Как выглядит поверхность луны. Из чего сделана Луна? Что такое звезда

Планетарные особенности. Задолго до космических полетов были рассчитаны масса, средняя плотность, радиус Луны, ее вращение и параметры орбиты. У планет Солнечной системы, как правило, несколько спутников с относительно небольшими массами. Луна у Земли единственная, относительная ее масса большая (1 / 83 массы Земли), расстояние от Земли равно 60 земным радиусам.

Луна вращается вокруг Земли по слабо вытянутому эллипсу с периодом, совпадающим со временем ее обращения вокруг собственной оси (и поэтому Луна всегда повернута к Земле одной стороной). Лунные сутки почти равны земному месяцу - 27,3 земных суток.

Видимая фигура Луны - сфера с радиусом 1738 км (в 3,6 раза меньше земного). Благодаря вращению Луна слегка сплющена, ее точная фигура - трехосный эллипсоид, но оси отличаются мало. Полярный радиус на 2 км меньше среднего, а направленный к Земле - вследствие ее притяжения на 1 км больше. Взаимное притяжение Земли и Луны вызывает сложное приливное взаимодействие, влияющее на структуру и тектонику обоих небесных тел.

Существенная особенность Луны - центр масс смещен от геометрического на 3 км к Земле и на 1 км влево (если смотреть с Земли). Рельеф поверхности также асимметричный: на видимой стороне он на несколько километров ниже уровенной поверхности, на обратной - выше. Максимальный размах рельефа поверхности Луны достигает 14 км, а самая высокая вершина не уступает Джомолунгме.

Астрономические измерения момента инерции Луны показали, что он близок к однородной сфере (0,4), одно время даже казалось, что плотность в недрах Луны слегка уменьшается к центру. Позже выяснилось, что такой инверсии плотности на Луне нет, но рост ее с глубиной невелик. Об этом же свидетельствует тот факт, что средняя плотность Луны (3,34 г/см 3) близка к плотности образцов лунной коры и практически равна плотности минералов, слагающих верхнюю мантию Земли. Все это свидетельствует об относительной однородности строения Луны по сравнению с Землей. Земля имеет огромное плотное ядро, так что ее момент инерции (0,33) намного меньше, чем у однородной сферы, а средняя плотность (5,54 г/см 3) существенно больше, чем у пород мантии.

Последние космические исследования установили слоистую внутреннюю структуру Луны. Она состоит из отдельных различающихся физическими свойствами оболочек (кора, мантия, проблематичное ядро), только отличия эти не такие резкие, как у Земли.

Многие планетарные свойства Луны отличаются от Земли. На Луне отсутствует атмосфера, гидросфера, биосфера. Нет стабильного дипольного магнитного поля. В то же время поток тепла из недр неожиданно велик, что может свидетельствовать о завершении процесса выделения коры из вещества мантии и концентрации в ней всех радиоактивных элементов.

Неравновесность, асимметричность фигуры Луны, смещение центра масс, равно как аномалии гравитационного и других селенофизических полей, указывают на горизонтальную неоднородность структуры Луны. Рассмотрим устройство лунных недр по оболочкам.

Лунная кора. Как и на Земле, на Луне имеется кора» отделенная от мантии резкой границей. Толщина лунной коры в юго-восточной части Океана Бурь (60–65 км) такая же, как в горах Памира или Гималаях и больше не только океанической (7 - 10 км), но и континентальной земной коры (40 км) (рис. 10). Лунная кора составляет одну тридцатую часть размеров Луны, и таким образом, по отношению к радиусу планеты она в 5 раз толще средней земной коры.

Рис. 10. Сравнение скоростных моделей Луны (1 - пример разреза; 2 - полоса возможных моделей) и Земли (3 - континент; 4 - зона перехода; 5 - океан)


Сейсмические измерения, дающие наиболее точные оценки мощности коры, проведены пока лишь в Океане Бурь. По другим, в особенности гравиметрическим, данным можно заключить, что мощность коры в разных районах различная: в восточном полушарии, а также на обратной стороне Луны кора в несколько раз мощнее, чем в западном. Возможно, что в районе масконовых Морей Кризисов и Ясности более плотное подкоровое вещество залегает ближе к поверхности, здесь толщина коры уменьшается до 70–80 км.

Различие физических свойств пород коры в разных районах отмечается не только по скоростям сейсмических волн и плотностям пород - они по-разному намагничены и имеют разную электропроводность.

Они делятся на два типа: темные базальты «морей» и светлые богатые плагиоклазами и алюмосиликатами габбро-анортозиты континентов. В земных лабораториях измерены скорости упругих волн в образцах лунных пород. В результате их сравнения с сейсмическими скоростями высказаны предположения о составе пород коры. Можно думать, что первозданная лунная кора сложена габбро-анортозитами - продуктом разделения исходного вещества Луны. Кстати, анортозиты относятся к числу самых древних пород и на Земле. На континентах Луны кора однослойная, на морях имеется базальтовый слой. Возможно, базальты слагают 25-километровую толщу, и увеличение скорости на 1 км/с объясняется здесь сменой химического состава коры - переходом от базальтов к габбро-анортозитам. Такая мощность базальтов получается, если предположить, что различие в рельефе морей и континентов Луны (в среднем 4 км) компенсируется массой более плотных базальтов, так что на некоторой глубине наступает равновесие: вес столба вышележащих пород на морях и континентах оказывается одинаковым.

Однако многие геологи сомневаются, что базальтовый слой, образовавшийся при глубинных излияниях лавы в результате раздробления и пробоя коры метеоритами, может быть таким мощным. Судя по результатам активного сейсморазведочного эксперимента в районе посадки «Аполлона-17», уже на глубине 1,5 км скорости пробега сейсмических волн такие, как в образцах окружающих гор Тавр. В таком случае вся остальная толща коры анортозитовая, быстрый рост скорости в верхнем слое объясняется уплотнением пород, а ее скачок на глубине 25 км означает полное закрытие трещин при критическом давлении 1 кбар. Кстати, ведь именно такая мощность рассеивающего слоя получается при анализе затухания амплитуд на лунных сейсмограммах.

Необычное по сравнению с Землей явление представляет и весь верхний слой коры толщиной до 25 км. Он отличается очень малой электропроводностью (этот своеобразный «изолятор» способствует успеху электромагнитных зондирований), низкой теплопроводностью (такой «термостат» помогает Луне остывать не слишком быстро), малыми величинами, но быстрым ростом скоростей сейсмических волн, большой скоростной неоднородностью (разрушающей сейсмические сигналы) и слабым затуханием сейсмической энергии (отсюда долгий «сейсмозвон» и сверхдальнее распространение сейсмических волн).

Под корой залегает лунная мантия. Граница между ними резкая - в мантии заметно увеличиваются скорости пробега сейсмических волн (8–9 км/с для продольных и 4,7 км/с для поперечных волн) и плотность (3,3–3,4 г/см 3 по сравнению с 2,8–2,9 г/см 3 для коры). Такая четкая граница на Луне единственная (тогда как на Земле существует еще более резкая - между мантией и внешним ядром). Она объясняется изменением химического состава вещества. Мантия Луны, как и Земли, судя по соотношению скоростей сейсмических волн и плотности, сложена ультраосновными породами, в которых по сравнению с корой мало окислов кремния и много железа и магния. Главные породообразующие минералы здесь - оливин и пироксен.

Высокоскоростной «козырек», обнаруженный в верхах мантии района Фра-Мауро, может означать, что примерно четверть количества оливина перешло в более плотную разновидность того же состава - шпинель. Возможно и другое объяснение: ери давлениях и температурах, свойственных лунным глубинам 60 - 100 км (до 5 кбар и до 300 °C), образуется устойчивая плотная разновидность граната, отличающаяся высокой скоростью сейсмических волн.

Литосфера. Планетарной особенностью глубинной структуры Луны является ее разделение на мощную жесткую, холодную внешнюю сферу и разогретую, частично расплавленную и пластичную внутреннюю область. Внешняя оболочка Луны названа по аналогии с Землей литосферой - здесь сравнимые с Землей термодинамические условия: давление 35–40 кбар и температура порядка 1200 °C (ниже температуры плавления базальтов). Однако достигаются эти условия на глубинах (800–900 км), во много раз превышающих мощность литосферы Земли - 50–70 км под океанами, 100–200 км под континентами (рис. 11). В. целом литосфера Луны - это литосфера Земли, типертрофированная по мощности, жесткости и сейсмической добротности. Она так жестка, что миллиарды лет удерживает масконы, и так добротна, что волны от слабых лунотрясений «просвечивают» ее насквозь.

Рис. 11. Структура Земли и Луны в шкале давлений


В лунной литосфере выделяется несколько слоев: кора, верхняя мантия (до 200–300 км), средняя мантия (до 500–600 км), переходный слой (до 800–900 км). Верхняя (мантия сложена очень плотными компактными кристаллическими породами ультраосновного состава. Сейсмическая добротность как по продольным, так и по поперечным волнам, а также вязкость вещества на 2–3 порядка превосходит соответствующие параметры в литосфере Земли. В отличие от Земли, где скорости сейсмических волн в литосфере в среднем растут. На Луне они растут только в коре, а в верхней мантии остаются постоянными или слегка ослабевают. Это объясняется тем, что влияние температур (до 500–600 °C) превосходит эффект давления (15 тыс. атм, что соответствует низам земной коры платформенных областей).

Из 250-километровой толщи оливинов верхней мантии, как это следует из теоретических геохимических расчетов, могла выплавиться полевошпатовая кора мощностью 50–60 км.

В средней мантии Луны происходит скачкообразное уменьшение скорости продольных, и в особенности поперечных волн. За счет этого резко увеличивается упругий параметр - коэффициент Пуассона. Высокий коэффициент Пуассона означает уменьшение компактности пород, приближение их к аморфному состоянию. Его значение для средней мантии (0,35) такое, как в лунном реголите, а также глиноподобных веществах. Эта особенность средней мантии Луны позволяет некоторым сейсмологам полагать, что здесь находится первозданное метеоритное вещество, которое никогда полностью не переплавлялось.

В средней мантии до глубины 500–600 км продолжает все более заметно уменьшаться скорость поперечных волн, а также сейсмическая добротность. Давление здесь 25 кбар (как на границе кора - мантия в горных районах Земли) и температура 1000–1100 °C (как в районе Байкальского рифта).

Гидростатистическая неуравновешенность фигуры и смещение центра масс свидетельствуют о существовании горизонтальной неоднородности структуры Луны, прежде всего в ее литосфере. Аномалии силы тяжести над круглыми морями Луны могут быть вызваны блоками вещества повышенной плотности, залегающими в верхней мантии Луны.

Горизонтальная неоднородность плотностей приводит к возникновению напряжений, которые и вызывают тектонические лунотрясения на глубинах 25 - 300 км. Эти напряжения (100–200 кг/см 2) в десятки раз меньше горизонтальных сил, определяющих тектоническую активность литосферы Земли, поэтому тектонические лунотрясения столь слабы по сравнению с землетрясениями.

Еще большие неоднородности намечаются в низах средней мантии. Этот слой, по существу, можно выделить как особый слой перехода от литосферы к центральной зоне Луны. Здесь, в интервале глубин от 600 до 800–900 км, сохраняется высокий коэффициент Пуассона и происходит резкое изменение физических свойств вещества Луны: на 2 порядка уменьшается электрическое сопротивление, в 3 раза уменьшается добротность для продольных волн и в 100 - 1000 раз - вязкость. Переход от литосферы к центральной зоне происходит постепенно. Поэтому на записях лунотрясений отсутствуют фазы волн, отраженных от подошвы литосферы.

К переходной зоне приурочены очаги приливных лунотрясений. Большой разброс глубин очагов и их концентрация в двух узких «сейсмических швах» планетарного размера подчеркивают сложный характер перехода от литосферы к астеносфере Луны и неоднородность строения этой зоны. Повторяемость формы записи и малая энергия приливных лунотрясений увязываются с представлением о том, что средняя мантия Луны состоит из однородных блоков относительно небольшого размера.

В свете новых знаний о глубинном строении Луны картина подготовки лунотрясений выглядит так. Под действием сил притяжения Земли и Солнца в Луне возникают большие перепады приливных напряжений. Они концентрируются на контакте жесткой внешней и разогретой внутренней зон Луны. Этому способствует сложный, контрастный рельеф переходной зоны. Возможно, положение эпицентров лунотрясений отражает направление конвективных потоков вещества в астеносфере.

В моменты увеличения притяжения Луны Землей и Солнцем в переходную зону импульсами впрыскиваются горячие флюиды и газы. Они образуют своего рода «смазку», которая в дальнейшем облегчает движения блоков по разрыву в момент лунотрясения. Размеры очагов, интервалы между сотрясениями и их энергия неплохо согласуются в рамках теории, описывающей процесс землетрясения как быстрое «вспарывание» трещин в ослабленных зонах. На Луне разрывы происходят в пределах однородных блоков плохо сцементированного материала. Поэтому от толчка к толчку так хорошо сохраняется форма колебаний в волнах из каждого очага. Из-за малых размеров блоков сотрясения не получаются большими. А их «расписание» полностью регулируется гравитационной «указкой» Земли и Солнца. Не успевают напряжения накопиться, как поступают очередные импульс напряжений и «смазка» из астеносферы - происходит слабое лунотрясение. Приливные силы Земли заставляют Луну сотрясаться часто и слабо, не давая ей накопить силы для мощного толчка.

Астеносфера и проблема ядра Луны. Внутренняя зона Луны обнаружена по резкому ослаблению энергии поперечных волн на глубинах более 800–900 км. Это соответствует уменьшению сейсмической добротности поперечных волн до величины 100–200 и продольных волн - до 500. Эффектом отсутствия поперечных волн внутренняя зона Луны напоминает внешнее ядро Земли, которое на основании этого кардинального факта считается эффективно жидким (известно, что поперечные волны не распространяются в воде). Однако она названа «астеносферой», потому что в ней давление (более 35 тыс. атм) и вязкость (1020–1021 пуаз) такие же, как в астеносфере Земли на глубинах 100–150 км. По-видимому, астеносфера Луны частично расплавлена, капли базальта в перидотите плавятся при соответствующем давлении при температуре 1450–1550 °C. В астеносфере Земли также имеет место частичное плавление зерен базальта, однако поперечные волны через нее проходят, хотя скорость их падает, и энергия ослабевает. Эта разная реакция на распространение поперечных волн объясняется существенно разной мощностью астеносферы в Земле и Луне и их различной ролью в тектонической жизни этих небесных тел. Астеносфера Земли имеет толщину 100–200 км, что составляет 1 / 30 - 1 / 60 часть ее радиуса; астеносфера Луны в 10 раз мощнее, она занимает половину лунного радиуса. А если учесть, что глубже лунной астеносферы нет твердого сейсмически добротного материала, как на Земле, то оказывается, что поперечные волны в Луне долго движутся в неблагоприятных условиях, поэтому они не могут «пробиться» сквозь центральную зону на, противоположную сторону Луны.

В астеносфере Луны, как и Земли, возможны конвективные потоки частично расплавленного вещества, однако их скорость (0,1 см/год) и действие существенно иные. Они не в состоянии расколоть или передвинуть глыбы литосферного монолита, их силы хватает лишь на то, чтобы произвести в нижние горизонты литосферы инъекции разогретого вещества, на которые планета откликается слабыми сейсмическими «щелчками».

Современные представления о структуре центральной зоны Луны сугубо ориентировочные. Уменьшение скоростей продольных волн до значений 3,6–5,2 км/с не противоречит предположению о существовании в центре Луны железо-сульфидного ядра радиусом 200–400 км. Ограничение на размеры ядра дает величина относительного момента инерции Луны, которая измерена с высокой точностью (0,395 ± 0,05). Расчеты показывают, что для модели с корой, имеющей плотность 3 г/см 3 , и однородной мантией (плотность 3,43 г/см 3) момент инерции должен быть 0,399. В случае железо-сульфидного ядра с радиусом 700 км момент инерции уменьшится до 0,391. Если же ядро чисто железное, то оно не скажется на величине момента инерции при радиусе не более 450 км. Низкие скорости продольных волн в центре Луны нельзя объяснить металлизацией силикатов мантии, для этого здесь слишком малые давления (не более 50 тыс. атм) и температуры (до 2000 К). В центре Земли температура почти такая, как на поверхности Солнца (6000 К), а давление в несколько миллионов раз больше атмосферного (3,5 · 10 6 атм).

Интересно посмотреть на недра Земли и Луны, сравнив их в едином масштабе глубин, т. е. отношение глубин слоев к радиусу планеты (рис. 12). Тогда наблюдается совпадение относительных глубин основных планетарных оболочек. На глубине 0,05 относительных радиусов происходит самое резкое увеличение скоростей сейсмических волн. На Луне это соответствует переходу от коры к мантии, на Земле - началу перехода от верхней к нижней мантии. На половине радиуса начинается область, где исчезают поперечные волны. При этом на Луне состав вещества, по-видимому, остается мантийным, т. е. преобладают ультраосновные силикаты. На Земле же это связано скорее всего с изменением химического состава. Наконец, в обоих небесных телах обнаружена внутренняя сфера с относительным радиусом 0,2, в основном состоящая из железа.

Рис. 12. Основные оболочки Земли и Луны


Эволюция и тепловое состояние Луны. Данные о составе, состоянии и физических свойствах лунных пород, собранные по крупицам в сложных и рискованных экспедициях, несмотря на известную ограниченность этих данных, позволяют сделать важные, пусть предварительные, заключения об основных этапах и направленности эволюции Луны.

Большинство исследователей сходятся в том, что Луна образовалась достаточно быстро, и начальная температура ее была высокой. По мнению ученых из Института физики Земли АН СССР, тело Луны скомпоновалось в околоземном «спутниковом рое» 4,5 млрд. лет назад, вскоре после того, как сама Земля возникла из холодных газовых и пылевых частиц протопланетного облака. Этим объясняется наблюдаемый дефицит железа и легкоплавких элементов в Луне по сравнению с Землей.

Определения мощности лунной коры и литосферы, эффект «пропадания поперечных волн» в ее центральной зоне, величина теплового потока и отсутствие планетарного магнитного диполя позволяют судить о нынешнем состоянии недр Луны. Возраст самых древних (4,15 млрд. лет) и самых молодых (3 млрд. лет) пород, время выплавления морских базальтов (3,75 -3,15 млрд. лет) и высокая остаточная намагниченность пород свидетельствуют о далеком планетарном прошлом Луны.

Реконструкция тепловой истории Луны проводится многими исследователями путем решения на электронно-вычислительных машинах уравнений теплопроводности. При этом задаются перечисленные граничные условия и оцениваются начальная температура Луны, концентрация радиогенных элементов, плотность, теплоемкость, теплопроводность, а также изменчивость этих физических констант во времени.

По-видимому, основная направленность планетарного «жизненного» процесса на Луне (равно как на Земле и других планетах земной группы) состоит в расслоении изначально однородного тела планеты на оболочки: легкую кору, мантию, тяжелое ядро.

Закат Солнца на Луне 4,5 млрд. лет назад не был таким величественно-спокойным, как теперь. Светило погружалось в плещущий «океан» расплавленных горных пород. Град метеоритов сыпался в него, приводя к перемешиванию, дегазации, закалке и переплавлению материнского вещества Луны. В расплавленной оболочке в планетарном масштабе совершалось фракционное разделение фаз - формировались кора и мантия Луны. При этом радиоактивные элементы концентрировались в коре, обусловливая высокий тепловой поток, породы коры обогащались кальцием и алюминием (образовывались анортозиты), в мантии преобладали окислы железа и магния (пироксены и оливин).

Период магматической активности Луны длился не более 1,5 млрд. лет. Постепенно внешняя оболочка Луны, остывая снаружи, затвердевала, мощность литосферы наращивалась примерно на 200 км каждый миллиард лет.

По-видимому, в конце первого миллиарда лет возникло центральное расплавленное ядро. Возможно, в нем действовал саморегулирующийся механизм «электромагнитного динамо»; свидетельство его былой силы-высокая палеонамагниченность лунных пород, его жидкие «останки» видимо подсекли сейсмические волны вблизи центра Луны.

По мере остывания внешней корки и продолжения метеоритной бомбардировки 4,4–4,1 млрд. лет назад образовался типичный лунный кратерный рельеф. Трещины от ударов метеоритов протягивались в кору на десятки километров, а реголит имел гигантскую мощность - несколько километров.

Со временем частота падений космических тел на Луну сокращалась, но напоследок, 4,1–3,9 млрд. лет назад, произошли катаклизмы, оставившие неизгладимый след на поверхности в виде гигантских котловин - Больших Бассейнов. Самые древние из них (как Море Спокойствия) имеют неправильную форму, неглубокое днище и не содержат избытка или дефицита масс. А относительно молодые (Моря Дождей, Кризисов и т. д.) - круглые, глубокие, «масконовые». Похоже, что 4 млрд. лет назад что-то переменилось в механических свойствах коры, быть может, завершились подъем и кристаллизация расплавов оболочки.

Последняя глава активной эндогенной жизни Луны - затопление Больших Бассейнов видимой стороны ныне «замерзшими» морями темных базальтов. Базальты поднимались из недр, где распад радиоактивных элементов обеспечивал необходимую для их расплава температуру. Излияния носили скорее всего импульсный характер и были приурочены к местам коры, раздробленным и ослабленным падением метеоритов. Благодаря различиям состава и температуры недр в разных регионах Луны период заполнения морских бассейнов базальтами затянулся от 3,8 до 3,0 млрд. лет. Отсутствие морей на обратной стороне Луны может объясняться как большей мощностью ее коры, так и тем, что притяжение Земли направляло метеориты на всегда обращенную к ней сторону Луны.

На Луне 3 млрд. лет назад воцарилось относительное спокойствие. Столь древний образ космического мира подарила Луна исследователям последнего 18-летия (рис. 13).

Рис. 13. Основные этапы эволюции (верх) и распределение температуры во времени (низ) по Токсоцу:

1 - дифференциация с образованием коры; 2 - образование анортозитов; 3 - магматическая активность, метеоритная бомбардировка; 4 - образование Больших Бассейнов; 5 - заполнение «морей» базальтами (косая штриховка - зона частичного плавления веществ, клетка - зона полного плавления)


В настоящее время Луна исчерпала свои «жизненные» тектонические ресурсы. Процесс разделения ее вещества давно завершен. Луна остывает - излучение тепла через поверхность превосходит его генерацию в недрах. Если тепловой поток за все время существования Луны был соизмерим с теперешним, то она потеряла энергию ~10 36 эрг, которая превышает энергию разделения по плотности и теплосодержание вещества в состоянии полного плавления и соизмерима с энергией гравитационной связи Луны.

На Земле картина иная: суммарные теплопотери здесь меньше энергии гравитационной дифференциации, в результате которой образовалось железное ядро Земли.

Возможно, ключ к пониманию тепловых различий режимов планет кроется в их «способности» превращать тепло в другие виды энергии. Общая энергия, выделяемая в год землетрясениями, всего лишь на 2–3 порядка меньше теплопотерь Земли. С учетом КПД «тепловой машины» получается, что Земля «умеет» превращать тепло в механические движения при землетрясениях и других тектонических процессах.

На Луне все иначе: менее одной миллиардной части ее тепловыделений превращается в сейсмическую энергию - остальное «улетучивается» в космос бесполезно для селенотектоники. Тектоническая «жизнь» Луны «парализуется» мощной жесткой холодной литосферой. В ее разогретой астеносфере могут существовать конвективные потоки вещества, но они слабы и недостаточны, чтобы расколоть или передвинуть литосферу и лишь в состоянии вызвать слабые потрескивания на контакте с ней. К тому же давление и температура ее недр недостаточны для фазовых превращений минералов, которые на Земле служат мощным источником ее активности.

Примечания:

Перидотит - ультраосновная горная порода, богатая окислами железа и магния и обедненная кремнием. Состоит в основном из минералов оливина и пироксена.


Луна - спутник Земли


Расстояние от Земли до Луны :384 400 километров

Диаметр Луны : 3476 километров

Луна, была известна с доисторических времен. Это - второй самый яркий объект на небе после . Луна делает полный оборот вокруг земли за 1 месяц.

Время между новолуниями составляет 29.5 дней (709 часов), это немного отличается от орбитального периода Луны (измеренного относительно звезд), так как Земля перемещается на существенное расстояние по своей орбите вокруг Солнца за время оборота луны вокругЗемли.

Первый посещение Луны космическим зондом Луна 2 (СССР) состоялось в 1959. Это - единственное внеземное тело, которое посетили люди. Первое посещение человека состоялось 20 июля 1969 (США), последнее посещение Луны человеком состоялось в декабре 1972. Луна - также единственная космическая планета, образцы грунта которой, были доставлены на Землю.

Летом 1994 году была составлена карта Луны, небольшим космическим кораблем Clementine, повторное картографирование проводилось в 1999 году космическим кораблем Lunar Prospector.


Фрагмент обратной стороны Луны от Аполлон -11

Гравитационные силы, существующие между Землей и Лунной сталипричиной некоторых интересных эффектов.

Самыми явными эффектами влияния Луны – являются океанические приливы и отливы. Гравитационная сила влияния Луны более сильная на стороне , обращенной к Луне и более слабая на противоположной стороне. Эффект намного более сильно отражен в приливах океанской воды, чем в твердой коре Земли. Вода за счет притяжения луны концентрируется на точке Земли, которая находится наиболее близко к Луне.

Это - очень упрощенная модель приливов; фактические потоки воды, особенно вдоль побережий, намного более сложные.

Притяжение Луны замедляет вращение Земли примерно на 1,5 миллисекунды за столетие.

Луна за счет этих эффектов замедляет вращение, что удаляет ее орбиту примерно на 3.8 сантиметра ежегодно.

Асимметричная природа гравитационного взаимодействия с землей привела к тому, что Луна всегда обращена к Земле только одной стороной. Так же как Вращение Луны замедляет вращение Земли вокруг своей оси, так же в далеком прошлом Земля замедлила вращение луны, но эффект был гораздо сильным.


Фактически Луна немого колеблется, а не статически обращена к Земле, периодически появляются для обозрения очень маленькие части обратной стороны Луны, но фактически обратная сторона Луны не доступна для обозрения со стороны Земли.

Впервые оборотную сторону Луны сфотографировал Советский космический аппарат Луна 3 в 1959 году.

У Луны нет атмосферы. Есть, очевидно, лед на Северном полюсе.

Состав слоев Луны досконально не изучен, однако по теории считается, что кора Луны в среднем имеет толщину 68 километров, ниже коры идет мантия и вероятно в центре есть ядро радиусом примерно 340 километров, которое составляет около 2% массы Луны. В отличие от Земли на луне нет вулканической деятельности. Центр массы Луны смещен от геометрического центра примерно на 2 километра в направлении Земли. Кроме того, кора Луны более тонкая на стороне Луны, обращенной к Земле.

На Луне различают два типа ландшафта – кратеры и горы и относительно гладкая поверхность, которая составляет примерно 16% всей площади Луны. По не известной причине гладкая поверхность преобладает на стороне, обращенной к Земле.

В общей сложности 382 кг горных образцов были возвращены в Землю программами Аполлона и Луна. Они обеспечили большую часть знания Луны. Даже сегодня, спустя более 30 лет после последней посадки на Луну, ученые все еще изучают эти драгоценные образцы.

Большинство скал на поверхности Луны, имеют возраст от4.6 до 3 миллиардов лет.

Для сравнения, на земле скалу редко бывают более 3-х миллиардов лет.

Таким образом, Луна представляет простор для исследования ранней истории , не доступной на Земле.

До исследования образцов грунта с луны, переданного космическим аппаратом Аполлон, не было единой теории происхождения Луны.


Сторона Луны, обращенная к Земле

Было 3 теории образования Луны:

1. Земля и Луна сформирована в то же самое время из Солнечной Туманности.

2. Луна откололась от Земли под воздействием механической силы удара огромного тела.

3. Луна сформировалась в ином пространстве от Земли, но была захвачена силой притяжения Земли.

После исследования лунного грунта преобладает теория №2, - Луна сформировалась от удара с очень большим объектом, таким, как Марс или даже больше и формирование Луны произошло из выброшенного от столкновения материала.

У Луны нет глобального магнитного поля. Но часть его поверхности излучает силовые линии, это указывает, что, возможно, было глобальное магнитное поле на заре истории Луны.

Без атмосферы и магнитного поля, поверхность Луны находится под воздействием солнечного ветра. За 4 миллиардалет ионы солнечного ветра накапливались в реголите Луны. Таким образом, образцы реголита, возвращенного миссиями Аполлона, оказались ценным материалом в исследованиях солнечного ветра.

Параметры планеты Луна:

Масса: 0,07349 x 10 24 кг

Объем: 2,1958x 10 10 кубических километров

Экваториальный радиус (км): 1738,1

Полярный радиус (км): 1736,0

Средняя плотность (кг/м 3): 3350

Гравитация (ed.) (м/с 2): 1,62

Ускорение свободного падения (ed.) (м/с2): 1,62

Вторая космическая скорость (км/с): 2,38

Солнечная энергия (W/m 2): 1367,6

Температура абсолютно черного тела (k): 274,5

Полуглавная ось (расстояние от Земли) (106 км): 0,3844

Перигей (106 км): 0,3633

Апогей (106 км): 0,4055

Период вращения вокруг Земли (дней): 27,3217

Синодический период (дней): 29,53 (смена лунных фаз)

Максимальная орбитальная скорость (км/с): 1,076

Минимальная орбитальная скорость (км/с): 0,964

Наклон к эклиптике (градусы): 5,145

Наклон к экватору (градусы): 18,28 - 28,58

Эксцентриситет Орбиты: 0,0549

Период вращения вокруг своей оси (часы): 655,728

Отдаление от Земли (см/год): 3,8

Расстояние от Земли (км): 384467

После Солнца Луна является самым заметным космическим телом на небосводе, поэтому люди всегда проявляли к ней повышенный интерес. Сегодня ночное светило – объект самого пристального изучения.


Благодаря исследованиям астрономов мы знаем о нем практически всё, но некоторые люди до сих пор задаются вопросом, что такое – спутник, звезда или планета. Чтобы дать однозначный ответ, необходимо, прежде всего, разобраться в понятиях этих небесных тел.

Что такое звезда?

Звездами во Вселенной называют массивные газовые шары, которые излучают свет и удерживают равновесие благодаря силам собственного притяжения. В их недрах происходят реакции термоядерного синтеза, а температура измеряется миллионами кельвинов.

В большинстве случаев звезды имеют большой диаметр и высокую массу. Их химический состав представляет собой набор легких элементов, которые обычно имеют вес меньше гелия.

Луна хоть и является шаром, но в ее составе преобладают тяжелые элементы, такие как кремний, титан, магний, натрий, железо. Внутри ночного светила не происходят термоядерные реакции, а его температура варьируется в пределах от −160 °C до +120 °C.


Луна имеет собственное гравитационное поле, которое способно вызывать приливы и отливы в Мировом океане Земли, но не может притягивать к себе крупные объекты. Исходя из вышесказанного, можно сделать вывод, что Луна звездой не является.

Что представляет собой планета?

Планета в астрономии – это небесное тело, которое вращается по орбите вокруг звезды. Оно имеет достаточный объем гравитационных сил для приобретения круглой формы, но недостаточную массу для реакций термоядерного синтеза. Большая часть этих космических объектов состоит из тяжелых элементов, хотя астрономам известны так называемые планеты-гиганты, в составе которых преобладают газы – гелий, водород, метан.

Каждая начинала свое образование с жидкого состояния. Постепенно более тяжелые элементы оседали в ее центре и формировали ядро, а более легкие оставались на поверхности.

В целом Луна соответствует всем указанным параметрам, то есть состоит из тяжелых веществ, имеет круглую форму и ядро, богатое железом. При этом она обладает некоторыми особенностями, которые отличают ее от планеты. Во-первых, внутреннее ядро Луны очень маленькое и отличается невысокой силой притяжения.


Если у большинства планет радиус ядра составляет около 50 % от общего размера, то у Луны – примерно 20 %. Во-вторых, одним из важных признаков планеты является способность расчищать свою орбиту от других космических объектов. У Луны такой способности нет, то есть на нее периодически падают достаточное крупные небесные тела и космический мусор. Таким образом, Луна – не планета.

Что такое спутник?

Спутниками считают объекты, которые вращаются по определенной траектории вокруг других космических тел. Их движение происходит под действием гравитации, а орбита может быть как регулярной, так и изменяющейся.

Небесные тела становятся спутниками в том случае, если они были захвачены гравитационным полем планеты во время своего движения в космосе либо сформировались из того же газопылевого облака, что и сама планета.

Что касается Луны, то она действительно вращается вокруг Земли по заданной орбите, однако история ее происхождения немного иная. Считается, что 4,36 млрд. лет назад Земля, будучи протопланетой, столкнулась с другой протопланетой Тейя.


Столкновение произошло по касательной, после чего на околоземную орбиту выбросило множество обломков, из которых впоследствии образовалась Луна. Несмотря на такую историю, в астрономии ее принято считать именно спутником Земли.

В последние годы некоторые ученые пытаются доказать, что Луна все же не спутник, а планета. Свои выводы они строят на том, что среди других спутников Солнечной системы она занимает особое положение.

Прежде всего, Луна имеет слишком большую массу по сравнению с другими подобными объектами и находится на слишком большом расстоянии от земного шара, чтобы быть захваченной его гравитационными силами. Кроме того, она вращается вокруг нашей планеты не в плоскости экватора, как это делают настоящие спутники.

По этой причине вопрос о статусе Луны остается открытым. Возможно, в будущем астрономы признают ее самостоятельной планетой.

Луна - единственный естественный спутник планеты Земля. Римляне называли спутник Земли Луной, греки - Селеной, древние египтяне - Иях. Луна притягивала интерес людей с древнейших пор . Луна второй самый яркий объект в небосводе после Солнца. Так как Луна вращается по орбите кругом с временем в один месяц, угол меж Землей, Луной и Солнцем меняется; мы видим этот эффект как цикл лунных фаз. Период времени между поочередными новыми месяцы составляет 29,5 дней (709 часов).

Хотя Луна и вертится вокруг собственной оси, она всегда обращена к Земле одной и той же стороной. Дело в том, что она производит один кругооборот вокруг собственной оси за то же время (27,3 дней), что и один оборот вокруг Земли. А так как направленность обоих вращений совпадает, его противоположную сторону с Земли узреть нереально. Но, так как вращение Луны вокруг Земли по эллиптической орбите проистекает неравномерно, с Земли имеется возможность видеть 59% лунной поверхности.

Луна не является самосветящимся телом , как и все планеты. Наблюдать его можно лишь настолько, насколько она освещается Солнцем. За особенностей движения, наш спутник всегда освещается Солнцем только с одной стороны, но земной наблюдатель в разное время видит освещенную половину по-разному. Луна меняет свою видимую форму, и эти изменения называются фазами. Фазы зависят от относительного расположения Земли, Луны и .

Лунные фазы

Новолуние - фаза, когда луна находится между Землей и Солнцем. В этот момент он невидим для земного наблюдателя.

Полнолуние - противоположная точка орбиты Луны, в которой его освещена Солнцем полушарие видимая земному наблюдателю полностью.

Промежуточные фазы - положение Луны между новолунием и полнолунием, когда земной наблюдатель видит большую или меньшую часть освещенной полушарии, их называют четвертями.

Гравитационные силы меж Землей и Луной призывают некие занятные эффекты. Самый узнаваемый из них - морские приливы и отливы. Гравитационное тяготение Луны посильнее на той стороне Земли, которая направлена к Луне, и меньше в другой стороне. Потому плоскость Земли, и в особенности океаны, растягиваются по направлению к Луне. В случае если бы мы поглядели на Землю с стороны, мы узрели бы две выпуклости, и обе они ориентированы в сторону Луны, однако пребывают на противоположных краях Земли.

Данное явление намного более силен в океанской воде, нежели в твердой коре, так выпуклость воды больше. А так как Земля вертится гораздо быстрее, нежели Луна двигается по собственной орбите, смещение выпуклостей вокруг Земли раз за день дает две высочайших точки прилива в день.

Благодаря собственному размеру и составу ее время от времени причисляют к планетам земной категории наравне с , Землей и . Потому изучение геологического строение Луны, ученые могут многое узнать о строении и развитии Земли.

Толщина коры спутника в среднем составляет 68 километров , изменяясь с 0 км под лунным морем Кризисов до 107 км в северной части кратера Королева на оборотной стороне. Под корой располагаться мантия и, может быть, маленькое ядро изо сернистого железа (радиусом предположительно 340 км и массой, которая составляет около 2% массы всей Луны.

В отличие от мантии Земли, ее оболочка лишь отчасти расплавленная. Любопытно, что центр массы Луны размещается приблизительно в 2 км от геометрального центра по направленности к Земле. В той стороне, которая повернута к Земле, кора наиболее узкая.

Измерение скорости спутников «Лунар Орбитер» позволили создать гравитационную карту Луны. С ее помощью были обнаружены уникальные лунные объекты названы масконы - это массы вещества повышенной плотности.

Луна не обладает магнитным полем. Однако некие из горных пород в ее плоскости показывают остаточный магнетизм, что показывает на то, что, может быть, в летописи у Луны имелось магнитное поле.

Не имея атмосферы, магнитного поля, плоскость Луны подвергается под прямое влияние солнечного ветра. В течение 4 млрд лет водородные ионы из космоса попадали на поверхность. Таким образом, образцы лунного грунта, принесенные Аполлоном, оказались очень значимыми для изучения солнечного ветра. Данный лунный элемент еще может быть применен в качестве ракетного топлива.

Поверхность Луны можно поделить на 2 вида: совсем древняя горная область с огромным числом кратеров (лунные материки) и условно ровные и юные лунные моря. Лунные моря, которые составляют приблизительно 16% всей плоскости Луны, - это огромные кратеры, образовавшиеся в следствии столкновений с небесными телами, которые были позже затоплены лавой. Крупная часть поверхности прикрыта реголитом - смесью тонкой пыли и скалистых осколков, полученных из столкновений с метеоритами. По непонятной причине лунные моря сосредоточены на обращенной к нам стороне.

Большая часть кратеров на обращенной к нам стороне называется именами известных людей в истории наук, физика, астрономия, таких как Тихо Браге, Коперник и Птолемей. Особенности рельефа на обратной стороне обладают наиболее современные названия типа Аполлон, и Королев - в основном это российские названия, так как первые фотографии были сделаны русским кораблем Луна-3.

В добавление к этим особенностям на обратной стороне Луны содержится большой бассейн кратеров размером 2250 километров в диаметре и 12 км глубиной - это самый большой бассейн, появившийся в результате столкновения, в , и располагаться в западной части видимой стороны (его видно из земли), который является замечательным примером много-кольцевого кратера.

Также отделяют второстепенные детали лунного рельефа - купола, хребты, равнины и трещины, которые именуются лунными бороздами.

До получения образцов лунной почвы, ученые ничего не знали о том, когда и как образовалась Луна.

3 принципиальных теории формирования Луны

  • Луна и Земля сформировались в то же время из газо-пылевого облака
  • Луна откололась от Земли
  • Луна сформировалась в другом месте и впоследствии была захвачена магнитным полем Земли.

Но новая информация, полученная путем детального изучения образцов с Луны, в частности, распределения изотопов, привела к следующей теории: Земля столкнулась с объектом размером с , (возможно сформировался в одной из точек Лагранжа), этот планетоид назвали Тейя. Луна образовалась из выбитой этим столкновением вещества. Не все детали этой теории проработаны, но именно она сегодня имеет наибольшее распространение.

Планетарные характеристики Луны

  • Радиус = 1 738 км
  • Большая полуось орбиты = 384 400 км
  • Орбитальный период = 27,321661 суток
  • Эксцентриситет орбиты = 0,0549
  • Наклон орбиты экватора = 5,16
  • Температура поверхности = от -160 ° до +120 ° C
  • Сутки = 708 часов
  • Расстояние до Земли = 384400 км

Фотографии луны

Миссия Аполлон

Восход полной луны над храмом Посейдона (построен в 450-440 годах до нашей эры). Южная Греция, 26 июня 2010, подбор места и времени снимка с пятиминутной выдержкой занял у Энтони Айомамитиса 15 месяцев.

Геология ( строение) Луны

Пепельный ландшафт простирается на сколько хватает глаз. Пустынная равнина окру-жена холмами со сглаженными очертаниями. Полузасыпанные глыбы беспорядочно наг-ромождены вокруг. Грунт мягкий, следы на нем остаются, как на мокром песке. Этот ландшафт, ограниченный аномально близким из-за малого радиуса планеты горизонтом, не да-ет никаких ориентиров для оценки расстояния. Полное отсутствие атмосферы создает иллю-зию необычайной близости предметов.

Бархатно-черное небо сияет миллиардами немерцающих, ярких звезд. Солнце в дневное время соседствует с ними. Оно выглядит как четко очерченный слепящий бело-желтый круг без при-вычных лучиков. Тени от неровностей рельефа здесь очень глубоки и черны, поскольку нет рас-сеянного света.

И совсем непривычно и фантастично выглядит большой незаходящий голубой шар, хрупкий и прекрасный — живая планета, украшающая небосклон этого абсолютно мертвого мира.

Луна — тринадцатое по величине тело Солнечной системы — вращается вокруг Земли по слабо вытя-нутой эллиптической орбите, удаляясь от нее на макси-мальное расстояние в апогее на 405 тыс. км и приближаясь в перигее до 363 тыс. км. Средний диаметр Луны около 3486 км, что приблизительно в 3,6 раза меньше диаметра нашей планеты, а масса составляет 1/81 от ее массы. Луну отличает невысокая, по сравнению с планетами земной группы, плотность — 3,34 г/см3 (для сравнения, плотность Земли — 5,52г/см3). Период обращения Луны вокруг своей оси строго соответствует периоду обращения вокруг Земли (27 суток и 8 часов), и поэтому она повернута к нам всегда одной стороной. Только часть противоположной стороны (18%) бывает видна из-за либрации Луны. Ось ее враще-ния наклонена на 5,1° к плоскости орбиты. Сила тяжести на поверхности Луны в 6 раз слабее, чем на Земле. Темпе-ратура здесь колеблется от -160° С в лунную полночь до + 120° С в лунный полдень. Такие резкие перепады приво-дят к быстрому разрушению лунных пород. Эти процессы объясняют очень пологие, сглаженные формы лунного ре-льефа.

Не только Земля оказывает гравитационное влияние на Луну, но и Луна заметно воздействует своим гравитационным полем на Землю. Деформа-ции земной коры вместе с перемеще-ниями масс воды во время приливов и отливов вызывают внутреннее тре-ние, тормозящее вращение нашей планеты. Замедление вращения Зем-ли доказано изучением линий роста палеозойских кораллов. Согласно этим данным, в начале палеозойской эры (540 млн. лет назад), земные сут-ки равнялись 22 часам, а это значит, что миллиарды лет назад, в самый ранний период истории Земли, они могли составлять всего 4 часа. Сейчас вращение Земли продолжает замед-ляться, и Луна удаляется от нее со скоростью 3 см в год. В палеозойскую эру, когда животные выбрались на су-шу, они могли видеть Луну ближе, чем видим ее мы, и гораздо больших размеров. Расчеты показывают, что примерно через 5 млрд. лет вращение Земли затормозится настолько, что она будет совершать за год всего 9 обо-ротов вокруг своей оси; к тому момен-ту и удалившаяся Луна будет обхо-дить Землю 9 раз за год. С этого вре-мени и уже навсегда с Луны будет видна только одна половина земного шара. Однако ученые предполагают, что через 4,5 млрд. лет наше Солнце, скинув оболочку, превратится в бе-лый карлик, и это катастрофически скажется на судьбе планетной пары Земля-Луна.

Эволюция и формы рельефа Луны

Характер поверхности Луны и сос-тав ее верхних оболочек формировался в течение долгой истории. Около 4,6 млрд. лет назад в окрестностях молодо-го Солнца происходили важные собы-тия — заканчивался процесс рождения планет и их спутников. Луна, как и Земля, представляла собой пылающий шар расплавленных горных пород, в который сыпался град метеоритов. В это время на Луне извергались вулканы и совершались катастрофические планетотрясения. Со временем внешняя расплавленная оболочка Луны, осты-вая, затвердевала. Период магматичес-кой "бурной молодости" Луны длился не более 0,5 млрд. лет. Это была эпоха формирования.

В ходе остывания внешней корки Луны и бомбардировки ее метеоритами 4,4 — 4,1 млрд. лет назад образовался типичный лунный кратерный рельеф. Этот период, длившийся примерно 0,5 млрд. лет, называют эпохой бомбарди-ровки. По мере "вычерпывания" кос-мического "сора" из околоземного спутникового роя, частота падения обломков на Луну уменьшалась. Но имен-но напоследок (4,1-3,9 млрд. лет назад) произошли катаклизмы, приведшие к образованию на поверхности гигант-ских впадин, которые называют "боль-шими ударными бассейнами" или "лунными морями".

Заключительной стадией активной внутренней жизни Луны явился гло-бальный базальтовый вулканизм. Кора на видимом полушарии, возможно, из-за приливного действия Земли, вдвое тоньше (60 км), чем на обратной сторо-не. Поэтому извержение лав легче про-ходило на видимой стороне. Базальты, поднимаясь из лунных недр, заполни-ли "большие ударные бассейны", обра-зовав гигантские равнины, покрытые застывшей лавой. Это время называют эпохой лавовых морей. Установлено, что возраст лунных базальтов состав-ляет 4-3 млрд. лет, т.е. активная текто-ническая жизнь планеты закончилась 3 млрд. лет назад.

С тех пор на Луне воцарилось отно-сительное спокойствие. Но падаю-щие метеоры, температурное вывет-ривание, солнечное и космическое излучения продолжают разрушать ее поверхность. В результате Луна вся покрылась слоем пылеватых частиц, толщиной до 10 м. Это самый дли-тельный период геологической исто-рии Луны, продолжающийся и сегод-ня. Он условно назван эпохой лунной пыли.

Еще на заре изучения Луны были приняты термины для обозначения различных областей на ее поверхнос-ти. Это лунные "моря" и лунные "кон-тиненты" или "материки". Материки (83% площади лунного шара) сложе-ны светлыми породами типа анортози-тов, они отличаются наличием значи-тельных неровностей и множеством кратеров. Моря — относительно ров-ные области, более темные из-за пок-рывающих их застывших потоков ба-зальтов, с меньшим количеством кра-теров.

На лунной поверхности встречаются кратеры диаметром от сотен километ-ров до миллиметров. Возраст боль-шинства крупных кратеров оценивает-ся в 1-3 млрд. лет. Они, как правило, ударного происхождения. У самых мо-лодых кратеров, например, Тихо, Ко-перник, поперечником в десятки кило-метров, при отвесно падающих лучах Солнца (в полнолуние) можно видеть радиально расходящиеся светлые по-лосы, простирающиеся на сотни, а иногда и тысячи километров. Полосы сложены светлыми обломками анорто-зитов (материковых пород), разлетев-шимися во все стороны при ударах ме-теоритов. Некоторые кратеры имеют вулканическое происхождение (кратер Варгентин, до краев заполненный ла-вой). Кроме ударных и вулканических структур, на Луне имеются трещины и разломы, хорошо различимые на фо-тографиях. Это, например, знаменитая Прямая стена в Море Облаков — 240-метровый уступ, протянувшийся на 125 км. Концентрация разломов отме-чается в зонах сочленения континен-тов и морей.

В середине XVII в. польский астро-ном Ян Гевелий предложил называть горы на Луне теми же именами, что и на Земле. Вокруг Моря Дождей распо-ложены Альпы, Кавказ, Апеннины, Карпаты. Море Нектара окружают Ал-тай и Пиренеи. Наиболее внушитель-ная горная цепь — Апеннины, длиной почти 600 км (максимальная высота 5638м). Самые высокие — Горы Лей-бница — лежат в районе южного полю-са. Высота их отдельных пиков, по пос-ледним данным, несколько превышает 9000 м.

Из чего состоит Луна

Вопрос об элементном, минерало-гическом и петрографическом составе лунной поверхности волновал ученых с тех пор, как они начали наблюдать и изучать это небесное тело. Но дать точный ответ на него удалось только при детальном исследовании образ-цов лунных пород и грунта, достав-ленных американскими и советскими космическимиаппаратами.Сейчас для исследований имеется 385 кг ве-щества из разных областей видимой стороны Луны. Часть его была тща-тельно изучена всеми возможными способами в лабораторных условиях. А остаток, запакованный в гермети-ческие контейнеры, хранится в ожи-дании более совершенных методов исследования.

Основные химические элементы, обнаруженные в лунных породах — это кислород, кремний, железо, ти-тан, магний, кальций и алюминий. В лунных базальтах найдены благород-ные металлы — серебро и золото, но их содержание значительно меньше, чем в земных. В целом, лунная мине-ралогия оказалась довольно бедной.

На Земле существует несколько ты-сяч минералов, а на Луне их пока отк-рыто не более сотни. Впрочем, это легко объяснить: на Луне нет жидкой воды и атмосферы, поэтому условия формирования минералов менее раз-нообразны.

В лунном грунте не найдено окаменелостей или остатков органики. В нем отсутствуют даже небиологические ор-ганические соединения.

Какими же породами представлена лунная поверхность? Их делят на нес-колько типов.

Базальты — вулканические тяже-лые, темные, микрозернистые, плот-ные или пористые породы, образован-ные при застывании лавы.

Вулканические стекла — мелкие оранжевые и изумрудно-зеленые шарики, придающие цветовые от-тенки лунному грунту.

Анортозиты — относительно легкие светлые крис-таллические породы, похожие на земные, которые формируют лунные материки. Именно из-за них мате-риковые области Луны выглядят более светлыми, чем морские.

Брекчии — сложные породы, формирующиеся из всех других типов лунных пород и грунта при паде-нии метеоритов. Обломки пород цементируются стекловидной массой, выплавившейся при ударе из лунных пород и вещества метеорита.

Лунный грунт или реголит — пылевато-песчаный порошок со специфичес-ким запахом гари, которым покрыта вся поверхность Луны. Он обладает стран-ным свойством: при бурении поверхностного слоя, состоящего из реголита, мяг-кий порошок сопротивляется углублению буровой трубки, и в то же время, не держит ее в вертикальном положении.

Получены интересные данные, свидетельствующие о наличие пыли в около-лунном пространстве. Именно она вызывает свечение лунного горизонта при захо-де Солнца на Луне. Свечения были зарегистрированы американскими аппаратами Surveyor, а также при визуальных наблюдениях астронавтами с окололунной ор-биты во время полетов кораблей Apollo. Наиболее вероятные размеры частиц пы-ли оцениваются в 0,1 мкм.

Пока остается открытым вопрос о присутствии воды на Луне. Американская станция Clementine в 1994 г. и космический аппарат Lunar Prospector в 1998 г. засвидетельствовали небольшую (до 1%) концентрацию мелких кристаллов льда в лунном реголите в районе южного полюса. Источником воды предположительно могли быть ядра упавших на Луну комет или недра самой Луны. Однако радиоас-трономические исследования лунных полюсов в 2003 г. показали отсутствие там следов льда.

Внутреннее строение Луны

Образцы лунного грунта добыты с глубины до 2,5 м. А что находится глубже? Ответ на этот вопрос дали геофизические методы исследования. Американские астронавты установи-ли на лунной поверхности сейсмометры, регистрирующие колебания почвы. Их источником должны были служить удары метеоритов, лунотрясения, упавшие отработанные посадочные лунные модули кораблей Apollo и последние сту-пени ракет-носителей Saturn, которые направлялись в зара-нее выбранные точки.

Однако энергии этих ударов хватило для изучения стро-ения коры и верхней мантии до глубин 150-200 км. Для "просвечивания" всей толщи необходим был более мощный удар. И природа преподнесла ученым подарок в виде паде-ния двух крупных метеоритов на обратной стороне нашего спутника. "Просветив" Луну насквозь, сейсмические вол-ны качнули сейсмометры на всех четырех станциях сети Apollo и принесли феноменальную новость — у Луны су-ществует ядро.

Результаты изучения сейсмограмм позволяют сделать вывод, что лунные недра делятся на четыре условные зоны: кора, образованная породами анортозитового состава, мощностью 60 км на видимой стороне и более 100 км на об-ратной; верхняя мантия (литосфера), мощностью около 800 км, где фиксируются глубокофокусные лунотрясения; нижняя мантия, находящаяся в частично расплавленном состоянии, с температурой до 1500° С; и лунное ядро, рас-положенное глубже 1400-1500 км.

По сравнению с Землей, Луна геологически малоактив-на, но слабые тектонические лунотрясения все же удается проследить.

Лунотрясения приливного характера, наблюдаемые во время прохождения Луной апогея и перигея своей орбиты, связаны с гравитационным воздействием Земли. Их перио-дичность оставляет 13,6 земных суток.

Как образовалась Луна?

Космическая эра принесла много новых данных о внутреннем строении Луны. На Землю было доставлено сотни килограммов лунного грунта. Но можем ли мы с полной уверенностью ответить на вопрос, как образова-лась Луна?

Версий несколько. Это: 1. гипотеза "рождения" Луны из газово-пылевого протопланетного облака одновременно с Землей; 2. гипотеза захвата Землей Луны, образовавшейся в удаленной части Солнечной системы из протопланетного вещества, бедного железом; 3. гипотеза отрыва части мантийного вещества от разогретой и быстровращающейся Земли в ранний период ее формирования. Все они имеют свои недостатки.

Большинством планетологов се-годня принята ги-потеза "большого взрыва", согласно которой Луна об-разовалась в ре-зультате столкно-вения юной Земли с планетой, названной Тея, размерами близкой к Марсу. Оно могло произойти приблизительно через 50 млн. лет после рождения Солнечной системы. Масса Земли тогда составляла около 90% нынешней. Часть земного материа-ла и обломки столкнувшегося тела образовали дисковидное облако, из которого и сформировалась Луна. Удар зат-ронул лишь внешнюю мантийную часть Земли. Выбитый материал содержал мало тяжелых железных компонентов. Поэтому сформировавшееся новое тело оказалось относи-тельно легким.

Общность происхождения подтверждают полученные не-давно данные об изотопном составе Земли и Луны. Ученые даже не ожидали, что состав изотопов кислорода на Луне и Земле окажется практически одинаковым.

В пользу гипотезы свидетельствуют и данные объемно-го сейсмического зондирования Земли, которое показало существование тихоокеанской сейсмической аномалии в мантии, прослеживающейся на всех глубинных уров-нях, вплоть до ядра. Она может являться той "незажива-ющей раной", которая осталась после катастрофическо-го удара.

Луна хранит еще множество загадок. Раскрыв их, мы приблизились бы и к разгадкам галактических тайн. Ведь бесплодная лунная поверхность запечатлела следы самых древних событий, происходивших в Солнечной системе. Но для продолжения исследований человечеству необходимо вернуться в этот мир. Увы, спустя 30 лет после полета "Apollo 1 7", проекты построения на Луне научной базы по-ка не финансируются ни одним космическим агентством.

Марина и Сергей Крочак