Окислительно восстановительные реакции 9 химия. Урок по химии на тему "Окислительно-восстановительные реакции" (9 класс). Значение окислительно – восстановительных реакций

На уроке рассматривается сущность окислительно-восстановительных реакций, их отличие от реакций ионного обмена. Объясняются изменения степеней окисления окислителя и восстановителя. Вводится понятие электронного баланса.

Тема: Окислительно-восстановительные реакции

Урок: Окислительно-восстановительные реакции

Рассмотрим реакцию магния с кислородом. Запишем уравнение этой реакции и расставим значения степеней окисления атомов элементов:

Как видно, атомы магния и кислорода в составе исходных веществ и продуктов реакции имеют различные значения степеней окисления. Запишем схемы процессов окисления и восстановления, происходящих с атомами магния и кислорода.

До реакции атомы магния имели степень окисления, равную нулю, после реакции - +2. Таким образом, атом магния потерял 2 электрона:

Магний отдает электроны и сам при этом окисляется, значит, он является восстановителем.

До реакции степень окисления кислорода была равна нулю, а после реакции стала -2. Таким образом, атом кислорода присоединил к себе 2 электрона:

Кислород принимает электроны и сам при этом восстанавливается, значит, он является окислителем.

Запишем общую схему окисления и восстановления:

Число отданных электронов равно числу принятых. Электронный баланс соблюдается.

В окислительно-восстановительных реакциях происходят процессы окисления и восстановления, а значит, меняются степени окисления химических элементов. Это отличительный признак окислительно-восстановительных реакций .

Окислительно-восстановительными называют реакции, в которых химические элементы изменяют свою степень окисления

Рассмотрим на конкретных примерах, как отличить окислительно-восстановительную реакцию от прочих реакций.

1. NaOH + HCl = NaCl + H 2 O

Для того чтобы сказать, является ли реакция окислительно-восстановительной, необходимо расставить значения степеней окисления атомов химических элементов.

1-2+1 +1-1 +1 -1 +1 -2

1. NaOH + HCl = NaCl + H 2 O

Обратите внимание, степени окисления всех химических элементов слева и справа от знака равенства остались неизменными. Значит, эта реакция не является окислительно-восстановительной.

4 +1 0 +4 -2 +1 -2

2. СН 4 + 2О 2 = СО 2 + 2Н 2 О

В результате данной реакции степени окисления углерода и кислорода поменялись. Причем углерод повысил свою степень окисления, а кислород понизил. Запишем схемы окисления и восстановления:

С -8е =С - процесс окисления

О +2е = О - процесс восстановления

Чтобы число отданных электронов было равно числу принятых, т.е. соблюдался электронный баланс , необходимо домножить вторую полуреакцию на коэффициент 4:

С -8е =С - восстановитель, окисляется

О +2е = О 4 окислитель, восстанавливается

Окислитель в ходе реакции принимает электроны, понижая свою степень окисления, он восстанавливается.

Восстановитель в ходе реакции отдает электроны, повышая свою степень окисления, он окисляется.

1. Микитюк А.Д. Сборник задач и упражнений по химии. 8-11 классы / А.Д. Микитюк. - М.: Изд. «Экзамен», 2009. (с.67)

2. Оржековский П.А. Химия: 9-й класс: учеб. для общеобраз. учрежд. / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. - М.: АСТ: Астрель, 2007. (§22)

3. Рудзитис Г.Е. Химия: неорган. химия. Орган. химия: учеб. для 9 кл. / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, ОАО «Московские учебники», 2009. (§5)

4. Хомченко И.Д. Сборник задач и упражнений по химии для средней школы. - М.: РИА «Новая волна»: Издатель Умеренков, 2008. (с.54-55)

5. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003. (с.70-77)

Дополнительные веб-ресурсы

1. Единая коллекция цифровых образовательных ресурсов (видеоопыты по теме) ().

2. Единая коллекция цифровых образовательных ресурсов (интерактивные задачи по теме) ().

3. Электронная версия журнала «Химия и жизнь» ().

Домашнее задание

1. №10.40 - 10.42 из «Сборника задач и упражнений по химии для средней школы» И.Г. Хомченко, 2-е изд., 2008 г.

2. Участие в реакции простых веществ - верный признак окислительно-восстановительной реакции. Объясните почему. Напишите уравнения реакций соединения, замещения и разложения с участием кислорода О 2 .

Конспект урока по химии в 9 классе: «Окислительно-восстановительные реакции»

Цель урока:

Рассмотреть сущность ОВР, повторить основные понятия о степени окисления, об окислении и восстановлении.

Оборудование и реактивы: Набор пробирок, растворы: CuSO4 , H2SO4, NaOH, H2O, Na2SO3.

Ход урока по химии в 9 классе

Организационный момент.

Сегодня на уроке мы продолжим ознакомление с окислительно-восстановительными реакциями , закрепим знания приобретенные на предыдущих занятиях, ознакомимся с реакциями окисления-восстановления, узнаем какую роль оказывает среда на протекание окислительно-восстановительные процессы. ОВР принадлежат к числу наиболее распространенных химических реакций и имеют огромное значение в теории и практике. ОВ процессы сопровождают круговороты веществ в природе, с ними связаны процессы обмена веществ, протекающие в живом организме, гниение, брожение, фотосинтез. Их можно наблюдать при сгорании топлива, в процессе выплавке металлов, при электролизе, в процессах коррозии. (слайды 1-7).

Тема окислительно-восстановительные реакции не нова, учащимся предлагалось повторить некоторые понятия и умения. Вопрос к классу? Что таксе степень окисления? (без этого понятия и умения расставлять степень окисления химических элементов не возможно рассмотрение данной темы.) Учащимся предлагается определить степень окисления в следующих соединениях:KCIO3, N2, K2Cr2O7, P2O5, KH, HNO3. Проверяют свои задания с записями на доске. Во всех ли случаях происходит изменение степени окисления. Для этого мы проведем лабораторную работу (на столах инструкции по выполнению опытов, инструктаж по т.б).

Провести опыты :1. CuSO4 + 2NaOH= Na2SO4 + Cu(OH)2

CuSO4 + Fe= Cu FeSO4

Расставляют со делают записи. Вывод: не все реакции относят к ОВР. (слайд 8).

В чем же заключается суть ОВР?(слайд 9).

ОВР-представляет собой единство двух противоположных процессов окисления и восстановления. В этих реакциях число отданных электронов восстановителем равно числу электронов присоединенных окислителем. Восстановитель повышает свою степень окисления, окислитель понижает.(не случайно выбран девиз урока.)Рассмотрим химическую реакцию(она имеет большое значение с точки зрения экологии т.к. позволяет при обычных условиях собрать случайно пролитую ртуть.

Н g0 + 2Fe+3Cl3-=2Fe+2Cl2-1 + Hg+2Cl2-1

Hg0 - 2ē → Hg+2

Fe+3+ē→ Fe+2

Учащимся предлагается решить задачу. Как среда влияет на поведение одного и того же окислителя, например: KMnO4

Выполняется лабораторная работа 2 по вариантам:

2KMnO4+ 5Na2SO3 +3H2SO4 = 2MnSO4 + 5Na2SO4 + K2SO4 +3H2O

2KMnO4+ Na2SO3 2KOH= 2K2Mn04+Na2SO4 H2O

2KMnO4 +3Na2SO3 +H2O= 2KOH +3Na2SO4+ 2MnO2

Вывод: среда влияет на окислительные свойства веществ.(слайд 10)

KMnO4 в кислой среде-Mn+2 -бесцветный раствор.

В нейтральной среде -MnO2 -бурый осадок,

В щелочной среде -MnO4-2 -зеленого цвета.

В зависимости от РН раствора KMnO4 окисляет различные вещества, восстанавливаясь до соединений Mn разной степени окисления.

Подводятся итоги урока. Выставляются оценки.

Рефлексия.

Класс высказывает свое мнение о работе на уроке.

Домашнее задание

Скачать презентацию к уроку по химии: «Окислительно-восстановительные реакции»

Что ответить человеку, которого интересует, как решать окислительно-восстановительные реакции? Они нерешаемы. Впрочем, как и любые другие. Химики вообще не решают ни реакции, ни их уравнения. Для окислительно-восстановительной реакции (ОВР) можно составить уравнение и расставить в нём коэффициенты. Рассмотрим, как это сделать.

Окислитель и восстановитель

Окислительно-восстановительной называют такую реакцию, в ходе которой изменяются степени окисления реагирующих веществ. Это происходит потому, что одна из частиц отдаёт свои электроны (её называют восстановителем), а другая – принимает их (окислитель).

Восстановитель, теряя электроны, окисляется, то есть повышает значение степени окисления. Например, запись: означает, что цинк отдал 2 электрона, то есть окислился. Он восстановитель. Степень окисления его, как видно из приведённого примера, повысилась. – здесь сера принимает электроны, то есть восстанавливается. Она окислитель. Степень окисления ее понизилась.

У кого-то может возникнуть вопрос, почему при добавлении электронов степень окисления понижается, а при их потере, напротив, повышается? Всё логично. Элеrтрон – частица с зарядом -1, поэтому с математической точки зрения запись следует читать так: 0 – (-1) = +1, где (-1) – и есть электрон. Тогда означает: 0 + (-2) = -2, где (-2) – это и есть те два электрона, которые принял атом серы.

Теперь рассмотрим реакцию, в которой происходят оба процесса:

Натрий взаимодействует с серой с образованием сульфида натрия. Атомы натрия окисляются, отдавая по одному электрону, серы – восстанавливаются, присоединяя по два. Однако такое может быть только на бумаге. На самом же деле, окислитель должен присоединить к себе ровно столько электронов, сколько их отдал восстановитель. В природе соблюдается баланс во всем, в том числе и в окислительно-восстановительных процессах. Покажем электронный баланс для данной реакции:

Общее кратное между количеством отданных и принятых электронов равно 2. Разделив его на число электронов, которые отдает натрий (2:1=1) и сера (2:2=1) получим коэффициенты в данном уравнении. То есть в правой и в левой частях уравнения атомов серы должно быть по одному (величина, которая получилась в результате деления общего кратного на число принятых серой электронов), а атомов натрия – по два. В записанной схеме же слева пока только один атом натрия. Удвоим его, поставив коэффициент 2 перед формулой натрия. В правой части атомов натрия уже содержится 2 (Na2S).

Мы составили уравнение простейшей окислительно-восстановительной реакции и расставили в нем коэффициенты методом электронного баланса.

Рассмотрим, как “решать” оислительно-восстановительные реакции посложнее. Например, при взаимодействии концентрированной серной кислоты с тем же натрием образуются сероводород, сульфат натрия и вода. Запишем схему:

Определим степени окисления атомов всех элементов:

Изменили ст.о. только натрий и сера. Запишем полуреакции окисления и восстановления:

Найдём наименьшее общее кратное между 1 (столько электронов отдал натрий) и 8 (количество принятых серой отрицательных зарядов), разделим его на 1, затем на 8. Результаты – это и есть количество атомов Na и S как справа, так и слева.

Запишем их в уравнение:

Перед формулой серной кислоты коэффициенты из баланса пока не ставим. Считаем другие металлы, если они есть, затем – кислотные остатки, потом Н, и в самую последнюю очередь проверку делаем по кислороду.

В данном уравнении атомов натрия справа и слева должно быть по 8. Остатки серной кислоты используются два раза. Из них 4 становятся солеобразователями (входят в состав Na2SO4)и один превращается в H2S,то есть всего должно быть израсходовано 5 атомов серы. Ставим 5 перед формулой серной кислоты.

Проверяем H: атомов H в левой части 5×2=10, в правой – только 4, значит перед водой ставим коэффициент 4 (перед сероводородом его ставить нельзя, так как из баланса следует, что молекул H2S должно быть по 1 справа и слева. Проверку делаем по кислороду. Слева 20 атомов О, справа их 4×4 из серной кислоты и еще 4 из воды. Все сходится, значит действия выполнены правильно.

Это один вид действий, которые мог иметь в виду тот, кто спрашивал, как решать окислительно-восстановительные реакции. Если же под этим вопросом подразумевалось “закончите уравнение ОВР” или ” допишите продукты реакции “, то для выполнения такого задания мало уметь составлять электронный баланс. В некоторых случаях нужно знать, каковы продукты окисления/восстановления, как на них влияет кислотность среды и различные факторы, о которых пойдет речь в других статьях.

Окислительно-восстановительные реакции – видео

Что такое ОВР? Примеры таких реакций можно обнаружить не только в неорганической, но и в органической химии. В статье мы дадим определения основным терминам, используемым при разборе подобных взаимодействий. Кроме того, мы приведем некоторые ОВР, примеры и решения химических уравнений, которые помогут понять алгоритм действий.

Основные определения

Но вначале давайте вспомним основные определения, которые помогут разобраться в процессе:

  • Окислителем называют атом либо ион, способный в процессе взаимодействия принимать электроны. В виде серьезных окислителей выступают минеральные кислоты, перманганат калия.
  • Восстановитель - это ион либо атом, который отдает валентные электроны другим элементам.
  • Процесс присоединения свободных электронов называют окислением, а отдачи - восстановлением.

Алгоритм действий

Как разобрать уравнения ОВР? Примеры, предлагаемые выпускникам школ, предполагают расстановку коэффициентов путем электронного баланса. Приведем порядок действий:

  1. Сначала необходимо поставить у всех элементов значения степеней окисления в простых и сложных веществах, участвующих в предложенном химическом превращении.
  2. Далее выбираются те элементы, которые поменяли цифровое значение.
  3. Знаками «+» и «-» указывают принятые и отданные электроны, их количество.
  4. Далее между ними определяют наименьшее общее кратное, определяют коэффициенты.
  5. Полученные цифры ставят в уравнение реакции.

Первый пример

Как выполнить задание, связанное с ОВР? Примеры, предлагаемые на выпускных экзаменах в 9 классе, не подразумевают добавления формул веществ. Ребятам, как правило, необходимо определить коэффициенты и вещества, поменявшие значения валентности.

Рассмотрим те ОВР (реакции), примеры которых предлагаются выпускникам 11-х классов. Школьники должны самостоятельно дополнить уравнение веществами и только после этого путем электронного баланса расставить коэффициенты:

H 2 O 2 + H 2 SO 4 +KMnO 4 = Mn SO 4 + O 2 + …+…

Для начала расставим в каждом соединении степени окисления. Так, в пероксиде водорода у первого элемента она соответствует +1 , у кислорода -1 . В серной кислоте следующие показатели: +1, +6, -2 (в сумме получаем нуль). Кислород является простым веществом, поэтому у него нулевой показатель степени окисления.

Электронный баланс для данного взаимодействия имеет следующий вид:

  • Mn +7 принимает 5 e = Mn +2 2 , является окислителем;
  • 2I - отдает 2e = I 2 0 5 , выступает в качестве восстановителя.

На завершающем этапе данного задания расставим коэффициенты в готовой схеме и получим:

2KMnO 4 + 8H 2 SO 4 + 10KI= 2MnSO 4 + 5I 2 + 6K 2 SO 4 + 8H 2 O .

Заключение

Данные процессы нашли серьезное применение в химическом анализе. С их помощью можно открывать и разделять различные ионы, проводить метод оксидиметрии.

Разнообразные физические и химические методы анализа основываются на ОВР. Теория кислотного и основного взаимодействия поясняет кинетику протекающих процессов, позволяет проводить по уравнениям количественные вычисления.

Для того чтобы школьники, выбравшие химию для сдачи на выпускном экзамене, успешно прошли эти испытания, необходимо отработать алгоритм уравнивания ОВР на основе электронного баланса. Учителя отрабатывают со своими воспитанники методику расстановки коэффициентов, используя при этом разнообразные примеры из неорганической и органической химии.

Задания, связанные с определением степеней окисления у химических элементов в простых и сложных веществах, а также с составлением баланса между принятыми и отданными электронами, являются обязательным элементом экзаменационных тестов на основной, общей ступени обучения. Только в случае успешного выполнения таких заданий, можно вести речь о результативном освоении школьного курса неорганической химии, а также рассчитывать на получение высокой оценки на ОГЭ, ЕГЭ.

Реакции, в ходе которых элементы, входящие в состав реагирующих веществ, изменяют степень окисления, называются окислительно – восстановительными (ОВР).

Степень окисления. Для характеристики состояния элементов в соединениях введено понятие степени окисления. Степень окисления (с.о.) – это условный заряд, который приписывается атому в предположении, что все связи в молекуле или ионе предельно поляризованы. Степень окисления элемента в составе молекулы вещества или иона определяется как число электронов, смещенных от атома данного элемента (положительная степень окисления) или к атому данного элемента (отрицательная степень окисления). Для вычисления степени окисления элемента в соединении следует исходить из следующих положений (правил):

1. Степень окисления элементов в простых веществах, в металлах в элементном состоянии, в соединениях с неполярными связями равны нулю. Примерами таких соединений являютсяN 2 0 , Н 2 0 , Сl 2 0 ,I 2 0 , Мg 0 ,Fe 0 и т.д.

2. В сложных веществах отрицательную степень окисления имеют элементы с большей электроотрицательностью.

Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

О -2 ClО -2 Н + Элемент ЭО

В некоторых случаях степень окисления элемента численно совпадает с валентностью (В) элемента в данном соединении, как, например, в НClО 4 .

Приведенные ниже примеры показывают, что степень окисления и валентность элемента могут численно различаться:

N ≡ N В (N)=3; с.о.(N)=0

Н + C -2 О -2 Н +

ЭО (C) = 2,5 В(С) = 4 с.о.(С) = -2

ЭО (О) = 3,5 В(О) = 2 с.о.(О) = -2

ЭО (Н) = 2,1 В(Н) = 1 с.о.(Н) = +1

3. Различают высшую, низшую и промежуточные степени окисления.

Высшая степень окисления – это ее наибольшее положительное значение. Высшая степень окисления, как правило, равна номеру группы (N) периодической системы, в которой элемент находится. Например, для элементов III периода она равна: Na +2 , Mg +2 , AI +3 , Si +4 , P +5 , S +6 , CI +7 . Исключение составляют фтор, кислород, гелий, неон, аргон, а также элементы подгруппы кобальта и никеля: их высшая степень окисления выражается числом, значение которого ниже, чем номер группы, к которой они относятся. У элементов подгруппы меди, наоборот, высшая степень окисления больше единицы, хотя они и относятся к I группе.

Низшая степень окисления определяется количеством электронов, не достающих до устойчивого состояния атома ns 2 nр 6 . Низшая степень окисления для неметаллов равна (N-8), где N – номер группы периодической системы, в которой элемент находится. Например, для неметаллов III периода она равна: Si -4 , P -3 , S -2 ,CI ˉ. Низшая степень окисления для металлов – это наименьшее ее положительное значение из возможных. Например, марганец имеет следующие степени окисления: Mn +2 , Mn +4 , Mn +6 , Mn +7 ; с.о.=+2 – это низшая степень окисления для марганца.

Все остальные встречающиеся степени окисления элемента называют промежуточными. Например, для серы степень окисления, равная +4, является промежуточной.

4. Ряд элементов проявляют в сложных соединениях постоянную степень окисления:

а) щелочные металлы – (+1);

б) металлы второй группы обеих подгрупп (за исключением Нg) – (+2); ртуть может проявлять степени окисления (+1) и (+2);

в) металлы третьей группы, главной подгруппы – (+3), за исключением Tl, который может проявлять степени окисления (+1) и (+3);

д) H + , кроме гидридов металлов (NaH, CaH 2 и т.д.), где его степень окисления равна (-1);

е) О -2 , за исключением пероксидов элементов (Н 2 О 2 , СаО 2 и т.д.), где степень окисления кислорода равна (-1), надпероксидов элементов

(КО 2 , NaO 2 и т.д.), в которых его степень окисления равна – ½, фторида

кислорода ОF 2 .

5. Большинство элементов могут проявлять разную степень окисления в соединениях. При определении их степени окисления пользуются правилом, согласно которому сумма степеней окисления элементов в электронейтральных молекулах равна нулю, а в сложных ионах – заряду этих ионов.

В качестве примера вычислим степень окисления фосфора в ортофосфорной кислоте Н 3 РО 4 . Сумма всех степеней окисления в соединении должна быть равна нулю, поэтому обозначим степень окисления фосфора через Х и, умножив известные степени окисления водорода (+1) и кислорода (-2) на число их атомов в соединении, составим уравнение: (+1)*3+Х+(-2)*4 = 0, из которого Х = +5.

Вычислим степень окисления хрома в дихромат – ионе (Cr 2 О 7) 2- .

Сумма всех степеней окисления в сложном ионе должна быть равна (-2), поэтому обозначим степень окисления хрома через Х, составим уравнение 2Х +(-2)*7 = -2, из которого Х = +6.

Понятие степени окисления для большинства соединений имеет условный характер, т.к. не отражает реальный эффективный заряд атома. В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного

1 -1 +2 -1 +3 -1

атома к другому: NaI ,MgCI 2 , AIF 3 . Для соединения с полярной ковалентной связью фактический эффективный заряд меньше степени окисления, однако это понятие весьма широко используется в химии.

Основные положения теории ОВР:

1. Окислением называют процесс отдачи электронов атомом, молекулой или ионом. Частицы, отдающие электроны, называют восстановителями; во время реакции они окисляются, образуя продукт окисления. При этом элементы, участвующие в окислении, повышают свою степень окисления. Например:

AI – 3e -  AI 3+

H 2 – 2e -  2H +

Fe 2+ - e -  Fe 3+

2. Восстановлением называют процесс присоединения электронов атомом, молекулой или ионом. Частицы, присоединяющие электроны, называютокислителями; во время реакции они восстанавливаются, образуя продукт восстановления. При этом элементы, участвующие в восстановлении, понижают свою степень окисления. Например:

S + 2e -  S 2-

CI 2 + 2e -  2 CI ˉ

Fe 3+ + e -  Fe 2+

3.Вещества, содержащие частицы восстановители или окислители, соответственно называют восстановителями или окислителями. Например, FeCI 2 является восстановителем за счет Fe 2+ , а FeCI 3 - окислителем за счет Fe 3+ .

4. Окисление всегда сопровождается восстановлением и, наоборот, восстановление всегда связано с окислением. Таким образом ОВР представляют собой единство двух противоположенных процессов – окисления и восстановления

5. Число электронов, отданных восстановителем, равно числу электронов, принятых окислителем.

Составление уравнений окислительно-восстановительных реакций. На последнем правиле базируются два метода составления уравнений для ОВР:

1. Метод электронного баланса.

Здесь подсчет числа присоединяемых и теряемых электронов производится на основании значений степеней окисления элементов до и после реакции. Обратимся к простейшему примеру:

Na 0 + Cl  Na + Cl

2Na 0 – eˉ  Na + - окисление

1 Cl 2 + 2eˉ  2 Cl - восстановление

2 Na + Cl 2 = 2Na + + 2Cl

2 Na + Cl 2 = 2NaCl

Данный метод используют в том случае, если реакция протекает не в растворе (в газовой фазе, реакции термического разложения и т.д.).

2. Метод ионно-электронный (метод полуреакций).

Данный метод учитывает среду раствора, дает представление о характере частиц реально существующих и взаимодействующих в растворах. Остановимся на нем более подробно.

Алгоритм подбора коэффициентов ионно-электронным методом:

1. Составить молекулярную схему реакции с указанием исходных веществ и продуктов реакции.

2. Составить полную ионно-молекулярную схему реакции, записывая слабые электролиты, малорастворимые, нерастворимые и газообразные вещества в молекулярном виде, а сильные электролиты – в ионном.

3. Исключив из ионно-молекулярной схемы ионы, не изменяющиеся в результате реакции (без учета их количества), переписать схему в кратком ионно-молекулярном виде.

4. Отметить элементы, изменяющие в результате реакции степень окисления; найти окислитель, восстановитель, продукты восстановления, окисления.

5. Составить схемы полуреакций окисления и восстановления, для этого:

а) указать восстановитель и продукт окисления, окислитель и продукт восстановления;

б) уравнять число атомов каждого элемента в левой и правой частях полуреакций (выполнить баланс по элементам) в последовательности: элемент, изменяющий степень окисления, кислород, другие элементы; при этом следует помнить, что в водных растворах в реакциях могут участвовать молекулы Н 2 О, ионы Н + или ОН – в зависимости от характера среды:

в) уравнять суммарное число зарядов в обеих частях полуреакций; для этого прибавить или отнять в левой части полуреакций необходимое число электронов (баланс по зарядам).

6. Найти наименьшее общее кратное (НОК) для числа отданных и полученных электронов.

7. Найти основные коэффициенты при каждой полуреакции. Для этого полученное в п.6 число (НОК) разделить на число электронов, фигурирующих в данной полуреакции.

8. Умножить полуреакции на полученные основные коэффициенты, сложить их между собой: левую часть с левой, правую – с правой (получить ионно-молекулярное уравнение реакции). При необходимости “привести подобные” ионы с учетом взаимодействия между ионами водорода и гидроксид-ионами: H + +OH ˉ= H 2 O.

9. Расставить коэффициенты в молекулярном уравнении реакции.

10. Провести проверку по частицам, не участвующим в ОВР, исключенным из полной ионно-молекулярной схемы (п.3). При необходимости коэффициенты для них находят подбором.

11. Провести окончательную проверку по кислороду.

1. Кислая среда.

Молекулярная схема реакции:

KMnO 4 + NaNO 2 + H 2 SO 4  MnSO 4 + NaNO 3 + H 2 O + K 2 SO 4

Полная ионно-молекулярная схема реакции:

K + +MnO+ Na + +NO+2H + + SO Mn 2+ + SO+ Na + + NO+ H 2 O + 2K + +SO.

Краткая ионно-молекулярная схема реакции:

MnO+NO+2H +  Mn 2+ + NO+ H 2 O

ок-ль в-ль продукт в-ния продукт ок-ия

В ходе реакции степень окисления Mn понижается от +7 до +2 (марганец восстанавливается), следовательно, MnО– окислитель;Mn 2+ - продукт восстановления. Степень окисления азота повышается от +3 до +5 (азот окисляется), следовательно, NO– восстановитель, NO – продукт окисления.

Уравнения полуреакций:

2MnO + 8 H + + 5e - Mn 2+ + 4 H 2 O - процесс восстановления

10 +7 +(-5) = +2

5 NO + H 2 O – 2e - NO + 2 H + - процесс окисления

2MnO+ 16H + + 5NO+ 5H 2 O = 2Mn 2+ +8H 2 O + 5NO + 1OH + (полное ионно-молекулярное уравнение).

В суммарном уравнении исключаем число одинаковых частиц, находящихся как в левой, так и в правой частях равенства (приводим подобные). В данном случае это ионы Н + и Н 2 О.

Краткое ионно-молекулярное уравнение будет иметь вид

2MnO + 6H + + 5NO  2Mn 2+ + 3H 2 O + 5NO.

В молекулярной форме уравнение имеет вид

2KMnO 4 + 5 NaNO 2 + 3 H 2 SO 4 = 2MnSO 4 +5NaNO 3 + 3H 2 O + K 2 SO 4 .

Проверим баланс по частицам, которые не участвовали в ОВР:

K + (2 = 2), Na + (5 = 5), SO(3 = 3). Баланс по кислороду: 30 = 30.

2. Нейтральная среда.

Молекулярная схема реакции:

KMnO 4 + NaNO 2 + H 2 O  MnO 2 + NaNO 3 + KOH

Ионно-молекулярная схема реакции:

K + + MnO+ Na + + NO+ H 2 O  MnO 2 + Na + + NO+ K + + OH

Краткая ионно-молекулярная схема:

MnO+ NO+ H 2 O  MnO 2 + NO+ OH -

ок-ль в-ль продукт в-ния продукт ок-ия

Уравнения полуреакций:

2MnO+ 2H 2 O+ 3eˉ MnO 2 +4OH-процесс восстановления

6 -1 +(-3) = -4

3 NO+H 2 O– 2eˉ NO+ 2H + - процесс окисления