реальным. В нихизлагались научные познания, сведения о природе вещей, а также географическиеданные. Впрочем, последние порой бывает трудно идентифицировать с сегодняшнимипредставлениями. И, тем не менее, они – показатель широких воззрений греков наойкумену.

Греки уделяли большоевнимание конкретно – географическому познанию Земли. Даже во время военныхпоходов их не покидало желание записать все то, что видели в покоренныхстранах. В войсках Александра Македонского выделили даже специальных шагомеров,которые подсчитывали пройденные расстояния, составляли описание маршрутовдвижения и наносили их на карту. На основе полученных ими данных Дикеарх,ученик знаменитого Аристотеля, составил подробную карту тогдашней по егопредставлению ойкумены.

…Простейшиекартографические рисунки были известны еще в первобытном обществе, задолго допоявления письменности. Об этом позволяют судить наскальные рисунки. Первыекарты появились в Древнем Египте. На глиняных табличках наносились контурыотдельных территорий с обозначением некоторых объектов. Не позднее 1700 года дон. е. египтяне составили карту освоенной двух тысячекилометровой части Нила.

Картографированиемместности занимались также вавилоняне, ассирийцы и другие народы Древнеговостока…

Какой жевиделась Земля? Какое они отводили себе место на ней? Каковы были их представленияоб ойкумене?

Астрономиядревних греков

В греческой науке твердо установилось мнение (с различными, конечно,вариациями), что Земля подобна плоскому или выпуклому диску, окруженномуокеаном. От этой точки зрения многие греческие мыслители не отказались дажетогда, когда в эпоху Платона и Аристотеля, казалось, возобладали представленияо шарообразности Земли. Увы, уже в те далекие времена прогрессивная идеяпробивала себе дорогу с большим трудом, требовала от своих сторонников жертв,но, к счастью, тогда еще «не казался ересью талант», а «в аргументах не ходилсапог».

Идея диска(барабана или даже цилиндра) была очень удобна для подтверждения широкораспространенного убеждения о срединном положении Эллады. Она же была вполнеприемлема для изображения суши, плавающей в океане.

В пределахдискообразной (а позднее шарообразной) Земли выделялась ойкумена. Что по –древнегречески означает вся обитаемая земля, вселенная. Обозначение однимсловом двух, казалось бы, разных понятий (для греков тогда они представлялисьодно-порядковыми) глубоко симптоматично.

О Пифагоре (VI век до н.э.) сохранилось малодостоверных сведений. Известно, что родился он на острове самос ; вероятно, в молодости посетилМилет, где учился у Анаксимандра ; может быть, совершил и более далекие путешествия. Уже в зрелом возрасте философпереселился в город Кротон и основал там нечто вроде религиозного одена –Пифагорейское братство, которое распространило свое влияние на многие греческиегорода Южной Италии. Жизнь братства была окружена тайной. О его основателеПифагоре ходили легенды, которые, по-видимому, имели под собой какую-то основу:великий ученый был не менее великим политиком и провидцем.

Основойучения Пифагора была вера в переселение душ и гармоничное устройство мира. Онполагал, что душу очищает музыка и умственный труд, поэтому пифагорейцы считалиобезательным совершествование в четырехискусствах ” – арифметике, музыке, геометриии астрономии. Сам Пифагор является основоположником теории чисел, а доказаннаяим теорема известна сегодня каждому школьнику. И если Анаксагор и Демокрит всвоих взглядах на мир развивали идею Анаксимандра о физических причинахприродных явлений, то Пифагор разделял его убежденность в математическойгармонии космоса.

Пифагорейцы властвовали в греческих городах Италии несколько десятилетий, потомбыли разгромлены и отошли от политики. Однако многое из того, что вдохнул в нихПифагор, осталось жить и оказало огромное влияние на науку. Сейчас очень трудноотделить вклад самого Пифагора от достижений его последователей. В особенностиэто относится к астрономии, в которой было выдвинуто несколько принципиальноновых идей. О них можно судить по дошедшим до нас скудным сведениям опредставлениях поздних пифагорейцев и учениями философов, испытавших влияниеидей Пифагора.


Аристотельи первая научная картина мира

Аристотельродился в македонском городе Стагира в семье придворного лекаря.Семнадцатилетниим юношей попадает он в Афины, где становится учеником Академии,основанной философом Платоном.

Сначала системаПлатона увлекала Аристотеля, но постепенно он пришел к выводу, что взглядыучителя уводят от истины. И тогда Аристотель ушел из Академии, бросивзнаменитую фразу: Платонмне друг, но истина дороже ”. Император ФилиппМакедонский приглашает Аристотеля стать воспитателем наследника престола.Философ соглашается и три года нетлучно находится возле будущего основателявеликой империи Александра Македонского. В шестнадцать лет его ученик возглавилвойско отца и, разбив фиванцев в своей первой битве при Херонее, отправился впоходы.

Снова Аристотель переезжает в Афины, и в одном из районов, под названием Ликей,открывает школу. Он много пишет. Его сочинения настолько разнообразны, чтотрудно представить себе Аристотеля одиноким мыслителем. Скорее всего, в этигоды он выступал как глава большой школы, где ученики работали под егоруководством, подобно тому как сегодня аспиранты разрабатывают темы, которыепредлагают им руководители.

Много внимания уделял греческий философ вопросам строения мира. Аристотель былубежден, что в центре Вселенной, безусловно, находится Земля.

Аристотель пытался все объяснить причинами, которые близки здравому смыслунаблюдателя. Так, наблюдая Луну, он заметил, что в различных фазах она вточности соответствует тому виду, который принимал бы шар, с одной стороныосвещаемый Солнцем. Столь же строго и логично было его доказательствошарообразности Земли. Обсудив все возможные причины затмения Луны, аристотельприходит в выводу, что тень на ее поверхности может принадлежать только Земле.А поскольку тень кругла, то и тело, отбрасывающее её, должно иметь такую жеформу. Но Аристотель им не ограничивается. “ Почему,- спрашивает он, - когда мы перемещаемся к северу или к югу, созвездия меняютсвои положения относительно горизонта? ”И тут же отвечает: “ Потому, что Земля обладаеткривизной ”. Действительно, будь Земляплоской, где бы ни находился наблюдатель, у него над головой сияли бы одни итеже созвездия. Совсем другое дело – на круглой Земле. Здесь у каждогонаблюдателя свой горизонт, свой горизонт, своё небо… Однако, признаваяшарообразность Земли, Аристотель категорически высказывался против возможностиее обращения вокруг Солнца. “ Будь так, - рассуждалон, - нам казалось бы что звезды не находятся неподвижно на небесной сфере, аописывают кружки… ” Это было серьезноевозражение, пожалуй, самое серьезное, которое удалось устранить лишьмного-много веков спустя, в XIX столетии.

Об Аристотеленаписано очень много. Авторитет этого философа невероятно высок. И это вполнезаслужено. Потому что, несмотря на довольно многочисленные ошибки изаблуждения, в своих сочинениях Аристотель собрас все, чего добился разум запериод античной цивилизации. Его сочинения – настоящая энциклопедия современнойему науки.

Посвидетельству современников, великий философ отличался неважным характером.Портрет, дошедший до нас, представляет нам малорослого, сухощавого человека свечно язвительной усмешкой на губах.

Говорил онкортаво.

Вотношениях с людьми был холоден и надменен.

Новступать с ним в спор решались немногие. Остроумная, злая и насмешливая речьАристотеля разила наповал. Он разбивал возводимые против него доводы ловко,логично и жестоко, что, конечно, не прибавляло ему сторонников средипобежденных.

Послесмерти Александра Македонского обиженные почувствовали, наконец, реальнуювозможность расквитаться с философом и обвинили его в безбожии. СудьбаАристотеля была предрешена. Не дожидаясь приговора, Аристотель бежит из Афин. “Чтобы избывить афинян от нового преступления противфилософии”, - говорит он, намекая на сходжную судьбу Сократа, получившего поприговору чашу с ядовитым соком цикуты.

После отъезда из Афин в Малую Азию Аристотель скоро умирает, отравивщись вовремя трапезы. Так говорит легенда.

Согласно преданию, Аристотель завещал свои рукописи одному из учеников по имениФеофраст.

Посмерти философа за его трудами начинается настоящая охота. В те годы книги самипо себе были драгоценностью. Книги же Аристотеля ценились дороже золота. Онипереходили из рук в руки. Их прятали в погреба. Замуровывали в подвалы, чтобысохранить от жадности пергамских царей. Сырость портила их страницы. Уже приримском владычестве сочинения Аристотеля в качестве военной добычи попадают вРим. Здесь их продают любителям – богачам. Кое-кто старается восстановитьпострадавшие места рукописей, снабдить их своими добавлениями, от чего текст,конечно, не становится лучше.

Почемужетак ценились труды Аристотеля? Ведь в книгах других греческих философоввстречались мысли более оригинальные. На этот вопрос отвечает английскийфилософ и физик Джон Бернал. Вот что он пишет: Их(древнегреческихмыслителей) никто не мог понять, кроме очень хорошо подготовленных и искушенныхчитателей. А труды Аристотеля, при всей их громоздкости, не требовали (иликазалось, что не требовали) для их понимания ничего, кроме здравого смысла…Дляпроверки его наблюдений не было необходимости в опытах или приборах, не нужныбыли и трудные математические вычисления или мистическая интуиция для пониманиякакого бы то ни было внутреннего смысла…Аристотель объяснял, что мир такой,каким все его знают, именно такой, каким они его знают ”.

Пройдет время, и авторитет Аристотеля станет безоговорочным. Если на диспутеодин философ, подтверждая свои доводы, сошлется на его труды, это будет значить,что доводы, безусловно, верны. И тогда второй спорщик должен найти в сочиненияхтого же Аристотеля другую цитату, спомощью которой можно опровергнуть первую.…Лишь Аристотель против Аристотеля.Дркгие доводы против цитат были бессильны.Такой метод спора называетсядогматическим, и в нем, конечно, нет ни грамма пользы или истины….Но должнобыло пройти много веков, прежде чем люди поняли это и поднялись на борьбу смертвой схоластикой и догматизмом. Эта борьба возродила науки, возродилаискусство и дала название эпохи – Возрождение.

Первыйгелиоцентрист

В древности вопрос отом, движется ли Земля вокруг Солнца, был попросту богохульным. Как знаменитыеученые, так и простые люди, у которых картина неба не вызывала особыхразмышлений, были искренне убеждены, что Земля неподвижна и представляет собойцентр Вселенной. Тем не менее, современные историки могут назвать по меньшеймере одного ученого древности, который усомнился в общепринятом и попыталсяразработать теорию, согласно которой Земля движется вокруг Солнца.

Жизнь Аристарха Самосского(310 – 250 гг. до н.э.) была тесно связана с Александрийской библиотекой.Сведения о нем весьма скудны, а из творческого наследия осталась только книга«О размерах Солнца и Луны и расстояниях до них», написанная в 265 г. до н.э.Лишь упоминания о нем других ученых Александрийской школы, а позднее и римлян,проливают некоторый свет на его «богохульные» научные изыскания.

Аристарх задался вопросомо том, какого расстояние от Земли до небесных тел, и каковы их размеры. До негона этот вопрос пытались ответить пифагорейцы, но они исходили из произвольныхпредложений. Так, Филолай считал, что расстояния между планетами и Землейнарастают в геометрической прогрессии и каждая следующая планета в три разадальше от Земли, чем предыдущая.

Аристарх пошел своим путем,совершенно правильным точки зрения современной науки. Он внимательно следил заЛуной и сменой ее фаз. В момент наступления фазы первой четверти он измерилугол между Луной, Землей и Солнцем (угол ЛЗС на рис.). Если это сделатьдостаточно точно, то в задаче останутся только вычисления. В этот момент Земля,Луна и Солнце образуют прямоугольный треугольник, а, как известно из геометрии,сумма углов в нем составляет 180 градусов. В таком случае второй острый уголЗемля – Солнце – Луна (угол ЗСЛ) получается равным

90˚ - Ð ЛЗС = Ð ЗСЛ


/>
Определениерасстояния от Земли до Луны и Солнца методом Аристарха .

Аристарх изсвоих измерений и вычислений получил, что этот угол равен 3º (вдействительности его значение 10 )и что Солнце в 19 раз дальше от Земли, чем Луна (в действительности в 400 раз).Здесь надо простить ученому значительную ошибку, ибо метод был совершенноправильным, но неточности при измерении угла оказались велики. Было трудноточно уловить момент первой четвер ти, да и сами измерительные инструментыдревности были далеки от совершенства.

Но это быллишь первый успех замечательного астронома Аристарха Самосского. Ему выпалонаблюдать полное солнечное затмение, когда диск Луны закрыл диск Солнца, т. е.видимые размеры обоих тел на небе были одинаковы. Аристарх перерыл старыеархивы, где нашел много дополнительных сведений о затмениях. Оказалось, что внекоторых случаях солнечные затмения были кольцевыми, т. е. вокруг диска Луныоставался небольшой светящийся ободок от Солнца (наличие полных и кольцевыхзатмений связано с тем, что орбита Луны вокруг Земли является эллипсом). Ноколи видимые диски Солнца и Луны на небе практически одинаковы, рассуждал Аристарх,а Солнце в 19 раз дальше от Земли, чем Луна, то и диаметр его должен быть в 19раз больше. А как соотносятся диаметры Солнца и Земли? По многим данным олунных затмениях Аристарх установил, что лунный диаметр составляет примерноодну треть земного и, следовательно, последний должен быть в 6,5 раз меньшесолнечного. При этом объем Солнца должен в 300 раз превышать объем Земли. Всеэти рассуждения выделяют Аристарха Самосского как выдающегося ученого своеговремени.

теля» Аристотеля. Номожет ли огромное Солнце вращаться вокруг маленькой Земли? Или еще болееогромная Все –

ленная? И Аристотельсказал – нет, не может. Солнце есть центр Вселенной, вокруг него вращаютсяЗемля и планеты, а вокруг Земли вращается только Луна.

А почему наЗемле день сменяется ночью? И на этот вопрос Аристарх дал правильный ответ –Земля не только обращается вокруг Солнца, но и вращается вокруг своей оси.

И еще на одинвопрос он ответил совершенно правильно. Приведем пример с движущимся поездом,когда близкие для пассажира внешние предметы пробегают мимо окна быстрее, чемдалёкие. Земля движется вокруг Солнца, но почему звездный узор остаетсянеизменным? Аристотель ответил: «Потому что звезды невообразимо далеки отмаленькой Земли». Объем сферы неподвижных звезд во столько раз больше объемасферы с радиусом Земля – Солнце во сколько раз объем последней больше объемаземного шара.

Эта новаятеория получила название гелиоцентрической, и суть ее состояла в том, чтонеподвижное Солнце помещалось в центр Вселенной и сфера звезд также считаласьнеподвижной. Архимед в своей книге «Псамит», отрывок из которой приведен вкачестве эпиграфа к данному реферату, точно передал все, что предложилАристарх, но сам предпочел снова «вернуть» Землю на ее старое место. Другиеученые полностью отвергли теорию Аристарха как неправдоподобную, а философ –идеалист Клеант попросту обвинил его в богохульстве. Идеи великого астронома ненашли в то время почвы для дальнейшего развития, они определили развитие наукипримерно на полторы тысячи лет и возродились затем лишь в трудах польскогоученого Николая Коперника.

Древние грекисчитали, что поэзии, музыке, живописи и науке покровительствуют девять муз,которые были дочерями Мнемосины и Зевса. Так, муза Урания покровительствовалаастрономии и изображалась с венцом из звезд и свитком в руках. Музой историисчиталась Клио, музой танцев – Терпсихора, музой трагедий – Мельпомена и т. д.Музы были спутницами бога Аполлона, а их храм носил название музейон – дом муз.Такие храмы строились и в метрополии, и в колониях, но Александрийский музейонстал выдающейся академией наук и искусств древнего мира.

ПтолемейЛаг, будучи человеком настойчивым и желая оставить о себе память в истории, нетолько укрепил государство, но и превратил столицу в торговый центр всегоСредиземноморья, а Музейон – в научный центр эпохи эллинизма. В огромном зданиинаходились библиотека, высшее училище, астрономическая обсерватория, медицинско– анатомическая школа и еще ряд научных подразделений. Музейон былгосударственным учреждением, и его расходы обеспечи –

вались соответствующейстатьей бюджета. Птолемей, как в свое время Ашшурбанипал в Вавилоне, разослалписарей по всей стране для сбора культурных ценностей. Кроме того, каждыйкорабль, заходящий в порт Александрии, обязан был передавать в библиотекуимеющиеся на борту литературные произведения. Ученые из других стран считалидля себя честью работать в научных учреждениях Музейон и оставлять здесь своитруды. На продолжении четырех веков в Александрии трудились астрономы АристархСамосский и Гиппарх, физик и инженер Герон, математики Евклид и Архимед, врачГерофил, астроном и географ Клавдий Птолемей и Эратосфен, который с одинаковымуспехом разбирался в математике, географии, астрономии, и философии.

Но последний был ужескорее исключением, поскольку важной особенностью эллинской эпохи стала«дифференциация» научной деятельности. Здесь любопытно заметить, что подобноевыделение отдельных наук, а в астрономии и специализация по отдельнымнаправлениям, произошло в Древнем Китае значительно раньше.

Другойособенностью эллинской науки было то, что она снова обратилась к природе, т.е.стала сама «добывать» факты. Энциклопедисты Древней Эллады опирались насведения, полученные еще египтянами и вавилонянами, а поэтому занимались лишьпоиском причин, вызывающих те или иные явления. Науке Демокрита, Анаксагора,Платона и Аристотеля в еще большей степени был присущ умозрительный характер,хотя их теории можно рассматривать как первые серьезные попытки человечествапонять устройство природы и всей Вселенной. Александрийские астрономы внимательно следили за движением Луны, планет, Солнца и звезд. Сложностьпланетных движений и богатство звездного мира заставляли их искать отправныеположения, от которых можно было бы начинать планомерные исследования.


« Phaenomena » Евклида и основныеэлементы небесной сферы


Как ужеупоминалось выше, александрийские астрономы попытались определить «отправные»точки для дальнейших систематических исследований. В этом отношении особая заслугапринадлежит математику Евклиду (III в. до н. э.), который в своей книге « Phaenomena » впервые ввел вастрономию понятия, до тех пор в ней не использовавшиеся. Так, он далопределения горизонта – большой окружности, являющейся пересечение плоскости,перпендикулярной к линии отвеса в точке наблюдений, с небесной сферой, а такженебесного экватора – окружности, получающейся при пересечении с этой сферойплоскости земного экватора.

Кроме того, он определил зенит –точку небесной сферы над головой наблюдателя («зенит» – арабское слово) – иточку, противоположную точке зенита, - надир.

И еще про одну окружностьговорил Евклид. Это небес –

ный меридиан - большаяокружность, проходящая через Полюс мира и зенит. Она образуется при пересечениис небесной сферой плоскости, проходящей через ось мира (ось вращения) иотвесную линию (т. е. плоскости, перпендикулярной плоскости земного экватора).Относи –

тельно значения меридиана Евклидговорил, что, когда Солнце пересекает меридиан, в данном месте наступаетполдень и тени предметов оказываются самыми короткими. К востоку от данногоместа полдень на земном шаре уже прошел, а к западу еще не наступил. Как мыпомним, принцип измерения тени гномона на Земле в течение многих столетийлежал в основе конструкций солнечных часов.


Самаяяркая “звезда” александрийского неба .

Ранеемы уже познакомились с результатами деятельности многих астрономов, какизвестных, так и тех,

имена которыхканули в лету. Еще за тридцать столетий до новой эры гелиопольские астрономы вЕгипте с поразительной точностью установили продолжительность года.Кудрявобородые жрецы – астрономы, наблюдавшие небо с вершин вавилонских зиккуратов, смогли начертить путь Солнца среди созвездий – эклиптику, а такженебесные пути Луны и звезд. В далеком и загадочном Китае с высокой точностьюизмерили наклон эклиптики к небесному экватору.

Древнегреческие филосовы посеяли зерна сомнения относительно божественногопроисхождения мира. При Аристархе, Евклиде и Эратосфене астрономия, которая дотого отдавала большую часть астрологии, начала систематизировать своиисследования, встав на твердую почву истинного познания.

И всеже то, что сделал о области астрономии Гиппарх, значительно превосходитдостижения как его предшественников, так и ученых более позднего времени. Сполным основанием Гиппарха называют отцом научной астрономии. Он былчрезвычайно пунктуален в своих исследованиях, многократно проверяя выводыновыми наблюдениями и стремясь к открытию сути явлений, происходящих воВселенной.

Историянауки не знает, где и когда родился Гиппарх; звестно лишь,что наиболее плодотворный период его жизни приходится на время между 160 и 125гг. до н. э.

Большую часть своих исследованийон провел на Александрийской обсерватории, а также на его собственнойобсерватории, построенной на острове Самос.

Еще доГиппархатеории небесных сфер Евдокса и Аристотеля подверглись переосмыслению, вчастности, великим александрийским математиком Аполлонием Пергским (III в. до н. э.),но Земля по-прежнему оставалась в центре орбит всех небесных тел.

Гиппарх продолжилначатую Апполонием разработку теории круговых орбит, но внес в нее своисущественные дополнения, основанные на многолетних наблюдениях. Ранее Калипп,ученик Евдокса, обнаружил, что времена года имеют неодинаковуюпродолжительность. Гиппарх проверил это утверждение и уточнил, чтоастрономическая весна длится 94 и ½ сут, лето - 94 и ½ сут, осень– 88 суток и, наконец, зима продолжается 90 суток. Таким образом, интервалвремени между весенним и осенним равноденствиями (включающий лето) равен 187суток, а интервал от осеннего равноденствия до весеннего (включающий зиму)равен 88 + 90 =178 суток. Следовательно, Солнце движется по эклиптикенеравномерно – летом медленнее, а зимой быстрее. Возможно и другое обьяснениепричины различия, если предположить, что орбита не круг, а вытянутая ”замкнутая кривая (Апполоний Пергский назвал ее элипсом). Однако принятьнеравномерность движения Солнца и отличие орбиты от круговой – это означалоперевернуть вверх ногами все представления, устоявшиеся еще с времен Платона.Поэтому Гиппарх ввел систему эксцентрических окружностей, предположив, чтоСолнце обращается вокруг Земли по круговой орбите, но сама Земля не находится вее центре. Неравномерность в таком случае лишь кажущачся, ибо если Солнценаходится ближе, то возникает впечатление более быстрого его движения, инаоборот.

Однако,для Гиппарха остались загадкой прямые и попятные двидения планет, т.е.происхождение петель, которые планеты описывали на небе. Изменения видимогоблеска планет (особенно для Марса и Венеры) свидетельствовали, что и онидвижутся по эксцентртрическим орбитам, то приближаясь к Земле, то удаляясь отнее и соответственно этому меняя блеск. Но в чем причина прямы и попятныхдвижений? Гиппарх пришел к выводу, что размещение Земли в стороне от центраорбит планет недостаточно для обьяснения этой загадки. Спустя три столетяпоследний из великих александрийцев Клавдий Птоломей отметил, что Гиппархотказался от поисков этом направлении и ограничился лишь систематизациейсобственных наблюдений и наблюдений своих предшественников. Любопытно, что вовремена Гиппарха в астрономии уже существовало понятие эпицикла, введениекоторого приписывают Аполлонию Пергскому. Но так или иначе, Гиппарх не сталзаниматься теорией движения планет.

Зато онуспешно модифицировал метод Аристарха, позволяющий определить расстояние доЛуны и Солнца. Пространственное расположение Солнца, Земли и Луны во времялунного затмения, когда проводились наблюдения.

Гиппархпрославился также своими работами в области исследования звезд. Он, как и егопредшественники, считал, что сфера неподвижных звезд реально существует, т.е.расположенные на ней объекты находятся на одинаковом расстоянии от Земли. Нопочему тогда одни из них ярче других? Потому, считал Гиппарх, что их истинныеразмеры неодинаковы – чем больше звезда, тем она ярче. Он разделил диапозонблеска на шесть величин, от первой – для самых ярких звезд до шестой – длясамых слабых, еще видимых невооруженным глазом (есстественно, телескопов тогдане было). В современной шкале звездных величин различие в одну величинусоответствует различию в интенсивности излучения в 2,5 раза.

В 134году до н.э.в созвездии Скорпиона засияла новая звезда (теперь установлено, чтоновые звезды представляют собой двойные системы, в которых происходит взрыввещества на поверхности одного из компонентов, сопровождаемый быстрымувеличением блеака объекта, с последующим затуханием).Ранее на этом местеничего не было, и поэтому Гиппарх пришел к выводу о необхлдимости созданияточного звезного каталога. С необычайной тщательностью великий астроном измерилэклиптические координаты около 1000 звезд, а также оценил их величины по своейшкале.

Занимаясьэтой работой, он решил проверить и мнение о том, что звезды неподвижны. Точнееговоря, это должны были сделать потомки.Гиппарх составил список звезд,расположенных на одной прямой линии, в надежде, что следующие поколенияастрономов проверят, останется ли эта линия прямой.

Занимаясь составление каталога, Гиппарх сделал замечательное открытие. Онсравнил свои результаты с координатами ряда звезд, измеренными до негоАристилом и Тимохарисом (современники Аристарха Самосского), и обнаружил, чтоэклиптические долготы объектов за 150 лет увеличились примерно на 2º. Приэтом эклиптические широты не изменились. Стало ясно, что причина не всобственных движениях звезд, иначе изменились бы обе координаты, а вперемещении точки весеннего равноденствия, от которой отсчитываетсяэклиптическа долгота, причем в направлении, противоположном движению Солнца поэклиптике. Как известно, точка весеннего равноденствия – это место пересеченияэклиптики с небесным экватором. Поскольку эклиптическая широта не меняется современем, Гиппарх сделал вывод, что причина смещения этой точки состоит вдвижении экватора.

Таким образом, мывправе удивиться необычайной логичности и строгости в научных исследованияхГиппарха, а также их высокой точности. Французкий ученый Деламбр, известныйисследователь древней астрономии, так охарактеризовал его деятельность:” Когда окинешьвзглядом все открытия и усовершенствования Гиппарха, поразмышлишь над числомего трудов и множеством приведенных там вычислений, волей-неволей отнесешь егок самым выдающимся людям древности и, более того, назовешь самым великим срединих. Все достигнутое им относится к области науки, где требуется геометрическиепознания в сочетании с пониманием сущности явлений, которые поддаютсянаблюдениям лишь при условии тщательного изготовления инструментов…


Календарьи звезды

В древнейГреции, как и в странах Востока, в качестве религиозного и гражданскогоиспользовался лунно – солнечный календарь. В нем начало каждого календарногомесяца должно было располагаться как можно ближе к новолунию, а средняяпродолжительность календарного года – по возможности соответствовать промежуткувремени между весенними равноденствиями (“ тропический год ”,как его сейчас называют). При этом месяцы по 30 и 29 дней чередовались. Но 12лунных месяцев примерно на треть месяца короче года. Поэтому, чтобы выполнитьвторое требование, время от времени приходилось прибегать к интеркаляциям –добавлять в отдельные годы дополнительный, тринадцатый, месяц.

Вставкиделались нерегулярно правительством каждого полиса – города-государства. Дляэтого назначались специальные лица, которые следилиза величиной отставаниякалендарного года от солнечного. В разделенной на мелкие государства Грециикалендари имели местное значение – одних названий месяцев в греческом миресуществовало около 400. Математик и музыковед Аристоксен (354-300 до н.э.)писал о календарном беспорядке:” Десятый день месяца у коринфян – этопятый день у афиняни восьмой у кого-нибудь еще

Простой иточный, 19-летний цикл, использовавшийся еще в Вавилоне, предложил в 433 г. дон.э. афинский астроном Метон. Этот цикл предусматривал вставку семидополнительных месяцев за 19 лет; его ошибка не превышала двух часов заодин цикл.

Земледельцы, связанные ссезонными работами, издревле пользовались еще и звездным календарем, который независел от сложных движений Солнца и Луны. Гесиод в поеме Труды и дни ”,указывая своему брату Персу время проведения сельскохозяйственных работ,отмечает их не по лунно-солнечному календарю, а по звездам:

Лишьна востоке начнут восходить

АтлантидыПлеяды,

Жатьпоспешай, а начнут

Заходить-засев принимайся…

Вотвысоко средь неба уж Сириус

Всталс Орионом,

Ужначинает Заря розоперстая

ВидетьАртура,

Режь,о Перс, и домой уноси

Виноградныегроздья…

Таким образом,хорошее знание звездного неба, которым в современном мире мало кто можетпохвастаться, древним грекам было необходимо и, очевидно, широкораспространено. По-видимому, этой науке детей учили в семьях с раннеговозраста. Лунно-солнечный календарь использовался и в Риме. Но здесь царил ещебольший “календарный произвол”. Длина и начало года зависели от понтификов (отлат. Pontifices ),римских жрецов, которые нередко пользовались своим правом в корыстных целях.Такое положение не могло удовлетворить огромную империю, в которую стремительнопревращалось Римское государство. В 46 г. до н.э. Юлий Цезарь (100-44 до н.э.),исполнявший обязанности не только главы государства, но и верховного жреца,провел календарную реформу. Новый календарь по его поручению разработалалександрийский математик и астроном Созиген, по происхождению грек. За основуон взял египедский, чисто солнечный, календарь. Отказ от учета лунных фазпозволил сделать календарь достаточно простым и точным. Этот календарь, названныйюлианнским, использовался в христианском мире до введения в католическихстранах в XVI веке уточненного григорианскогокалендаря.

Летоисчисление поюлианскому календарю началось в 45 году до н.э. На 1 январяперенесли начало года (раньше первым месяцем был март). В благодарность завведение календаря сенат постановил переименовать месяц квинтилис (пятый), вкотором родился Цезарь, в юлиус – наш июль. В 8 году до н.э. честь следующегоимператора, Октивиана Августа, месяц секстилис(шестой), был переименован вавгуст.Когда Тиберию, третьему принцепсу (императору), сенаторы предложилиназватьего именем месяц септембр (седьмой), он будто бы отказался, ответив:”Ачто будет делать тринадцатый принцепс?”

Новыйкалендарь оказался чисто гражданским, религиозные праздники в силу традициипо-прежнему справлялисьв соответствии с фазами Луны. И в настоящее времяпраздник Пасхи согласовывается с лунным календарем, причем для расчета егодаты используется цикл, предложенный еще Метоном.


Заключение


В далекомсредневековье Бернард Шартрский говорил ученикам золотые слова:”Мы подобнокарликам, усевшимся на плечах великанов; мы видим больше и дальше, чемони, не потому, что обладаем лучшим зрением, и не потому, что мы выше их, нопотому, что они нас подняли и увеличили наш рост своим величием. Астрономылюбых эпох всегда опирались на плечи предшествующих великанов.

Античная астрономия занимаетв истории науки особое место. Именно в древней Греции были заложены основысовременного научного мышления. За семь с половиной столетий от Фалеса иАнаксимандра, сделавших первые шаги в осмыслении Вселенной, до КлавдияПтолемея, создавшего математическую теорию движения светил, античные ученыепрошли огромный путь, на котором у них не было предшественников. Астрономыантичности использовали данные, полученные задолго до них в Вавилоне. Однакодля их обработки они создали совершенно новые математические методы, которыебыли взяты на вооружение средневековыми арабскими, а позднее и европейскимиастрономами.

В 1922 МеждународныйАстрономический Съезд утвердил 88 международных названий созвездий, тем самымувековечил память о древнегреческих мифах, в честь которых были названысозвездия: Персей, Андромеда, Геркулес и т.д. (около 50-ти созвездий).Значениедревнегреческой науки подчеркивают слова: планета, комета, галактика и самослово Астрономия.


Списокиспользованной литературы

1. Энциклопедия длядетей ”.Астрономия. (М. Аксенова, В. Цветков, А. Засов, 1997)

2. Звездочетыдревности ”. (Н. Николов, В. Харалампиев, 1991)

3. ОткрытиеВселенной-прошлое, настоящее, будущее ”. (А. Потупа,1991)

4. ГоризонтыОйкумены ”. (Ю. Гладкий, Ал. Григорьев, В. Ягья, 1990)

5. Астрономия,11 класс. (Е. Левитан, 1994)


План защитыреферата

Экзаменационный реферат

«Астрономия

Древней Греции»



Выполнила

Ученица 11а класса

Пересторонина Маргарита


Преподаватель

Жбанникова Татьяна Владимировна


План
I Вступление.

II Астрономия древних греков.

1. На пути к истине, через познание.

2. Аристотель и геоцентрическая система мира.

3. Тот самый Пифагор.

4. Первый гелиоцентрист.

5. Труды Александрийских астрономов

6. Аристарх: совершенный метод (истинные его труды и успехи; рассуждения выдающегося ученого; великая теория - неудача, как следствие);

7. “Phaenomena” Евклида и основные элементы небесной сферы.

9. Календарь и звезды древней греции.

III Заключение: роль астрономов древней Греции.


Вступление

…Аристарх Самосский в своих «Предложениях»-

допускал, что звезды, Солнце не изменяют

своего положения в пространстве, что Земля

движется по окружности около Солнца,

находящегося в центре ее пути, и что

центр сферы неподвижных звезд

совпадает с центром Солнца.

Архимед. Псамит.

Оценивая проделанный человечеством путь в поисках истины о Земле, мы вольно или невольно обращаемся к древним грекам. Многое зародилось у них, но и через них немало дошло до нас от других народов. Так распорядилась история: научные представления и территориальные открытия египтян, шумеров и прочих древневосточных народов нередко сохранились лишь в памяти греков, а от них стали известны последующим поколениям. Яркий пример тому - подробные известия о финикийцах, населявших узкую полосу восточного побережья Средиземного моря и в ІІ-І тысячелетиях до н. э. открывших Европу и приморские районы Северо-западной Африки. Страбон, римский ученый и грек по происхождению, в своей семнадцатитомной «Географии» написал: «До настоящего времени эллины многое заимствуют у египетских жрецов и халдеев». А ведь Страбон скептически относился к своим предшественникам, в том числе и к египтянам.

Расцвет греческой цивилизации приходится на период между VI веком до н.э. и серединой II века до н. э. Хронологически он почти совпадает со временем существования классической Греции и эллинизма. Это время с учетом нескольких столетий, когда поднялась, процветала и погибла Римская империя, называется античным Его исходным рубежом принято считать VII-II века до н.э., когда быстро развивались полисы-греческие города-государства. Эта форма государственного устройства стала отличительной чертой греческого мира.

Развитие знаний у греков не имеет аналогов истории того времени. Масштабы постижения наук можно представить хотя бы по тому факту, что менее чем за три столетия (!) прошла свой путь греческая математика – от Пифагора до Евклида, греческая астрономия – от Фалеса до Евклида, греческое естествознание – от Анаксимандра до Аристотеля и Феофраста, греческая география – от Геккатея Милетского до Эратосфена и Гиппарха и т. д..

Открытие новых земель, сухопутные или морские странствия, военные походы, перенаселения в благодатные районы – все это нередко мифологизировалось. В поэмах с присущим грекам художественным мастерством мифическое соседствовало с реальным. В них излагались научные познания, сведения о природе вещей, а также географические данные. Впрочем, последние порой бывает трудно идентифицировать с сегодняшними представлениями. И, тем не менее, они – показатель широких воззрений греков на ойкумену.

Греки уделяли большое внимание конкретно – географическому познанию Земли. Даже во время военных походов их не покидало желание записать все то, что видели в покоренных странах. В войсках Александра Македонского выделили даже специальных шагомеров, которые подсчитывали пройденные расстояния, составляли описание маршрутов движения и наносили их на карту. На основе полученных ими данных Дикеарх, ученик знаменитого Аристотеля, составил подробную карту тогдашней по его представлению ойкумены.

…Простейшие картографические рисунки были известны еще в первобытном обществе, задолго до появления письменности. Об этом позволяют судить наскальные рисунки. Первые карты появились в Древнем Египте. На глиняных табличках наносились контуры отдельных территорий с обозначением некоторых объектов. Не позднее 1700 года до н. е. египтяне составили карту освоенной двух тысячекилометровой части Нила.

Картографированием местности занимались также вавилоняне, ассирийцы и другие народы Древнего востока

Какой же виделась Земля? Какое они отводили себе место на ней? Каковы были их представления об ойкумене?

Астрономия древних греков

В греческой науке твердо установилось мнение (с различными, конечно, вариациями), что Земля подобна плоскому или выпуклому диску, окруженному океаном. От этой точки зрения многие греческие мыслители не отказались даже тогда, когда в эпоху Платона и Аристотеля, казалось, возобладали представления о шарообразности Земли. Увы, уже в те далекие времена прогрессивная идея пробивала себе дорогу с большим трудом, требовала от своих сторонников жертв, но, к счастью, тогда еще «не казался ересью талант», а «в аргументах не ходил сапог».

Идея диска (барабана или даже цилиндра) была очень удобна для подтверждения широко распространенного убеждения о срединном положении Эллады. Она же была вполне приемлема для изображения суши, плавающей в океане.

В пределах дискообразной (а позднее шарообразной) Земли выделялась ойкумена. Что по – древнегречески означает вся обитаемая земля, вселенная. Обозначение одним словом двух, казалось бы, разных понятий (для греков тогда они представлялись одно-порядковыми) глубоко симптоматично.

О Пифагоре (VI век до н.э.) сохранилось мало достоверных сведений. Известно, что родился он на острове самос; вероятно, в молодости посетил Милет, где учился у Анаксимандра; может быть, совершил и более далекие путешествия. Уже в зрелом возрасте философ переселился в город Кротон и основал там нечто вроде религиозного одена – Пифагорейское братство, которое распространило свое влияние на многие греческие города Южной Италии. Жизнь братства была окружена тайной. О его основателе Пифагоре ходили легенды, которые, по-видимому, имели под собой какую-то основу: великий ученый был не менее великим политиком и провидцем.

Основой учения Пифагора была вера в переселение душ и гармоничное устройство мира. Он полагал, что душу очищает музыка и умственный труд, поэтому пифагорейцы считали обезательным совершествование в “четырех искусствах” – арифметике, музыке, геометрии и астрономии. Сам Пифагор является основоположником теории чисел, а доказанная им теорема известна сегодня каждому школьнику. И если Анаксагор и Демокрит в своих взглядах на мир развивали идею Анаксимандра о физических причинах природных явлений, то Пифагор разделял его убежденность в математической гармонии космоса.

Пифагорейцы властвовали в греческих городах Италии несколько десятилетий, потом были разгромлены и отошли от политики. Однако многое из того, что вдохнул в них Пифагор, осталось жить и оказало огромное влияние на науку. Сейчас очень трудно отделить вклад самого Пифагора от достижений его последователей. В особенности это относится к астрономии, в которой было выдвинуто несколько принципиально новых идей. О них можно судить по дошедшим до нас скудным сведениям о представлениях поздних пифагорейцев и учениями философов, испытавших влияние идей Пифагора.


Аристотель и первая научная картина мира

Аристотель родился в македонском городе Стагира в семье придворного лекаря. Семнадцатилетниим юношей попадает он в Афины, где становится учеником Академии, основанной философом Платоном.

Сначала система Платона увлекала Аристотеля, но постепенно он пришел к выводу, что взгляды учителя уводят от истины. И тогда Аристотель ушел из Академии, бросив знаменитую фразу: ”Платон мне друг, но истина дороже”. Император Филипп Македонский приглашает Аристотеля стать воспитателем наследника престола. Философ соглашается и три года нетлучно находится возле будущего основателя великой империи Александра Македонского. В шестнадцать лет его ученик возглавил войско отца и, разбив фиванцев в своей первой битве при Херонее, отправился в походы.

Снова Аристотель переезжает в Афины, и в одном из районов, под названием Ликей, открывает школу. Он много пишет. Его сочинения настолько разнообразны, что трудно представить себе Аристотеля одиноким мыслителем. Скорее всего, в эти годы он выступал как глава большой школы, где ученики работали под его руководством, подобно тому как сегодня аспиранты разрабатывают темы, которые предлагают им руководители.

Много внимания уделял греческий философ вопросам строения мира. Аристотель был убежден, что в центре Вселенной, безусловно, находится Земля.

Аристотель пытался все объяснить причинами, которые близки здравому смыслу наблюдателя. Так, наблюдая Луну, он заметил, что в различных фазах она в точности соответствует тому виду, который принимал бы шар, с одной стороны освещаемый Солнцем. Столь же строго и логично было его доказательство шарообразности Земли. Обсудив все возможные причины затмения Луны, аристотель приходит в выводу, что тень на ее поверхности может принадлежать только Земле. А поскольку тень кругла, то и тело, отбрасывающее её, должно иметь такую же форму. Но Аристотель им не ограничивается. “Почему, - спрашивает он, - когда мы перемещаемся к северу или к югу, созвездия меняют свои положения относительно горизонта?” И тут же отвечает: “Потому, что Земля обладает кривизной ”. Действительно, будь Земля плоской, где бы ни находился наблюдатель, у него над головой сияли бы одни и теже созвездия. Совсем другое дело – на круглой Земле. Здесь у каждого наблюдателя свой горизонт, свой горизонт, своё небо… Однако, признавая шарообразность Земли, Аристотель категорически высказывался против возможности ее обращения вокруг Солнца. “Будь так, - рассуждал он, - нам казалось бы что звезды не находятся неподвижно на небесной сфере, а описывают кружки…” Это было серьезное возражение, пожалуй, самое серьезное, которое удалось устранить лишь много-много веков спустя, в XIX столетии.

Об Аристотеле написано очень много. Авторитет этого философа невероятно высок. И это вполне заслужено. Потому что, несмотря на довольно многочисленные ошибки и заблуждения, в своих сочинениях Аристотель собрас все, чего добился разум за период античной цивилизации. Его сочинения – настоящая энциклопедия современной ему науки.

По свидетельству современников, великий философ отличался неважным характером. Портрет, дошедший до нас, представляет нам малорослого, сухощавого человека с вечно язвительной усмешкой на губах.

Говорил он кортаво.

В отношениях с людьми был холоден и надменен.

Но вступать с ним в спор решались немногие. Остроумная, злая и насмешливая речь Аристотеля разила наповал. Он разбивал возводимые против него доводы ловко, логично и жестоко, что, конечно, не прибавляло ему сторонников среди побежденных.

После смерти Александра Македонского обиженные почувствовали, наконец, реальную возможность расквитаться с философом и обвинили его в безбожии. Судьба Аристотеля была предрешена. Не дожидаясь приговора, Аристотель бежит из Афин. “Чтобы избывить афинян от нового преступления против философии”, - говорит он, намекая на сходжную судьбу Сократа, получившего по приговору чашу с ядовитым соком цикуты.

После отъезда из Афин в Малую Азию Аристотель скоро умирает, отравивщись во время трапезы. Так говорит легенда.

Согласно преданию, Аристотель завещал свои рукописи одному из учеников по имени Феофраст.

По смерти философа за его трудами начинается настоящая охота. В те годы книги сами по себе были драгоценностью. Книги же Аристотеля ценились дороже золота. Они переходили из рук в руки. Их прятали в погреба. Замуровывали в подвалы, чтобы сохранить от жадности пергамских царей. Сырость портила их страницы. Уже при римском владычестве сочинения Аристотеля в качестве военной добычи попадают в Рим. Здесь их продают любителям – богачам. Кое-кто старается восстановить пострадавшие места рукописей, снабдить их своими добавлениями, от чего текст, конечно, не становится лучше.

Почему жетак ценились труды Аристотеля? Ведь в книгах других греческих философов встречались мысли более оригинальные. На этот вопрос отвечает английский философ и физик Джон Бернал. Вот что он пишет: ”Их(древнегреческих мыслителей) никто не мог понять, кроме очень хорошо подготовленных и искушенных читателей. А труды Аристотеля, при всей их громоздкости, не требовали (или казалось, что не требовали) для их понимания ничего, кроме здравого смысла…Для проверки его наблюдений не было необходимости в опытах или приборах, не нужны были и трудные математические вычисления или мистическая интуиция для понимания какого бы то ни было внутреннего смысла…Аристотель объяснял, что мир такой, каким все его знают, именно такой, каким они его знают”.

Пройдет время, и авторитет Аристотеля станет безоговорочным. Если на диспуте один философ, подтверждая свои доводы, сошлется на его труды, это будет значить, что доводы, безусловно, верны. И тогда второй спорщик должен найти в сочинениях того же Аристотеля другую цитату, с помощью которой можно опровергнуть первую.…Лишь Аристотель против Аристотеля. Дркгие доводы против цитат были бессильны.Такой метод спора называется догматическим, и в нем, конечно, нет ни грамма пользы или истины….Но должно было пройти много веков, прежде чем люди поняли это и поднялись на борьбу с мертвой схоластикой и догматизмом. Эта борьба возродила науки, возродила искусство и дала название эпохи – Возрождение.

Первый гелиоцентрист

В древности вопрос о том, движется ли Земля вокруг Солнца, был попросту богохульным. Как знаменитые ученые, так и простые люди, у которых картина неба не вызывала особых размышлений, были искренне убеждены, что Земля неподвижна и представляет собой центр Вселенной. Тем не менее, современные историки могут назвать по меньшей мере одного ученого древности, который усомнился в общепринятом и попытался разработать теорию, согласно которой Земля движется вокруг Солнца.

Жизнь Аристарха Самосского (310 – 250 гг. до н.э.) была тесно связана с Александрийской библиотекой. Сведения о нем весьма скудны, а из творческого наследия осталась только книга «О размерах Солнца и Луны и расстояниях до них», написанная в 265 г. до н.э. Лишь упоминания о нем других ученых Александрийской школы, а позднее и римлян, проливают некоторый свет на его «богохульные» научные изыскания.

Аристарх задался вопросом о том, какого расстояние от Земли до небесных тел, и каковы их размеры. До него на этот вопрос пытались ответить пифагорейцы, но они исходили из произвольных предложений. Так, Филолай считал, что расстояния между планетами и Землей нарастают в геометрической прогрессии и каждая следующая планета в три раза дальше от Земли, чем предыдущая.

Аристарх пошел своим путем, совершенно правильным точки зрения современной науки. Он внимательно следил за Луной и сменой ее фаз. В момент наступления фазы первой четверти он измерил угол между Луной, Землей и Солнцем (угол ЛЗС на рис.). Если это сделать достаточно точно, то в задаче останутся только вычисления. В этот момент Земля, Луна и Солнце образуют прямоугольный треугольник, а, как известно из геометрии, сумма углов в нем составляет 180 градусов. В таком случае второй острый угол Земля – Солнце – Луна (угол ЗСЛ) получается равным

90˚ - Ð ЛЗС = Ð ЗСЛ


Определение расстояния от Земли до Луны и Солнца методом Аристарха.

Аристарх из своих измерений и вычислений получил, что этот угол равен 3º (в действительности его значение 10’) и что Солнце в 19 раз дальше от Земли, чем Луна (в действительности в 400 раз). Здесь надо простить ученому значительную ошибку, ибо метод был совершенно правильным, но неточности при измерении угла оказались велики. Было трудно точно уловить момент первой четвер ти, да и сами измерительные инструменты древности были далеки от совершенства.

Но это был лишь первый успех замечательного астронома Аристарха Самосского. Ему выпало наблюдать полное солнечное затмение, когда диск Луны закрыл диск Солнца, т. е. видимые размеры обоих тел на небе были одинаковы. Аристарх перерыл старые архивы, где нашел много дополнительных сведений о затмениях. Оказалось, что в некоторых случаях солнечные затмения были кольцевыми, т. е. вокруг диска Луны оставался небольшой светящийся ободок от Солнца (наличие полных и кольцевых затмений связано с тем, что орбита Луны вокруг Земли является эллипсом). Но коли видимые диски Солнца и Луны на небе практически одинаковы, рассуждал Аристарх, а Солнце в 19 раз дальше от Земли, чем Луна, то и диаметр его должен быть в 19 раз больше. А как соотносятся диаметры Солнца и Земли? По многим данным о лунных затмениях Аристарх установил, что лунный диаметр составляет примерно одну треть земного и, следовательно, последний должен быть в 6,5 раз меньше солнечного. При этом объем Солнца должен в 300 раз превышать объем Земли. Все эти рассуждения выделяют Аристарха Самосского как выдающегося ученого своего времени.

теля» Аристотеля. Но может ли огромное Солнце вращаться вокруг маленькой Земли? Или еще более огромная Все –

ленная? И Аристотель сказал – нет, не может. Солнце есть центр Вселенной, вокруг него вращаются Земля и планеты, а вокруг Земли вращается только Луна.

А почему на Земле день сменяется ночью? И на этот вопрос Аристарх дал правильный ответ – Земля не только обращается вокруг Солнца, но и вращается вокруг своей оси.

И еще на один вопрос он ответил совершенно правильно. Приведем пример с движущимся поездом, когда близкие для пассажира внешние предметы пробегают мимо окна быстрее, чем далёкие. Земля движется вокруг Солнца, но почему звездный узор остается неизменным? Аристотель ответил: «Потому что звезды невообразимо далеки от маленькой Земли». Объем сферы неподвижных звезд во столько раз больше объема сферы с радиусом Земля – Солнце во сколько раз объем последней больше объема земного шара.

Эта новая теория получила название гелиоцентрической, и суть ее состояла в том, что неподвижное Солнце помещалось в центр Вселенной и сфера звезд также считалась неподвижной. Архимед в своей книге «Псамит», отрывок из которой приведен в качестве эпиграфа к данному реферату, точно передал все, что предложил Аристарх, но сам предпочел снова «вернуть» Землю на ее старое место. Другие ученые полностью отвергли теорию Аристарха как неправдоподобную, а философ – идеалист Клеант попросту обвинил его в богохульстве. Идеи великого астронома не нашли в то время почвы для дальнейшего развития, они определили развитие науки примерно на полторы тысячи лет и возродились затем лишь в трудах польского ученого Николая Коперника.

Древние греки считали, что поэзии, музыке, живописи и науке покровительствуют девять муз, которые были дочерями Мнемосины и Зевса. Так, муза Урания покровительствовала астрономии и изображалась с венцом из звезд и свитком в руках. Музой истории считалась Клио, музой танцев – Терпсихора, музой трагедий – Мельпомена и т. д. Музы были спутницами бога Аполлона, а их храм носил название музейон – дом муз. Такие храмы строились и в метрополии, и в колониях, но Александрийский музейон стал выдающейся академией наук и искусств древнего мира.

Птолемей Лаг, будучи человеком настойчивым и желая оставить о себе память в истории, не только укрепил государство, но и превратил столицу в торговый центр всего Средиземноморья, а Музейон – в научный центр эпохи эллинизма. В огромном здании находились библиотека, высшее училище, астрономическая обсерватория, медицинско – анатомическая школа и еще ряд научных подразделений. Музейон был государственным учреждением, и его расходы обеспечи –

вались соответствующей статьей бюджета. Птолемей, как в свое время Ашшурбанипал в Вавилоне, разослал писарей по всей стране для сбора культурных ценностей. Кроме того, каждый корабль, заходящий в порт Александрии, обязан был передавать в библиотеку имеющиеся на борту литературные произведения. Ученые из других стран считали для себя честью работать в научных учреждениях Музейон и оставлять здесь свои труды. На продолжении четырех веков в Александрии трудились астрономы Аристарх Самосский и Гиппарх, физик и инженер Герон, математики Евклид и Архимед, врач Герофил, астроном и географ Клавдий Птолемей и Эратосфен, который с одинаковым успехом разбирался в математике, географии, астрономии, и философии.

Но последний был уже скорее исключением, поскольку важной особенностью эллинской эпохи стала «дифференциация» научной деятельности. Здесь любопытно заметить, что подобное выделение отдельных наук, а в астрономии и специализация по отдельным направлениям, произошло в Древнем Китае значительно раньше.

Другой особенностью эллинской науки было то, что она снова обратилась к природе, т.е. стала сама «добывать» факты. Энциклопедисты Древней Эллады опирались на сведения, полученные еще египтянами и вавилонянами, а поэтому занимались лишь поиском причин, вызывающих те или иные явления. Науке Демокрита, Анаксагора, Платона и Аристотеля в еще большей степени был присущ умозрительный характер, хотя их теории можно рассматривать как первые серьезные попытки человечества понять устройство природы и всей Вселенной. Александрийские астрономы внимательно следили за движением Луны, планет, Солнца и звезд. Сложность планетных движений и богатство звездного мира заставляли их искать отправные положения, от которых можно было бы начинать планомерные исследования.


«Phaenomena» Евклида и основные элементы небесной сферы


Как уже упоминалось выше, александрийские астрономы попытались определить «отправные» точки для дальнейших систематических исследований. В этом отношении особая заслуга принадлежит математику Евклиду (III в. до н. э.), который в своей книге «Phaenomena» впервые ввел в астрономию понятия, до тех пор в ней не использовавшиеся. Так, он дал определения горизонта – большой окружности, являющейся пересечение плоскости, перпендикулярной к линии отвеса в точке наблюдений, с небесной сферой, а также небесного экватора – окружности, получающейся при пересечении с этой сферой плоскости земного экватора.

Кроме того, он определил зенит – точку небесной сферы над головой наблюдателя («зенит» – арабское слово) – и точку, противоположную точке зенита, - надир.

И еще про одну окружность говорил Евклид. Это небес –

ный меридиан - большая окружность, проходящая через Полюс мира и зенит. Она образуется при пересечении с небесной сферой плоскости, проходящей через ось мира (ось вращения) и отвесную линию (т. е. плоскости, перпендикулярной плоскости земного экватора). Относи –

тельно значения меридиана Евклид говорил, что, когда Солнце пересекает меридиан, в данном месте наступает полдень и тени предметов оказываются самыми короткими. К востоку от данного места полдень на земном шаре уже прошел, а к западу еще не наступил. Как мы помним, принцип измерения тени гномона на Земле в течение многих столетий лежал в основе конструкций солнечных часов.


Самая яркая “звезда” александрийского неба.

Ранее мы уже познакомились с результатами деятельности многих астрономов, как известных, так и тех,

имена которых канули в лету. Еще за тридцать столетий до новой эры гелиопольские астрономы в Египте с поразительной точностью установили продолжительность года. Кудрявобородые жрецы – астрономы, наблюдавшие небо с вершин вавилонских зиккуратов, смогли начертить путь Солнца среди созвездий – эклиптику, а также небесные пути Луны и звезд. В далеком и загадочном Китае с высокой точностью измерили наклон эклиптики к небесному экватору.

Древнегреческие филосовы посеяли зерна сомнения относительно божественного происхождения мира. При Аристархе, Евклиде и Эратосфене астрономия, которая до того отдавала большую часть астрологии, начала систематизировать свои исследования, встав на твердую почву истинного познания.

И все же то, что сделал о области астрономии Гиппарх, значительно превосходит достижения как его предшественников, так и ученых более позднего времени. С полным основанием Гиппарха называют отцом научной астрономии. Он был чрезвычайно пунктуален в своих исследованиях, многократно проверяя выводы новыми наблюдениями и стремясь к открытию сути явлений, происходящих во Вселенной.

История науки не знает, где и когда родился Гиппарх; звестно лишь, что наиболее плодотворный период его жизни приходится на время между 160 и 125 гг. до н. э.

Большую часть своих исследований он провел на Александрийской обсерватории, а также на его собственной обсерватории, построенной на острове Самос.

Еще до Гиппархатеории небесных сфер Евдокса и Аристотеля подверглись переосмыслению, в частности, великим александрийским математиком Аполлонием Пергским (III в. до н. э.), но Земля по-прежнему оставалась в центре орбит всех небесных тел.

Гиппарх продолжил начатую Апполонием разработку теории круговых орбит, но внес в нее свои существенные дополнения, основанные на многолетних наблюдениях. Ранее Калипп, ученик Евдокса, обнаружил, что времена года имеют неодинаковую продолжительность. Гиппарх проверил это утверждение и уточнил, что астрономическая весна длится 94 и ½ сут, лето - 94 и ½ сут, осень – 88 суток и, наконец, зима продолжается 90 суток. Таким образом, интервал времени между весенним и осенним равноденствиями (включающий лето) равен 187 суток, а интервал от осеннего равноденствия до весеннего (включающий зиму) равен 88 + 90 =178 суток. Следовательно, Солнце движется по эклиптике неравномерно – летом медленнее, а зимой быстрее. Возможно и другое обьяснение причины различия, если предположить, что орбита не круг, а “вытянутая” замкнутая кривая (Апполоний Пергский назвал ее элипсом). Однако принять неравномерность движения Солнца и отличие орбиты от круговой – это означало перевернуть вверх ногами все представления, устоявшиеся еще с времен Платона. Поэтому Гиппарх ввел систему эксцентрических окружностей, предположив, что Солнце обращается вокруг Земли по круговой орбите, но сама Земля не находится в ее центре. Неравномерность в таком случае лишь кажущачся, ибо если Солнце находится ближе, то возникает впечатление более быстрого его движения, и наоборот.

Однако, для Гиппарха остались загадкой прямые и попятные двидения планет, т.е. происхождение петель, которые планеты описывали на небе. Изменения видимого блеска планет (особенно для Марса и Венеры) свидетельствовали, что и они движутся по эксцентртрическим орбитам, то приближаясь к Земле, то удаляясь от нее и соответственно этому меняя блеск. Но в чем причина прямы и попятных движений?Гиппарх пришел к выводу, что размещение Земли в стороне от центра орбит планет недостаточно для обьяснения этой загадки. Спустя три столетя последний из великих александрийцев Клавдий Птоломей отметил, что Гиппарх отказался от поисков этом направлении и ограничился лишь систематизацией собственных наблюдений и наблюдений своих предшественников. Любопытно, что во времена Гиппарха в астрономии уже существовало понятие эпицикла, введение которого приписывают Аполлонию Пергскому. Но так или иначе, Гиппарх не стал заниматься теорией движения планет.

Зато он успешно модифицировал метод Аристарха, позволяющий определить расстояние до Луны и Солнца. Пространственное расположение Солнца, Земли и Луны во время лунного затмения, когда проводились наблюдения.

Гиппарх прославился также своими работами в области исследования звезд. Он, как и его предшественники, считал, что сфера неподвижных звезд реально существует,т.е. расположенные на ней объекты находятся на одинаковом расстоянии от Земли. Но почему тогда одни из них ярче других? Потому, считал Гиппарх, что их истинные размеры неодинаковы – чем больше звезда, тем она ярче. Он разделил диапозон блеска на шесть величин, от первой – для самых ярких звезд до шестой – для самых слабых, еще видимых невооруженным глазом (есстественно, телескопов тогда не было). В современной шкале звездных величин различие в одну величину соответствует различию в интенсивности излучения в 2,5 раза.

В 134 году до н.э.в созвездии Скорпиона засияла новая звезда (теперь установлено, что новые звезды представляют собой двойные системы, в которых происходит взрыв вещества на поверхности одного из компонентов, сопровождаемый быстрым увеличением блеака объекта, с последующим затуханием).Ранее на этом месте ничего не было, и поэтому Гиппарх пришел к выводу о необхлдимости создания точного звезного каталога. С необычайной тщательностью великий астроном измерил эклиптические координаты около 1000 звезд, а также оценил их величины по своей шкале.

Занимаясь этой работой, он решил проверить и мнение о том, что звезды неподвижны. Точнее говоря, это должны были сделать потомки.Гиппарх составил список звезд, расположенных на одной прямой линии, в надежде, что следующие поколения астрономов проверят, останется ли эта линия прямой.

Занимаясь составление каталога, Гиппарх сделал замечательное открытие. Он сравнил свои результаты с координатами ряда звезд, измеренными до него Аристилом и Тимохарисом (современники Аристарха Самосского), и обнаружил, что эклиптические долготы объектов за 150 лет увеличились примерно на 2º. При этом эклиптические широты не изменились. Стало ясно, что причина не в собственных движениях звезд, иначе изменились бы обе координаты, а в перемещении точки весеннего равноденствия, от которой отсчитывается эклиптическа долгота, причем в направлении, противоположном движению Солнца по эклиптике. Как известно, точка весеннего равноденствия – это место пересечения эклиптики с небесным экватором. Поскольку эклиптическая широта не меняется со временем, Гиппарх сделал вывод, что причина смещения этой точки состоит в движении экватора.

Таким образом,мы вправе удивиться необычайной логичности и строгости в научных исследованиях Гиппарха, а также их высокой точности. Французкий ученый Деламбр, известный исследователь древней астрономии, так охарактеризовал его деятельность:”Когда окинешь взглядом все открытия и усовершенствования Гиппарха, поразмышлишь над числом его трудов и множеством приведенных там вычислений, волей-неволей отнесешь его к самым выдающимся людям древности и, более того, назовешь самым великим среди них. Все достигнутое им относится к области науки, где требуется геометрические познания в сочетании с пониманием сущности явлений, которые поддаются наблюдениям лишь при условии тщательного изготовления инструментов…”


Календарь и звезды

В древней Греции, как и в странах Востока, в качестве религиозного и гражданского использовался лунно – солнечный календарь. В нем начало каждого календарного месяца должно было располагаться как можно ближе к новолунию, а средняя продолжительность календарного года – по возможности соответствовать промежутку времени между весенними равноденствиями (“тропический год”, как его сейчас называют). При этом месяцы по 30 и 29 дней чередовались. Но 12 лунных месяцев примерно на треть месяца короче года. Поэтому, чтобы выполнить второе требование, время от времени приходилось прибегать к интеркаляциям – добавлять в отдельные годы дополнительный, тринадцатый, месяц.

Вставки делались нерегулярно правительством каждого полиса – города-государства. Для этого назначались специальные лица, которые следилиза величиной отставания календарного года от солнечного. В разделенной на мелкие государства Греции календари имели местное значение – одних названий месяцев в греческом мире существовало около 400. Математик и музыковед Аристоксен (354-300 до н.э.) писал о календарном беспорядке:”Десятый день месяца у коринфян – это пятый день у афиняни восьмой у кого-нибудь еще”

Простой и точный, 19-летний цикл, использовавшийся еще в Вавилоне, предложил в 433 г. до н.э. афинский астроном Метон. Этот цикл предусматривал вставку семи дополнительных месяцев за 19 лет;его ошибка не превышала двух часов за один цикл.

Земледельцы, связанные с сезонными работами, издревле пользовались еще и звездным календарем, который не зависел от сложных движений Солнца и Луны. Гесиод в поеме “Труды и дни”, указывая своему брату Персу время проведения сельскохозяйственных работ, отмечает их не по лунно-солнечному календарю, а по звездам:

Лишь на востоке начнут восходить

Атлантиды Плеяды,

Жать поспешай, а начнут

Заходить-за сев принимайся…

Вот высоко средь неба уж Сириус

Встал с Орионом,

Уж начинает Заря розоперстая

Видеть Артура,

Режь, о Перс, и домой уноси

Виноградные гроздья…

Таким образом, хорошее знание звездного неба, которым в современном мире мало кто может похвастаться, древним грекам было необходимо и, очевидно, широко распространено. По-видимому, этой науке детей учили в семьях с раннего возраста. Лунно-солнечный календарь использовался и в Риме. Но здесь царил еще больший “календарный произвол”. Длина и начало года зависели от понтификов (от лат. Pontifices), римских жрецов, которые нередко пользовались своим правом в корыстных целях. Такое положение не могло удовлетворить огромную империю, в которую стремительно превращалось Римское государство. В 46 г. до н.э. Юлий Цезарь (100-44 до н.э.), исполнявший обязанности не только главы государства, но и верховного жреца, провел календарную реформу. Новый календарь по его поручению разработал александрийский математик и астроном Созиген, по происхождению грек. За основу он взял египедский, чисто солнечный, календарь. Отказ от учета лунных фаз позволил сделать календарь достаточно простым и точным. Этот календарь, названный юлианнским, использовался в христианском мире до введения в католических странах в XVI веке уточненного григорианского календаря.

Летоисчисление по юлианскому календарю началось в 45 году до н.э. На 1 января перенесли начало года (раньше первым месяцем был март). В благодарность за введение календаря сенат постановил переименовать месяц квинтилис (пятый), в котором родился Цезарь, в юлиус – наш июль. В 8 году до н.э. честь следующего императора, Октивиана Августа, месяц секстилис(шестой), был переименован в август.Когда Тиберию, третьему принцепсу (императору), сенаторы предложили назватьего именем месяц септембр (седьмой), он будто бы отказался, ответив:”А что будет делать тринадцатый принцепс?”

Новый календарь оказался чисто гражданским, религиозные праздники в силу традиции по-прежнему справлялисьв соответствии с фазами Луны. И в настоящее время праздник Пасхи согласовывается с лунным календарем, причем для расчета его даты используется цикл, предложенный еще Метоном.


Заключение


В далеком средневековье Бернард Шартрский говорил ученикам золотые слова:”Мы подобно карликам, усевшимся на плечах великанов; мы видим больше и дальше, чем они, не потому, что обладаем лучшим зрением, и не потому, что мы выше их, но потому, что они нас подняли и увеличили наш рост своим величием. Астрономы любых эпох всегда опирались на плечи предшествующих великанов.

Античная астрономия занимает в истории науки особое место. Именно в древней Греции были заложены основы современного научного мышления. За семь с половиной столетий от Фалеса и Анаксимандра, сделавших первые шаги в осмыслении Вселенной, до Клавдия Птолемея, создавшего математическую теорию движения светил, античные ученые прошли огромный путь, на котором у них не было предшественников. Астрономы античности использовали данные, полученные задолго до них в Вавилоне. Однако для их обработки они создали совершенно новые математические методы, которые были взяты на вооружение средневековыми арабскими, а позднее и европейскими астрономами.

В 1922 Международный Астрономический Съезд утвердил 88 международных названий созвездий, тем самым увековечил память о древнегреческих мифах, в честь которых были названы созвездия: Персей, Андромеда, Геркулес и т.д. (около 50-ти созвездий).Значение древнегреческой науки подчеркивают слова: планета, комета, галактика и само слово Астрономия.


Список использованной литературы

1. “Энциклопедия для детей”. Астрономия. (М. Аксенова, В. Цветков, А. Засов, 1997)

2. “Звездочеты древности”. (Н. Николов, В. Харалампиев, 1991)

3. “Открытие Вселенной-прошлое, настоящее, будущее”. (А. Потупа, 1991)

4. “Горизонты Ойкумены”. (Ю. Гладкий, Ал. Григорьев, В. Ягья, 1990)

5. Астрономия, 11 класс. (Е. Левитан, 1994)


План защиты реферата


Другие материалы

    Всплески практически одновременно, а для независимых текстов точки всплесков графиков никак не коррелируют. Это позволяет предложить новую методику датирования древних событий (она не универсальна и рамки ее применимости были указаны). Пусть Y - исторический текст, описывающий неизвестные нам...

    ... "ушу", давшая начало одноименной лечебной гимнастике, а также искусству самообороны "кунг-фу". Своеобразность духовной культуры Древнего Китая в значительной мере обусловлена феноменом, известным в мире как "китайские церемонии". Эти строго фиксированные стереотипы...

    Значение для истории древней китайской астрономии имеют надписи на древней бронзе. Синдзо в своих исследованиях использовал астрономические даты 180 текстов на бронзе. 2. Насколько можно выяснить из проделанных уже работ, в развитии древнекитайской астрономии, начиная со времен, теряющихся во мраке...


    ... – изо- бретают цветные пасты, которыми покрывают крупный бисер или делают его из цветных смальт. Из этого бисера на протяжении всей истории Древнего Египта изготовляли много различных украшений. Периоду Среднего царства принадлежат первые математические и медицин- ские тексты (некоторые из них...


    Что выполнение астрономических наблюдений составляло лишь одну необходимую грань той сложной, комплексной функции, которую выполняло поселение древних ариев среди просторной долины в глубине великой Урало-Казахстанской степи. В чем заключалась эта функция? Чтобы убедительно ответить на этот вопрос...

    Кампаний в Азии, в ходе которых он создает Египетское мировое государство, включавшее Египет, Нубию, Куш, Ливию, регионы Передней Азии (Сирию, Палестину, Финикию), за что фараона принято считать «Наполеоном Древнего мира». 1468 до н. э. Битва при Мегиддо (Мегиддоне) в Палестине: Тутмос III во главе...


    Печени, сердца, сосудов. Однако знания по анатомии и физиологии были незначительные. РАЗВИТИЕ ВЕТЕРИНАРИИ В ДРЕВНЕЙ ГРЕЦИИ С переходом от первобытно-общинного строя к рабовладельческому в Древней Греции образовался ряд мелких рабовладельческих государств (VI-IV вв. до н.э.). Высочайший расцвет...