Химические свойства и применение фенола таблица. Фенол, его строение, свойства, применение. Физические свойства фенолов

Названия фенолов составляют с учетом того, что для родоначальной структуры по правилам ИЮПАК сохранено тривиальное название «фенол». Нумерацию атомов углерода бензольного кольца начинают от атома, непосредственно связанного с гидроксильной группой (если она является старшей функцией), и продолжают в такой последовательности, чтобы имеющиеся заместители подучили наименьшие номера.

Монозамещенные производные фенола, например метилфенол (крезол), могут существовать в виде трех структурных изомеров - орто-, мета- и паракрезолов.

Физические свойства.

Фенолы в большинстве своем - кристаллические вещества (-крезол - жидкость) при комнатной температуре. Они обладают характерным запахом, довольно плохо растворимы в воде, но хорошо растворяются в водных растворах щелочей (см. ниже). Фенолы образуют прочные водородные связи и имеют довольно высокие температуры кипения.

Способы получения.

1. Получение из галогенбензолов. При нагревании хлорбензола и гидроксида натрия под давлением получают фенолят натрия, при дальнейшей обработке которого кислотой образуется фенол:

2. Получение из ароматических сульфокислот (см. реакцию 3 в разделе «Химические свойства бензола», § 21). Реакция проводится при сплавлении сульфокислот с щелочами. Первоначально образующиеся феноксиды обрабатывают сильными кислотами для получения свободных фенолов. Метод обычно применяют для получения многоатомных фенолов:

Химические свойства.

В фенолах р-орбиталь атома кислорода образует с ароматическим кольцом единую -систему. Вследствие такого взаимодействия электронная плотность у атома кислорода уменьшается, а в бензольном кольце повышается. Полярность связи О-Н увеличивается, и водород ОН-группы становится более реакционноспособным и легко замещается на металл даже при действии щелочей (в отличие от предельных одноатомных спиртов).

Кроме того, в результате такого взаимного влияния в молекуле фенола увеличивается реакционная способность бензольного кольца в орто- и кара-положениях в реакциях электрофильного замещения (галогенирования, нитрования, поликонденсации и т.д.):

1. Кислотные свойства фенола проявляются в реакциях со щелочами (сохранилось старинное название «карболовая кислота»):

Фенол, однако, является очень слабой кислотой. При пропускании через раствор фенолятов углекислого или сернистого газов выделяется фенол - такая реакция доказывает, что фенол - более слабая кислота, чем угольная и сернистая:

Кислотные свойства фенолов ослабляются при введении в кольцо заместителей I рода и усиливаются при введении заместителей II рода.

2. Образование сложных эфиров. В отличие от спиртов, фенолы не образуют сложных эфиров при действии на них карбоновых кислот; для этого используются хлоран-гидриды кислот:

3. Галогенирование. При действии на фенол бромной воды (сравните с условиями бромирования бензола - § 21) образуется осадок 2,4,6-трибромфенола:

Это - качественная реакция для обнаружения фенола.

4. Нитрование. Под действием 20%-ной азотной кислоты фенол легко превращается в смесь орто- и пара-нитрофенолов. Если нитровать фенол концентрированной азотной кислотой, то образуется 2,4,6-тринитрофенол - сильная кислота (пикриновая).

5. Окисление. Фенолы легко окисляются даже под действием кислорода воздуха.

Так, при стоянии на воздухе фенол постепенно окрашивается в розовато-красный цвет. При энергичном окислении фенола хромовой смесью основным продуктом окисления является хинон. Двухатомные фенолы окисляются еще легче. При окислении гидрохинона образуется хинон:

Фенол С 6 Н 5 ОН – бесцветное, кристаллическое вещество с характерным запахом. Его t плавления = 40,9 С. В холодной воде он мало растворим, но уже при 70◦С растворяется в любых отношениях. Фенол ядовит. В феноле гидроксильная группа соединена с бензольным кольцом.

Химические свойства

1. Взаимодействие с щелочными металллами.

2C 6 H 5 OH + 2Na → 2C 6 H 5 ONa + H 2

фенолят натрия

2. Взаимодействие со щелочью (фенол – слабая кислота)

C 6 H 5 OH + NaOH → C 6 H 5 ONa + H2O

3. Галогенирование .

4. Нитрование

5.Качественная реакция на фенол

3C 6 H 5 OH +FeCl 3 → (C 6 H 5 O) 3 Fe +3HCl (фиолетовое окрашивание)

Применение

Для дезинфекции, получение лекарств, красителей, взрывчатых веществ, пластмасс.

Получение спиртов из предельных и непредельных углеводородов. Промышленный способ получения метанола.

Наибольшее промышленное значение имеют метанол и этанол.

Промышленный синтез метанола.

Метанол применяется в производстве ряда органических веществ (формальдегида, лекарств), используется как растворитель лаков и красок, служит добавкой к топливам. В настоящее время метанол получают экономически выгодным способом из синтез-газа:

1.Синтез-газ получают взаимодействием метана (природного газа) с водяным паром в присутствии катализатора:

СН 4 +Н 2 О → СО+3Н 2

синтез-газ

2.Из синтез-газа получают метанол:

СО + 2Н 2 СН 3 ОН +Q

1моль 2моль 1 моль

Эта реакция обратимая, экзотермическая, чтобы сместить равновесие в сторону образования метанола, нужно воспользоваться принципом Ле-Шателье:

1.Реакция сопровождается уменьшением объёма, поэтому повышение давления будет способствовать образованию метанола.

2.Реакция экзотермическая, следовательно, особенно сильно нагревать вещества нельзя.

Из-за обратимости процесса исходные вещества реагируют не полностью. Поэтому образовавшийся спирт необходимо отделять, а непрореагировавшие газы снова направлять в реактор, то есть осуществлять циркуляцию газов .

Получение спиртов из предельных и непредельных углеводородов.

1. Этанол в промышленности получают гидратацией этилена:

СН 2 =СН 2 + Н 2 О → СН 3 -СН 2 -ОН

2. Из предельных углеводородов спирты получают через галогенопроизводные. Первая реакция – галогенирование алкана:

С 2 Н 6 + Br 2 → C 2 H 5 Br + HBr

бромэтан

Вторая реакция- взаимодействие бромэтана с водным раствором щёлочи:

C 2 H 5 Br + НОНC 2 H 5 ОН + НBr

Щёлочь нужна, чтобы нейтрализовать НBr.

Промышленного значения такой способ не имеет, им пользуются в лабораториях. Но он важен в теоретическом отношении, так как показывает взаимосвязь между предельными углеводородами, их галогенопроизводными и спиртами.

Фенолы - производные ароматических углеводородов, в состав которых могут входить одна или несколько гидроксильных групп, соединенных с бензольным кольцом.

Как называть фенолы?

По правилам ИЮПАК сохраняется название «фенол ». Нумерация атомов идет от атома , который непосредственно связан с гидрокси-группой (если она - старшая) и нумеруют так, чтобы заместители получили наименьший номер.

Представитель - фенол - С 6 Н 5 ОН :

Строение фенола.

У атома кислорода на внешнем уровне находится неподеленная электронная пара, которая «втягивается» в систему кольца (+М-эффект ОН -группы). В результате могут возникнуть 2 эффекта:

1) повышение электронной плотности бензольного кольца в положения орто- и пара-. В основном, такой эффект проявляется в реакциях электрофильного замещения.

2) уменьшается плотность на атоме кислорода, вследствие чего связь О-Н ослабляется и может рваться. Эффект связан с повышенной кислотности фенола по сравнению с предельными спиртами.

Монозамещенные производные фенола (крезол) могут быть в 3х структурных изомерах:

Физические свойства фенолов.

Фенолы - кристаллические вещества при комнатой температуре. Плохо растворимы в холодной воде , но хорошо - в горячей и в водных растворах щелочей. Обладают характерным запахом. Вследствие образования водородных связей, обладают высокой температурой кипения и плавления.

Получение фенолов.

1. Из галогенбензолов. При нагревании хлорбензола и гидроксида натрия под давлением получают фенолят натрия, который после взаимодействия с кислотой , превращается в фенол:

2. Промышленный способ: при каталитическом окислении кумола на воздухе получается фенол и ацетон:

3. Из ароматических сульфокислот с помощью сплавления с щелочами. Чаще проводят реакцию для получения многоатомных фенолов:

Химические свойства фенолов.

р -орбиталь атома кислорода образует с ароматическим кольцом единую систему. Поэтому электронная плотность на атоме кислороде уменьшается, в бензольном кольце - увеличивается. Полярность связи О-Н повышается, и водород гидроксильной группы становится более реакционоспособным и легко может быть замещен атомом металла даже при действии щелочей.

Кислотность фенолов выше, чем у спиртов, поэтому можно проводить реакции:

Но фенол - слабая кислота. Если через его соли пропускать углекислый или сернистый газ, то выделяется фенол, что доказывает, что угольная и сернистая кислота являются более сильными кислотами:

Кислотные свойства фенолов ослабляются при введении в кольцо заместителей I рода и усиливаются - при введении II.

2) Образование сложных эфиров. Процесс протекает при воздействие хлорангидридов:

3) Реакция электрофильного замещения. Т.к. ОН -группа является заместителем первого рода, то реакционная способность бензольного кольца в орто- и пара- положениях повышается. При действии на фенол бромной воды наблюдается выделение осадка - это качественная реакция на фенол:

4) Нитрование фенолов. Реакцию проводят нитрирующей смесью, в результате чего образуется пикриновая кислота:

5) Поликонденсация фенолов. Реакция протекает под воздействии катализаторов:

6) Окисление фенолов. Фенолы легко окисляются кислородом воздуха:

7) Качественной реакцией на фенол является воздействие раствора хлорида железа и образование комплекса фиолетового цвета.

Применение фенолов.

Фенолы используют при получении фенолформальдегидных смол, синтетических волокон, красителей и лекарственных средств, дезинфицирующих веществ. Пикриновая кислота используется в качестве взрывчатых веществ.

Различают одно-, двух-, трехатомные фенолы в зависимости от количества ОН-групп в молекуле (рис.1)

Рис. 1. ОДНО-, ДВУХ- И ТРЕХАТОМНЫЕ ФЕНОЛЫ

В соответствии с количеством конденсированных ароматических циклов в молекуле различают (рис. 2) сами фенолы (одно ароматическое ядро – производные бензола), нафтолы (2 конденсированных ядра – производные нафталина), антранолы (3 конденсированных ядра – производные антрацена) и фенантролы (рис. 2).

Рис. 2. МОНО- И ПОЛИЯДЕРНЫЕ ФЕНОЛЫ

Номенклатура спиртов.

Для фенолов широко используют тривиальные названия, сложившиеся исторически. В названиях замещенных моноядерных фенолов используются также приставки орто- , мета- и пара -, употребляемые в номенклатуре ароматических соединений. Для более сложных соединений нумеруют атомы , входящие в состав ароматических циклов и с помощью цифровых индексов указывают положение заместителей (рис. 3).

Рис. 3. НОМЕНКЛАТУРА ФЕНОЛОВ . Замещающие группы и соответствующие цифровые индексы для наглядности выделены различными цветами.

Химические свойства фенолов.

Бензольное ядро и ОН-группа, объединенные в молекуле фенола, влияют друг на друга, существенно повышая реакционную способность друг друга. Фенильная группа оттягивает на себя неподеленную электронную пару от атома кислорода в ОН-группе (рис. 4). В результате на атоме Н этой группы увеличивается частичный положительный заряд (обозначен значком d+), полярность связи О–Н возрастает, что проявляется в увеличении кислотных свойств этой группы. Таким образом, в сравнении со спиртами, фенолы представляют собой более сильные кислоты. Частичный отрицательный заряд (обозначен через d–), переходя на фенильную группу, сосредотачивается в положениях орто- и пара- (по отношению к ОН-группе). Эти реакционные точки могут атаковаться реагентами, тяготеющими к электроотрицательным центрам, так называемыми электрофильными («любящими электроны») реагентами.

Рис. 4. РАСПРЕДЕЛЕНИЕ ЭЛЕКТРОННОЙ ПЛОТНОСТИ В ФЕНОЛЕ

В итоге для фенолов возможны два типа превращений: замещение атома водорода в ОН-группе и замещение Н-атомобензольном ядре. Пара электронов атома О, оттянутая к бензольному кольцу, увеличивает прочность связи С–О, поэтому реакции, протекающие с разрывом этой связи, характерные для спиртов, для фенолов не типичны.

1. Реакции замещения атома водорода в ОН-группе. При действии на фенолы щелочей образуются феноляты (рис. 5А), каталитическое взаимодействие со спиртами приводит к простым эфирам (рис. 5Б), а в результате реакции с ангидридами или хлорангидридами карбоновых кислот образуются сложные эфиры (рис. 5В). При взаимодействии с аммиаком (повышенная температура и давление) происходит замена ОН-группы на NH 2 , образуется анилин, (рис. 5Г), восстанавливающие реагенты превращают фенол в бензол (рис. 5Д)

2. Реакции замещения атомов водорода в бензольном кольце.

При галогенировании, нитровании, сульфировании и алкилировании фенола атакуются центры с повышенной электронной плотностью (рис.4), т.е. замещение проходят преимущественно в орто- и пара- положениях (рис.6).

При более глубоком протекании реакции происходит замещение двух и трех атомов водорода в бензольном кольце.

Особое значение имеют реакции конденсации фенолов с альдегидами и кетонами, по существу, это алкилирование, проходящее легко и в мягких условиях (при 40–50° С, водная среда в присутствии катализаторов), при этом атом углерода в виде метиленовой группы СН 2 или замещенной метиленовой группы (CНR либо CR 2) встраивается между двумя молекулами фенола. Часто такая конденсация приводит к образованию полимерных продуктов (рис. 7).

Двухатомный фенол (торговое название бисфенол А, рис.7), используют в качестве компонента при получении эпоксидных смол. Конденсация фенола с формальдегидом лежит в основе производства широко применяемых феноло-формальдегидных смол (фенопласты).

Способы получения фенолов.

Фенолы выделяют из каменноугольной смолы, а также из продуктов пиролиза бурых углей и древесины (деготь). Промышленный способ получения самого фенола С 6 Н 5 ОН основан на окислении ароматического углеводорода кумола (изопропилбензол) кислородом воздуха с последующим разложением получающейся гидроперекиси, разбавленной H 2 SO 4 (рис. 8А). Реакция проходит с высоким выходом и привлекательна тем, что позволяет получить сразу два технически ценных продукта – фенол и ацетон. Другой способ – каталитический гидролиз галогензамещенных бензолов (рис. 8Б).

Рис. 8. СПОСОБЫ ПОЛУЧЕНИЯ ФЕНОЛА

Применение фенолов.

Раствор фенола используют в качестве дезинфицирующего средства (карболовая кислота). Двухатомные фенолы – пирокатехин, резорцин (рис. 3), а также гидрохинон (пара- дигидроксибензол) применяют как антисептики (антибактериальные обеззараживающие вещества), вводят в состав дубителей для кожи и меха, как стабилизаторы смазочных масел и резины, а также для обработки фотоматериалов и как реагенты в аналитической химии.

В виде отдельных соединений фенолы используются ограниченно, зато их различные производные применяют широко. Фенолы служат исходными соединениями для получения разнообразных полимерных продуктов – феноло-альдегидных смол (рис. 7), полиамидов, полиэпоксидов. На основе фенолов получают многочисленные лекарственные препараты, например, аспирин, салол, фенолфталеин, кроме того, красители, парфюмерные продукты, пластификаторы для полимеров и средства защиты растений.

Михаил Левицкий

Можно ожидать, что в зависимости от этого свойства веществ будут существенно отличаться друг от друга из-за взаимного влияния групп атомов (вспомните одно из положений теории Бутлерова). И действительно, органические соединения, содержащие ароматический радикал фенил С 6 Н 5 -, непосредственно связанный с гидроксильной группой, проявляют особые свойства, отличные от свойств спиртов. Такие соединения называют фенолами.

- органические вещества, молекулы которых содержат радикал фенил, связанный с одной или несколькими гидроксигруппами.

Так же как и спирты, фенолы классифицируют по атомности, т. е. по количеству гидроксильных групп.

Одноатомные фенолы содержат в молекуле одну гидроксильную группу:

Существуют и другие многоатомные фенолы , содержащие три и более гидроксиль-ные группы в бензольном кольце.

Познакомимся подробнее со строением и свойствами простейшего представителя этого класса - фенолом С6Н50Н. Название этого вещества и легло в основу названия всего класса - фенолы.

Физические свойства
Твердое бесцветное кристаллическое вещество, tºпл = 43 °С, tº кип = °С, с резким характерным запахом. Ядовит. Фенол при комнатной температуре незначительно растворяется в воде. Водный раствор фенола называют карболовой кислотой. При попадании на кожу он вызывает ожоги, поэтому с фенолом необходимо обращаться осторожно.

Строение молекулы фенола

В молекуле фенола гидроксил непосредственно связан с атомом углерода бензольного ароматического ядра.

Вспомним строение групп атомов, образующих молекулу фенола.

Ароматическое кольцо состоит из шести атомов углерода, образующих правильный шестиугольник, вследствие,sр 2 -гибридизации электронных орбиталей шести атомов углерода. Эти атомы связаны Þ-связями. Не участвующие в образовании ст-связей р-электроны каждого атома углерода, перекрывающиеся по разные стороны плоскости Þ-связей, образуют две части единого шестиэлектронного п -облака, охватывающего все бензольное кольцо (ароматическое ядро). В молекуле бензола С6Н6 ароматическое ядро абсолютно симметрично, единое электронное п -облако равномерно охватывает кольцо атомов углерода под и над плоскостью молекулы (рис. 24).

Ковалентная связь между атомами кислорода и водорода гидроксиль-ного радикала сильно полярна, общее электронное облако связи О-Н смещено в сторону атома кислорода , на котором возникает частичный отрицательный заряд, а на атоме водорода - частичный положительный заряд. Кроме того, атом кислорода в гидроксильной группе имеет две неподеленные, принадлежащие только ему электронные пары.

В молекуле фенола гидроксильный радикал взаимодействует с ароматическим ядром, при этом неподеленные электронные пары атома кислорода взаимодействуют с единым тс-облаком бензольного кольца, образуя единую электронную систему. Такое взаимодействие неподеленных электронных пар и облаков тг-связей называют сопряжением. В результате сопряжения неподеленной электронной пары атома кислорода гидроксигруппы с электронной системой бензольного кольца уменьшается электронная плотность на атоме кислорода. Это снижение компенсируется за счет большей поляризации связи О-Н, что, в свою очередь, приводит к увеличению положительного заряда на атоме водорода. Следовательно, водород гидроксильной группы в молекуле фенола имеет «кислотный» характер.

Логично предположить, что сопряжение электронов бензольного кольца и гидроксильной группы сказывается не только на ее свойствах, но и на реакционной способности бензольного кольца.

В самом деле, как вы помните, сопряжение неподеленных пар атома кислорода с л-облаком бензольного кольца приводит к перераспределению электронной плотности в нем. Она понижается у атома углерода, связанного с ОН-группой (сказывается влияние электронных пар атома кислорода) и повышается у соседних с ним атомов углерода (т. е. положения 2 и 6, или орто-положения). Очевидно, что повышение электронной плотности у этих атомов углерода бензольного кольца приводит к локализации (сосредоточению) отрицательного заряда на них. Под влиянием этого заряда происходит дальнейшее перераспределение электронной плотности в ароматическом ядре - смещение ее от 3-го и 5-го атомов (.мета-положение) к 4-му (орто-положение). Эти процессы можно выразить схемой:

Таким образом, наличие гидроксильного радикала в молекуле фенола приводит к изменению л-облака бензольного кольца, увеличению электронной плотности у 2, 4 и 6-го атомов углерода (орто-, дара-положения) и уменьшению электронной плотности у 3-го и 5-го атомов углерода (мета-положения).

Локализация электронной плотности в орто- и пара-положениях делает их наиболее вероятными для атак электрофильных частиц при взаимодействии с другими веществами.

Следовательно, влияние радикалов, составляющих молекулу фенола, взаимно, и оно определяет его характерные свойства.

Химические свойства фенола

Кислотные свойства

Как уже было сказано, атом водорода гидроксильной группы фенола обладает кислотным характером. Кислотные свойства у фенола выражены сильнее, чем у воды и спиртов . В отличие от спиртов и воды фенол реагирует не только с щелочными металлами, но и с щелочами с образованием фенолятов.

Однако кислотные свойства у фенолов выражены слабее, чем у неорганических и карбоновых кислот. Так, например, кислотные свойства фенола примерно в 3000 раз меньше, чем у угольной кислоты. Поэтому, пропуская через водный раствор фенолята натрия углекислый газ, можно выделить свободный фенол:

Добавление к водному раствору фенолята натрия соляной или серной кислоты также приводит к образованию фенола.

Качественная реакция на фенол

Фенол реагирует с хлоридом железа(ІІІ) с образованием интенсивно окрашенного в фиолетовый цвет комплексного соединения.

Эта реакция позволяет обнаруживать его даже в очень незначительных количествах. Другие фенолы, содержащие одну или несколько гидроксильных групп в бензольном кольце, также дают яркое окрашивание сине-фиолетовых оттенков в реакции с хлоридом железа(ІІІ).

Реакции бензольного кольца

Наличие гидроксильного заместителя значительно облегчает протекание реакций электрофильного замещения в бензольном кольце.

1. Бромирование фенола. В отличие от бензола для бромирования фенола не требуется добавления катализатора (бромида железа(ІІІ)).

Кроме того, взаимодействие с фенолом протекает селективно (избирательно): атомы брома направляются в орто- и пара-положения, замещая находящиеся там атомы водорода. Селективность замещения объясняется рассмотренными выше особенностями электронного строения молекулы фенола. Так, при взаимодействии фенола с бромной водой образуется белый осадок 2,4,6-трибромфенола.

Эта реакция, так же как и реакция с хлоридом железа(ІІІ), служит для качественного обнаружения фенола.

2. Нитрование фенола также происходит легче, чем нитрование бензола. Реакция с разбавленной азотной кислотой идет при комнатной температуре. В результате образуется смесь орто- и пара-изомеров нитрофенола:

3. Гидрирование ароматического ядра фенола в присутствии катализатора происходит легко.

4. Поликонденсация фенола с альдегидами, в частности, с формальдегидом, происходит с образованием продуктов реакции - фенолформальдегидных смол и твердых полимеров.

Взаимодействие фенола с формальдегидом можно описать схемой:

Вы, наверное, заметили, что в молекуле димера сохраняются «подвижные» атомы водорода, а значит, возможно дальнейшее продолжение реакции при достаточном количестве реагентов.

Реакция поликонденсации, т. е. реакция получения полимера, протекающая с выделением побочного низкомолекулярного продукта (воды), может продолжаться и далее (до полного израсходования одного из реагентов) с образованием огромных макромолекул. Процесс можно описать суммарным уравнением:

Образование линейных молекул происходит при обычной температуре. Проведение же этой реакции при нагревании приводит к тому, что образующийся продукт имеет разветвленное строение, он твердый и нерастворимый в воде. В результате нагревания феноло-формальдегидной смолы линейного строения с избытком альдегида получаются твердые пластические массы с уникальными свойствами. Полимеры на основе феноло-формальдегидных смол применяют для изготовления лаков и красок, пластмассовых изделий, устойчивых к нагреванию, охлаждению, действию воды, щелочей и кислот, они обладают высокими диэлектрическими свойствами. Из полимеров на основе фенолформальдегидных смол изготавливают наиболее ответственные и важные детали электроприборов, корпуса силовых агрегатов и детали машин, полимерную основу печатных плат для радиоприборов.

Клеи на основе феноло-формальдегидных смол способны надежно соединять детали самой различной природы, сохраняя высочайшую прочность соединения в очень широком диапазоне температур. Такой клей применяется для крепления металлического цоколя ламп освещения к стеклянной колбе. Теперь вам стало понятно, почему фенол и продукты на его основе находят широкое применение (схема 8).

1. Назовите вещества по их структурным формулам:

2. Объясните, почему кислотные свойства фенола выражены сильнее, чем кислотные свойства воды и спиртов.

3. При пропускании углекислого газа через водный раствор фенолята натрия реакционная смесь помутнела и приобрела характерный запах. Объясните изменения и приведите уравнения реакций в молекулярном, полном и сокращенном ионном виде.

4. Составьте уравнения реакций, соответствующих нескольким стадиям образования фенолформальдегидного полимера из тримера.

5*. Смесь непредельного спирта и гомолога фенола массой 1,37 г реагирует с 160 г 2%-ной бромной воды. Такая же смесь в реакции с избытком натрия выделяет 168 мл газа (н. у.). Определите молекулярные формулы веществ и их массовые доли в смеси.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки