Эйлер венн биография. Леонард эйлер интересные факты

Большая советская энциклопедия: Эйлер (Euler) Леонард , математик, механик и физик. Род. в семье небогатого пастора Пауля Эйлера. Образование получил сначала у отца (который в молодости занимался математикой под рук. Я. Бернулли), а в 1720-24 в Базельском университете, где слушал лекции по математике И. Бернулли.
В кон. 1726 Э. был приглашен в Петербургскую АН и в мае 1727 приехал в Петербург. В только что организованной академии Э. нашел благоприятные условия для научной деятельности, что позволило ему сразу же приступить к занятиям математикой и механикой. За 14 лет первого петербургского периода жизни Э. подготовил к печати около 80 трудов и опубликовал свыше 50. В Петербурге он изучил русский язык.
Э. участвовал во многих направлениях деятельности Петербургской АН. Он читал лекции студентам академического университета, участвовал в различных технических экспертизах, работал над составлением карт России, написал общедоступное «Руководство к арифметике» (нем. издание 1738-40, рус. пер. ч.1-2, 1740). По специальному поручению академии Э. подготовил к печати «Морскую науку» (ч.1-2, 1749)- фундаментальный труд по теории кораблестроения и кораблевождения.
В 1741 Э. принял предложение прусского короля Фридриха II переехать в Берлин, где предстояла реорганизация АН. В Берлинской АН Э. занял пост директора класса математики и член правления, а после смерти ее первого президента П.Л. Мопертюи несколько лет (с 1759) фактически руководил академией. За 25 лет жизни в Берлине он подготовил около 300 работ, среди них ряд больших монографий.
Живя в Берлине, Э. не переставал интенсивно работать для Петербургской АН, сохраняя звание ее почетного члена. Он вел обширную научную и научно-организационную переписку, в частности переписывался с М.В. Ломоносовым, которого высоко ценил. Э. редактировал математический отдел русского академического научного органа, где опубликовал за это время почти столько же статей, сколько в «Мемуарах» Берлинской АН. Он деятельно участвовал в подготовке русских математиков; в Берлин командировались для занятий под его руководством будущие академики С.К. Котельников, С.Я. Румовский и М. Софронов. Большую помощь Э. оказывал Петербургской АН, приобретая для нее научную литературу и оборудование, ведя переговоры с кандидатами на должности в академии и т.д.
17(28) июля 1766 Э. вместе с семьей вернулся в Петербург. Несмотря на преклонный возраст и постигшую его почти полную слепоту, он до конца жизни продуктивно работал. За 17 лет вторичного пребывания в Петербурге им было подготовлено около 400 работ, среди них несколько больших книг. Э. продолжал участвовать и в организационной работе академии. В 1776 он был одним из экспертов проекта одноарочного моста через Неву, предложенного И.П. Кулибиным,и из всей комиссии один оказал широкую поддержку проекту.
Заслуги Э. как крупнейшего ученого и организатора научных исследований получили высокую оценку еще при его жизни. Помимо Петербургской и Берлинской академий, он состоял членом крупнейших научных учреждений: Парижской АН, Лондонского королевского общества и других.
Одна из отличительных сторон творчества Э. - его исключительная продуктивность. Только при жизни Э. было опубликовано около 550 его книг и статей (список трудов Э. содержит примерно 850 назв.). В 1909 Швейцарское естественнонаучное общество приступило к изданию полного собрания сочинений Э., которое завершено в 1975; оно состоит из 72 томов. Большой интерес представляет и колоссальная научная переписка Э. (около 3000 писем), до сих пор опубликована лишь частично.
Необыкновенно широк был круг занятий Э., охватывавших все отделы современной ему математики и механики, теорию упругости, математическую физику, оптику, теорию музыки, теорию машин, баллистику, морскую науку, страховое дело и т.д. Около 3/5 работ Э. относится к математике, остальные 2/5 преимущественно к ее приложениям. Свои результаты и результаты, полученные другими, Э. систематизировал в ряде классических монографий, написанных с поразительной ясностью и снабженных ценными примерами. Таковы, например, «Механика, или Наука о движении, изложенная аналитически» (т.1-2, 1736), «Введение в анализ» (т.1-2, 1748), «Дифференциальное исчисление» (1755), «Теория движения твердого тела» (1765), «Универсальная арифметика» (т.1-2, 1768-69), выдержавшая около 30 изданий на 6 языках, «Интегральное исчисление» (т.1-3, 1768-70, т.4, 1794) и др. В 18 в., а отчасти и в 19 в. огромную популярность приобрели общедоступные «Письма о разных физических и филозофических материях, писанные к некоторой немецкой принцессе...» (ч.1-3, 1768-74), которые выдержали свыше 40 изданий на 10 языках. Большая часть содержания монографий Э. вошла затем в учебные руководства для высшей и частично средней школы. Невозможно перечислить все доныне употребляемые теоремы, методы и формулы Э., из которых только немногие фигурируют в литературе под его именем [см., например, Эйлера метод ломаных, Эйлера подстановки, Эйлера постоянная, Эйлера уравнение, Эйлера уравнения (в гидромеханике), Эйлера формулы, Эйлера функция, Эйлера числа в математике, Эйлера число, Эйлера-Маклорена формула, Эйлера-Фурье формулы, Эйлерова характеристика, Эйлеровы интегралы, Эйлеровы углы].
В «Механике» Э. впервые изложил динамику точки при помощи математического анализа. В 1-м томе этого сочинения рассмотрено свободное движение точки под действием различных сил как в пустоте, так и в среде, обладающей сопротивлением; во 2-м - движение точки по данной линии или по данной поверхности; большое значение для развития небесной механики имела глава о движении точки под действием центр. сил. В 1744 он впервые корректно сформулировал механический принцип наименьшего действия и показал его первые применения. В «Теории движения твердого тела» Э. разработал кинематику и динамику твердого тела и дал уравнения его вращения вокруг неподвижной точки, положив начало теории гироскопов. В своей теории корабля Э. внес ценный вклад в теорию устойчивости. Значительны открытия Э. в небесной механике (например, в теории движения Луны), механике сплошных сред (основные уравнения движения идеальной жидкости в форме Э. и в т.н. переменных Лагранжа, колебания газа в трубах и пр.). В оптике Э. дал (1747) формулу двояковыпуклой линзы, предложил метод расчета показателя преломления среды. Э. придерживался волновой теории света. Он считал, что различным цветам соответствуют разные длины волн света. Э. предложил способы устранения хроматических аберрации линз и в 3-й части «Диоптрики» дал методы расчета оптических узлов микроскопа. Обширный цикл работ, начатый в 1748, Э. посвятил математической физике: задачам о колебании струны, пластинки, мембраны и др. Все эти исследования стимулировали развитие теории дифференциальных уравнений, приближенных методов анализа, спец. функций, дифференциальной геометрии и т.д. Многие математические открытия Э. содержатся именно в этих работах.
Главным делом Э. как математика явилась разработка математического анализа. Он заложил основы нескольких математических дисциплин, которые только в зачаточном виде имелись или вовсе отсутствовали в исчислении бесконечно малых И. Ньютона, Г.В. Лейбница, Я. и И. Бернулли. Так, Э. первый ввел функции комплексного аргумента («Введение в анализ», т.1) и исследовал свойства основных элементарных функций комплексного переменного (показательные, логарифмические и тригонометрические функций); в частности, он вывел формулы, связывающие тригонометрические функции с показательной. Работы Э. в этом направлении положили начало теории функций комплексного переменного.
Э. явился создателем вариационного исчисления, изложенного в работе «Метод нахождения кривых линий, обладающих свойствами максимума, либо минимума...» (1744). После работ Ж. Лагранжа Э. далее развил вариационное исчисление в «Интегральном исчислении» и ряде статей. Метод, с помощью которого Э. в 1744 вывел необходимое условие экстремума функционала - уравнение Эйлера, явился прообразом прямых методов вариационного исчисления 20 в. Э. создал как самостоятельную дисциплину теорию обыкновенных дифференциальных уравнений и заложил основы теории уравнений с частными производными. Здесь ему принадлежит огромное число открытий: классический способ решения линейных уравнений с постоянными коэффициентами, метод вариации произвольных постоянных, выяснение основных свойств уравнения Риккати, интегрирование линейных уравнений с переменными коэффициентами с помощью бесконечных рядов, критерии особых решений, учение об интегрирующем множителе, различные приближенные методы и ряд приемов решения уравнений с частными производными. Значит. часть этих результатов Э. собрал в своем «Интегральном исчислении».
Э. обогатил также дифференциальное и интегральное исчисление в узком смысле слова (например, учение о замене переменных, теорема об однородных функциях, понятие двойного интеграла и вычисление многих специальных интегралов). В «Дифференциальном исчислении» Э. высказал и подкрепил примерами убеждение в целесообразности применения расходящихся рядов и предложил методы обобщенного суммирования рядов, предвосхитив идеи современной строгой теории расходящихся рядов, созданной на рубеже 19 и 20 вв. Кроме того, Э. получил в теории рядов множество конкретных результатов. Он открыл т.н. формулу суммирования Эйлера - Маклорена, предложил преобразование рядов, носящее его имя, определил суммы громадного количества рядов и ввел в математику новые важные типы рядов (например, тригонометрические ряды). Сюда же примыкают исследования Э. по теории непрерывных дробей и других бесконечных процессов.
Э. является основоположником теории специальных функций. Он первым начал рассматривать синус и косинус как функции, а не как отрезки в круге. Им получены почти все классического разложения элементарных функций в бесконечные ряды и произведения. В его трудах создана теория гамма-функции. Он исследовал свойства эллиптических интегралов, гиперболических и цилиндрических функций, дзета-функции, некоторых тета-функций, интегрального логарифма и важных классов специальных многочленов.
По замечанию П.Л. Чебышева, Э. положил начало всем изысканиям, составляющим общую часть теории чисел, к которой относится свыше 100 мемуаров Э. Так, Э. доказал ряд утверждений, высказанных П. Ферма (см., например, Ферма малая теорема), разработал основы теории степенных вычетов и теории квадратичных форм, обнаружил (но не доказал) квадратичный закон взаимности (см. Квадратичный вычет) и исследовал ряд задач диофантова анализа. В работах о разбиении чисел на слагаемые и по теории простых чисел Э. впервые использовал методы анализа, явившись тем самым создателем аналитической теории чисел. В частности, он ввел дзета-функцию и доказал т.н. тождество Э., связывающее простые числа со всеми натуральными.
Велики заслуги Э. и в других областях математики. В алгебре ему принадлежат работы о решении в радикалах уравнений высших степеней и об уравнениях с двумя неизвестными, а также т.н. тождество Э. о четырех квадратах. Э. значительно продвинул аналитическую геометрию, особенно учение о поверхностях 2-го порядка. В дифференциальной геометрии он детально исследовал свойства геодезических линий, впервые применил натуральные уравнения кривых, а главное, заложил основы теории поверхностей. Он ввел понятие главных направлений в точке поверхности, доказал их ортогональность, вывел формулу для кривизны любого нормального сечения, начал изучение развертывающихся поверхностей и т.д.; в одной посмертно опубликованной работе (1862) он частично предварил исследования К.Ф. Гаусса по внутренней геометрии поверхностей. Э. занимался и отд. вопросами топологии и доказал, например, важную теорему о выпуклых многогранниках. Э.-математика нередко характеризуют как гениального «вычислителя». Действительно, он был непревзойденным мастером формальных выкладок и преобразований, в его трудах многие математические формулы и символика получили современный вид (например, ему принадлежат обозначения для e и p). Однако Э. был не только исключительной силы «вычислителем». Он внес в науку ряд глубоких идей, которые ныне строго обоснованы и служат образцом глубины проникновения в предмет исследования.
По выражению П.С. Лапласа, Э. явился учителем математиков 2-й половины 18 в. От его работ непосредственно отправлялись в разнообразных исследованиях П.С. Лаплас, Ж.Л. Лагранж, Г. Монж,А. М. Лежандр, К.Ф. Гаусс, позднее О. Коши, М.В. Остроградский,П. Л. Чебышев и др. Русские математики высоко ценили творчество Э., а деятели чебышевской школы видели в Э. своего идейного предшественника в его постоянном чувстве конкретности, в интересе к конкретным трудным задачам, требующим развития новых методов, в стремлении получать решения задач в форме законченных алгоритмов, позволяющих находить ответ с любой требуемой степенью точности.

Эйлер вычислял без всякого видимого усилия, как человек дышит или как орёл парит над землёй.

Доминик Араго

Математические формулы у Эйлера жили своей собственной жизнью и рассказывали ему важные и существенные данные о природе вещей. Ему было достаточно только коснуться их, как они из немых букв преображались в красноречивые фразы, дающие глубокий и значительный ответ на различные вопросы.

Современник Эйлера

Вместе с Петром I и Ломоносовым, Эйлер стал добрым гением нашей Академии, определившим её славу, её крепость, её продуктивность.

С.И. Вавилов

Леонард Эйлер (15 апреля 1707 - 18 сентября 1783) - швейцарский, немецкий и российский учёный, внёсший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук. Он стал первым, кто в своих работах начал возводить последовательное здание анализа бесконечно малых. Только после его исследований, изложенных в грандиозных томах его трилогии «Введение в анализ», «Дифференциальное исчисление» и «Интегральное исчисление», анализ стал вполне оформившейся наукой - одним из самых глубоких научных достижений человечества. Почти полжизни провёл в России, где внёс существенный вклад в становление российской науки. Эйлер хорошо знал русский язык и часть своих сочинений (особенно учебники) публиковал на русском. Первые русские академики-математики (С.К. Котельников) и астрономы (С.Я. Румовский) были учениками Эйлера. Некоторые из потомков Эйлера до сих пор живут в России.

Леонард Эйлер родился в швейцарском городе Базеле. Отец его, Павел Эйлер, был пастором в Рихене (близ Базеля) и имел некоторые познания в математике. Отец предназначал своего сына к духовной карьере, но сам, интересуясь математикой, преподавал её и сыну, надеясь, что она ему впоследствии пригодится в качестве интересного и полезного занятия. По окончании домашнего обучения тринадцатилетний Леонард был отправлен отцом в Базель для слушания философии.

Среди других предметов на этом факультете изучались элементарная математика и астрономия, которые преподавал Иоганн Бернулли. Вскоре Бернулли заметил талантливость юного слушателя и начал заниматься с ним отдельно.

Получив в 1723 году степень магистра, после произнесения речи на латинском языке о философии Декарта и Ньютона, Леонард, по желанию своего отца, приступил к изучению восточных языков и богословия. Но его всё больше влекло к математике. Эйлер стал бывать в доме своего учителя, и между ним и сыновьями Иоганна Бернулли - Николаем и Даниилом - возникла дружба, сыгравшая очень большую роль в жизни Эйлера.

В 1725 году братья Бернулли были приглашены в члены Петербургской академии наук, недавно основанной императрицей Екатериной I. Уезжая, Бернулли обещали Леонарду известить его, если найдётся и для него подходящее занятие в России. На следующий год они сообщили, что для Эйлера есть место, но, однако, в качестве физиолога при медицинском отделении академии. Узнав об этом, Леонард немедленно записался в студенты медицины Базельского университета. Прилежно и успешно изучая науки медицинского факультета, Эйлер находит время и для математических занятий. За это время он написал напечатанную потом, в 1727 году, в Базеле диссертацию о распространении звука и исследование по вопросу о размещении мачт на корабле.

В столице Российской Империи молодого спеца, меньше чем за год научившегося довольно бегло говорить по-русски, тут же загрузили работой, причем, не всегда связанной с математикой. Дефицит специалистов привел к тому, что ученого то заряжали заданиями по картографии, то требовали письменных консультаций для кораблестроителей и артиллеристов, то поручали конструирование пожарных насосов, а то и вовсе вменяли в обязанность составление придворных гороскопов. Все эти задания Эйлер аккуратно исполнял, и только требования по вопросам астрологии категорически переадресовывал к придворным астрономам. Предсказания в России всегда были делом повышенной опасности и требовали особой осторожности.

В Петербурге имелись самые благоприятные условия для расцвета гения Эйлера: материальная обеспеченность, возможность заниматься любимым делом, наличие ежегодного журнала для публикации трудов. Здесь же работала самая большая тогда в мире группа специалистов в области математических наук, в которую входили Даниил Бернулли (его брат Николай скончался в 1726 году), разносторонний Х. Гольдбах, с которым Эйлера связывали общие интересы к теории чисел и другим вопросам, автор работ по тригонометрии Ф.Х. Майера, астроном и географ Ж.Н. Делиль, математик и физик Г.В. Крафт и другие. С этого времени Петербургская академия стала одним из главных центров математики в мире.

Открытия Эйлера, которые благодаря его оживлённой переписке нередко становились известными задолго до издания, делают его имя всё более широко известным. Улучшается его положение в Академии наук: в 1727 году он начал работу в звании адъюнкта, то есть младшего по рангу академика, а в 1731 году он стал профессором физики, т.е. действительным членом академии. В 1733 году получил кафедру высшей математики, которую до него занимал Д. Бернулли, возвратившийся в том же году в Базель. Рост авторитета Эйлера нашёл своеобразное отражение в письмах к нему его учителя Иоганна Бернулли. В 1728 году Бернулли обращается к «учёнейшему и даровитейшему юному мужу Леонарду Эйлеру», в 1737 году - к «знаменитейшему и остроумнейшему математику», а в 1745 году - к «несравненному Леонарду Эйлеру - главе математиков».

В 1735 году академии потребовалось выполнить весьма сложную работу по расчёту траектории кометы. По мнению академиков, на это нужно было употребить несколько месяцев труда. Эйлер взялся выполнить это в три дня и исполнил работу, но вследствие этого заболел нервною горячкою с воспалением правого глаза, которого он и лишился. Вскоре после этого, в 1736 году, появились два тома его аналитической механики. Потребность в этой книге была большая; немало было написано статей по разным вопросам механики, но хорошего трактата по механике не имелось.

В 1738 году появились две части введения в арифметику на немецком языке, в 1739 году - новая теория музыки. Затем в 1840 году Эйлер написал сочинение о приливах и отливах морей, увенчанное одной третью премии Французской академии; две других трети были присуждены Даниилу Бернулли и Маклорену за сочинения на ту же тему.

В конце 1740 года после смерти императрицы Анны Иоанновны царем стал малолетний Иоанн IV. Правившая в это время империей регент Иоанна Анна Леопольдовна наукам никакого внимания не уделяла, и Академия постепенно приходила в запустение. «Предвиделось нечто опасное, - писал потом Эйлер в автобиографии. - После кончины достославной императрицы Анны при последовавшем тогда регентстве… положение начало представляться неуверенным». Поэтому ученый воспринял приглашение Фридриха как подарок судьбы и тут же подал прошение, в котором писал: «Того ради нахожусь принужден, как ради слабого здоровья, так и других обстоятельств, искать приятнейшего климата и принять от его Королевского Величества Прусского учиненное мне призывание. Того ради прошу Императорскую Академию наук всеподданнейше меня милостиво уволить и снабдить для моего и домашних моих проезду потребным пашпортом».

Несмотря на общее прохладное отношение к науке, государственная администрация вовсе не горела желанием вот так запросто отпускать уже признанное мировое светило. С другой стороны, и не отпустить было нельзя. Поэтому, в результате недолгих переговоров, от математика удалось получить обещание, даже проживая в Берлине всячески помогать России. Взамен ему присвоили звание почетного члена Академии с окладом 200 рублей. Наконец, 29 мая 1741 года все документы были выправлены, и уже в июне Эйлер, вместе со всем своим семейством, женой, детьми и четырьмя племянниками прибыл в Берлин.

Говорят, что когда на балу, устроенном в честь приезда в Берлин знаменитого математика Леонарда Эйлера, королева-мать спросила ученого, почему он так немногословен, тот ответил: «Прошу меня простить, но я только что из страны, где за лишнее слово могут повесить». Однако через 25 лет он опять вернулся в эту «ужасную страну». Так велико для него было притяжение России.

В Берлине Эйлер поначалу собрал около себя небольшое учёное общество, а затем был приглашён в состав вновь восстановленной Королевской академии наук и назначен деканом математического отделения. В 1743 году он издал пять своих мемуаров, из них четыре по математике. Один из этих трудов замечателен в двух отношениях. В нём указывается на способ интегрирования рациональных дробей путём разложения их на частные дроби и, кроме того, излагается обычный теперь способ интегрирования линейных обыкновенных уравнений высшего порядка с постоянными коэффициентами.

Вообще большинство работ Эйлера посвящено анализу. Эйлер так упростил и дополнил целые большие отделы анализа бесконечно малых, интегрирования функций, теории рядов, дифференциальных уравнений, начатые уже до него, что они приобрели примерно ту форму, которая за ними в большой мере сохраняется и до сих пор. Эйлер, кроме того, начал целую новую главу анализа - вариационное исчисление. Это его начинание вскоре подхватил Лагранж и, таким образом, сложилась новая наука.

В 1744 году Эйлер напечатал в Берлине три сочинения о движении светил: первое - теория движения планет и комет, заключающая в себе изложение способа определения орбит из нескольких наблюдений; второе и третье - о движении комет.

Семьдесят пять работ Эйлер посвятил геометрии. Часть из них хотя и любопытна, но не очень важна. Некоторые же просто составили эпоху. Во-первых, Эйлера надо считать одним из зачинателей исследований по геометрии в пространстве вообще. Он первый дал связное изложение аналитической геометрии в пространстве (во «Введении в анализ») и, в частности, ввёл так называемые углы Эйлера, позволяющие изучать повороты тела вокруг точки.

В работе 1752 года «Доказательство некоторых замечательных свойств, которым подчинены тела, ограниченные плоскими гранями», Эйлер нашёл соотношение между числом вершин, рёбер и граней многогранника: сумма числа вершин и граней равна числу рёбер плюс два . Такое соотношение предполагал ещё Декарт, но Эйлер доказал его в своих мемуарах. Это в некотором смысле первая в истории математики крупная теорема топологии - самой глубокой части геометрии.

Занимаясь вопросами о преломлении лучей света и написав немало мемуаров об этом предмете, Эйлер издал в 1762 году сочинение, в котором предлагается устройство сложных объективов с целью уменьшения хроматической аберрации. Английский художник Долдонд, открывший два различной преломляемости сорта стекла, следуя указаниям Эйлера, построил первые ахроматические объективы.

В 1765 году Эйлер написал сочинение, где решает дифференциальные уравнения вращения твёрдого тела, которые носят название Эйлеровых уравнений вращения твёрдого тела.

Много написал учёный сочинений об изгибе и колебании упругих стержней. Вопросы эти интересны не только в математическом, но и в практическом отношении.

Фридрих Великий давал учёному поручения чисто инженерного характера. Так, в 1749 году он поручил ему осмотреть канал Фуно между Гавелом и Одером и дать рекомендации по исправлению недостатков этого водного пути. Далее ему поручено было исправить водоснабжение в Сан-Суси.

Результатом этого стало более двадцати мемуаров по гидравлике, написанных Эйлером в разное время. Уравнения гидродинамики первого порядка с частными производными от проекций скорости, плотности к давлению называются гидродинамическими уравнениями Эйлера.

Покинув Петербург, Эйлер сохранил самую тесную связь с русской Академией наук, в том числе официальную: он был её почётным членом, получал крупную ежегодную пенсию, и со своей стороны, выполнял взятые на себя обязательства в отношении дальнейшего сотрудничества. Слово, данное перед тем, как покинуть Россию, ученый держал строго. Он закупал для нашей академии книги, физические и астрономические приборы, подбирал в других странах сотрудников, сообщая подробнейшие характеристики возможных кандидатов, редактировал математический отдел академических записок, выступал как арбитр в научных спорах между петербургскими учёными, присылал темы для научных конкурсов, а также информацию о новых научных открытиях.

В доме Эйлера на полном пансионе жили отправленные на стажировку молодые русские ученые. Именно здесь он познакомился и подружился с перспективным студентом московских «Спасских школ» Михаилом Ломоносовым, в котором больше всего отмечал «счастливое сочетание теории с экспериментом». Когда в 1747 году президент Академии наук граф Разумовский попросил его дать отзыв о статьях молодого ученого, Эйлер оценил их очень высоко:

Все сии диссертации, не токмо хороши, но и весьма превосходны, ибо он (Ломоносов) пишет о материях физических и химических весьма нужных, которые по ныне не знали и истолковать не могли самые остроумные люди, что он учинил с таким успехом, что я совершенно уверен в справедливости его изъяснений. При сём случае г. Ломоносову должен отдать справедливость, что имеет превосходное дарование для изъяснения физических и химических явлений. Желать должно, чтоб и другия Академии в состоянии были произвести такия откровения, как показал г. Ломоносов.

Надо сказать, что весьма заносчивый, самолюбивый и сложный в общении Михаил Васильевич также до конца дней любил своего берлинского учителя, писал ему дружеские письма и считал одним из величайших ученых мира.

В переписке Эйлера с его другом академиком Петербургской академии наук Гольдбахом мы находим две знаменитые «задачи Гольдбаха»: доказать, что всякое нечётное натуральное число есть сумма трёх простых чисел, а всякое чётное - двух. Первое из этих утверждений было при помощи, весьма замечательного, метода доказано уже в наше время (1937) академиком И.М. Виноградовым, а второе не доказано до сих пор.

Европейская слава и признание заслуг Эйлера всё расли. Но это никак не влияло на холодное отношение к нему властьпредержащих царственных особ Пруссии. Когда в 1759 году умер президент Берлинской Академии наук Мопертюи, Фридрих II долго не мог найти ему замену. Французский ученый-энциклопедист Жан Д`Аламбер, к которому король обратился в первую очередь, отказался от заманчивого предложения, посчитав, что в Берлине есть более достойная кандидатура на этот пост. Наконец Фридрих смирился и таки отдал Эйлеру руководство Академией. Но титул президента присвоить ему отказался категорически.

В России же об Эйлере помнили и очень ценили сотрудничество с ним. Так во время семилетней войны русская артиллерия случайно разрушила дом ученого в Шарлоттенбурге (пригород Берлина). Узнавший об этом фельдмаршал Салтыков тут же возместил ученому все нанесенные потери. А когда весть о неудачном артобстреле достигла императрицы Елизаветы, она распорядилась от себя лично прислать берлинскому другу еще 4000 рублей, что было огромной суммой.

В 1762 году на русский престол заступила Екатерина II, мечтавшая установить в стране «просвещенную монархию». Возвращение в страну видного математика она видела одной из важнейших своих задач. Поэтому вскоре Эйлер получил от нее весьма интересное предложение: возглавить математический класс, получив при этом звание конференц-секретаря Академии и оклад 1800 рублей в год. «А если не понравится, - говорилось в ее поручении дипломатическим представителям, - благоволит сообщить свои условия, лишь бы не медлил приездом в Петербург.»

Эйлер, и правда, благоволил выдвинуть встречные условия:

Пост вице-президента Академии с окладом 3000 рублей;

Ежегодную пенсию 1000 рублей супруге в случае его смерти;

Оплачиваемые должности для троих его сыновей, в том числе пост секретаря Академии для старшего.

Такая дерзость со стороны какого-то математика возмутила представителя императорской администрации, видного российского дипломата графа Воронцова. Однако сама императрица думала по-другому. «Письмо к Вам г. Эйлера, - писала она графу, - доставило мне большое удовольствие, потому что я узнаю из него о желании его снова вступить в мою службу. Конечно, я нахожу его совершенно достойным желаемого звания вице-президента Академии наук, но для этого следует принять некоторые меры, прежде чем я установлю это звание - говорю установлю, так как доныне его не существовало. При настоящем положении дел там нет денег на жалование в 3000 рублей, но для человека с такими достоинствами, как г. Эйлер, я добавлю к академическому жалованию из государственных доходов, что вместе составит требуемые 3000 рублей… Я уверена, что моя Академия возродится из пепла от такого важного приобретения, и заранее поздравляю себя с тем, что возвратила России великого человека».

Получив заверения в том, что все его условия приняты на самом высоком уровне, Эйлер немедленно написал Фридриху заявление с просьбой об отставке. Возможно, из-за нежелания отпускать видного ученого, возможно - из-за негативного к нему отношения, а скорее всего - от всего этого вместе, король не просто отказал, а именно проигнорировал обращение Эйлера, не дав на него никакого ответа. Эйлер написал еще одно прошение. С тем же результатом. Тогда математик просто демонстративно прекратил работу в Академии. Наконец, с просьбой отпустить ученого к королю Пруссии обратилась сама Екатерина. Только после такого высокого вмешательства Фридрих разрешил математику покинуть Пруссию.

В июле 1766 года ученый вместе с 17 домочадцами прибыл в Санкт-Петербург. Сразу же по прибытии он был принят императрицей. Екатерина, теперь уже Вторая, встретила его как августейшую особу и осыпала милостями: пожаловала 8000 рублей на покупку дома на Васильевском острове и на приобретение обстановки, предоставила на первое время одного из своих поваров и поручила подготовить соображения о реорганизации Академии.

Старший из его сыновей Иоганн Альбрехт стал академиком в области физики, Карл занял высокую должность в медицинском ведомстве, Христофора, родившегося в Берлине, Фридрих II долго не отпускал с военной службы, и потребовалось очередное вмешательство Екатерины II, чтобы тот смог приехать к отцу. Христофор был назначен директором Сестрорецкого оружейного завода.

К несчастью, после возвращения в Петербург у Эйлера образовалась катаракта левого глаза - он почти перестал видеть.

Эйлер, при своих гениальных способностях и замечательной памяти, продолжал работать, диктовать свои новые мемуары. Только с 1769 по 1783 год Эйлер продиктовал около 380 статей и сочинений, а за свою жизнь написал около 900 научных работ.

Работа 1769 года «Об ортогональных траекториях» Эйлера содержит блестящие соображения о получении с помощью функции комплексной переменной из уравнений двух взаимно ортогональных семейств кривых на поверхности (т.е. таких линий, как меридианы и параллели на сфере) бесконечного числа других взаимно ортогональных семейств. Работа эта в истории математики оказалась очень важной.

В следующей работе 1771 года «О телах, поверхность которых может быть развёрнута в плоскость» Эйлер доказывает знаменитую теорему о том, что любая поверхность, которую можно получить лишь изгибая плоскость, но не растягивая её и не сжимая, если она не коническая и не цилиндрическая, представляет собой совокупность касательных к некоторой пространственной кривой.

Столь же замечательны работы Эйлера по картографическим проекциям.

Можно себе представить, каким откровением для математиков той эпохи явились хотя бы работы Эйлера о кривизне поверхностей и о развёртывающихся поверхностях. Работы же, в которых Эйлер исследует отображения поверхности, сохраняющие подобие в малом (конформные отображения), основанные на теории функций комплексного переменного, должны были казаться прямо-таки трансцендентными. А работа о многогранниках начинала совсем новую часть геометрии и по своей принципиальности и глубине стояла в ряду с открытиями Евклида.

В 1771 году в жизни Эйлера произошли два серьёзных события. В мае в Петербурге случился большой пожар, уничтоживший сотни зданий, в том числе дом и почти всё имущество Эйлера. Самого учёного с трудом спасли. Все рукописи удалось уберечь от огня; сгорела лишь часть «Новой теории движения луны», но она быстро была восстановлена с помощью самого Эйлера, сохранившего до глубокой старости феноменальную память. Эйлеру пришлось временно переселиться в другой дом.

В сентябре того же года, по особому приглашению императрицы, в Санкт-Петербург прибыл для лечения Эйлера известный немецкий окулист барон Вентцель. После осмотра он согласился сделать Эйлеру операцию и удалил с левого глаза катаракту. Эйлер снова стал видеть. Врач предписал беречь глаз от яркого света, не писать, не читать - лишь постепенно привыкать к новому состоянию. Однако уже через несколько дней после операции Эйлер снял повязку, и вскоре потерял зрение снова. На этот раз - окончательно.

В 1773 году по рекомендации Даниила Бернулли в Петербург приехал из Базеля ученик Бернулли, Никлаус Фусс. Это было большой удачей для Эйлера. Фусс обладал редким сочетанием математического таланта и умения вести практические дела, что и дало ему возможность сразу же после приезда взять на себя заботы о математических трудах Эйлера. Вскоре Фусс женился на внучке Эйлера. В последующие десять лет - до самой своей смерти - Эйлер преимущественно ему диктовал свои труды, хотя иногда пользовался «глазами старшего сына» и других своих учеников.

В 1773 году умерла жена Эйлера, с которой он прожил сорок лет. Через три года он вступил в брак с её сестрой, Саломеей Гзелль. Завидное здоровье и счастливый характер помогали Эйлеру «противостоять ударам судьбы, которые выпали на его долю… Всегда ровное настроение, мягкая и естественная бодрость, какая-то добродушная насмешливость, умение наивно и забавно рассказывать делали разговор с ним столь же приятным, сколь и желанным…» Он мог иногда вспылить, но «был не способен долго питать против кого-либо злобу…» — вспоминал Фусс.

Эйлера постоянно окружали многочисленные внуки, часто на руках у него сидел ребёнок, а на шее лежала кошка. Он сам занимался с детьми математикой. И всё это не мешало ему работать!

Эйлер оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук. С точки зрения математики, XVIII век - это век Эйлера. Если до него достижения в области математики были разрозненны и не всегда согласованны, то Эйлер впервые увязал анализ, алгебру, тригонометрию, теорию чисел и другие дисциплины в единую систему, и добавил немало собственных открытий. Значительная часть математики преподаётся с тех пор «по Эйлеру».

Благодаря Эйлеру в математику вошли общая теория рядов, удивительная по красоте формула Эйлера:

и как следствие, тождество Эйлера связывающее пять фундаментальных математических констант:

операция сравнения по целому модулю, полная теория непрерывных дробей, аналитический фундамент механики, многочисленные приёмы интегрирования и решения дифференциальных уравнений, число e , обозначение i для мнимой единицы, гамма-функция с её окружением и многое другое.

По существу, именно он создал несколько новых математических дисциплин - теорию чисел, вариационное исчисление, теорию комплексных функций, дифференциальную геометрию поверхностей, специальные функции. Другие области его трудов: диофантов анализ, астрономия, оптика, акустика, статистика и т.д. Познания Эйлера были энциклопедичны; кроме математики, он глубоко изучал ботанику, медицину, химию, теорию музыки, множество европейских и древних языков.

Биографы отмечают, что Эйлер был виртуозным алгоритмистом. Он неизменно старался довести свои открытия до уровня конкретных вычислительных методов.

П.Л. Чебышёв писал: «Эйлером было положено начало всех изысканий, составляющих общую теорию чисел». Большинство математиков XVIII века занимались развитием анализа, но Эйлер пронёс увлечение древней арифметикой через всю свою жизнь. Благодаря его трудам интерес к теории чисел к концу века возродился.

Эйлер нашёл доказательства всех теорем Ферма, показал неверность одной из них, а знаменитую Великую теорему Ферма доказал для «трёх» и «четырёх». Эйлер строго доказал эти гипотезы, значительно обобщил их и объединил в содержательную теорию чисел. Он опроверг гипотезу Ферма о том, что все числа вида - простые; оказалось, что делится на 641.

Он также доказал, что всякое простое число вида 4n +1 всегда разлагается на сумму квадратов других двух чисел.

Дал одно из решений задачи о четырёх кубах.

Эйлер показал, что в теории чисел возможно применение методов математического анализа, положив начало аналитической теории чисел.

Ввел дзета-функцию, обобщение которой получило впоследствии имя Римана:

где s вещественно. Эйлер вывел для неё разложение:

где произведение берётся по всем простым числам p . Благодаря этому он доказал, что сумма ряда обратных простых расходится.

Одна из главных заслуг Эйлера перед наукой - монография «Введение в анализ бесконечно малых» (1748). В 1755 году выходит дополненное «Дифференциальное исчисление», а в 1768 - 1770 годах - три тома «Интегрального исчисления». В совокупности это фундаментальный, хорошо иллюстрированный примерами курс, с продуманной терминологией и символикой, откуда многое перешло и в современные учебники. Собственно современные методы дифференцирования и интегрирования были опубликованы в данных трудах.

Основание натуральных логарифмов было известно ещё со времён Непера и Якоба Бернулли, однако Эйлер выполнил настолько глубокое исследование этой важнейшей константы, что с тех пор она носит его имя. Другая исследованная им константа: постоянная Эйлера - Маскерони.

Эйлер делит с Лагранжем честь открытия вариационного исчисления. В 1744 году Эйлер опубликовал первую книгу по вариационному исчислению «Метод нахождения кривых, обладающих свойствами максимума либо минимума».

Эйлер значительно продвинул теорию рядов и распространил её на комплексную область, получив при этом знаменитую формулу Эйлера. Большое впечатление на математический мир произвели ряды, впервые просуммированные Эйлером, в том числе, не поддававшийся до него никому ряд обратных квадратов:

Эйлер был первым, кто широко использовал степенные ряды для выражения функций, например:

Современное определение показательной, логарифмической и тригонометрических функций - тоже его заслуга, так же как и их символика и обобщение на комплексный случай. Формулы, часто именуемые в учебниках «условия Коши - Римана», более правильно было бы назвать «условиями Даламбера - Эйлера».

Он первый дал систематическую теорию интегрирования и используемых там технических приёмов, нашёл важные классы интегрируемых дифференциальных уравнений. Он открыл эйлеровы интегралы - ценные классы специальных функций, возникающие при интегрировании: бета-функция и гамма-функция Эйлера. Одновременно с Клеро вывел условия интегрируемости линейных дифференциальных форм от двух или трёх переменных (1739). Первый ввёл двойные интегралы. Получил серьёзные результаты в теории эллиптических функций, в том числе первые теоремы сложения.

С более поздней точки зрения, действия Эйлера с бесконечными рядами не всегда могут считаться корректными (обоснование анализа было проведено лишь полвека спустя), но феноменальная математическая интуиция практически всегда подсказывала ему правильный результат. Впрочем, дело было не только в интуиции, Эйлер действовал здесь достаточно сознательно, во многих важных отношениях его понимание смысла расходящихся рядов и операций с ними превзошло стандартное понимание XIX века и послужило основой современной теории расходящихся рядов, развитой в конце XIX - начале XX века.

Эйлер много внимания уделял представлению натуральных чисел в виде сумм специального вида и сформулировал ряд теорем для вычисления числа разбиений.

Он исследовал алгоритмы построения магических квадратов методом обхода шахматным конём.

При решении комбинаторных задач он глубоко изучил свойства сочетаний и перестановок, ввёл в рассмотрение числа Эйлера.

Множество работ Эйлера посвящены математической физике: механике, гидродинамике, акустике и др. В 1736 году вышел трактат «Механика, или наука о движении, в аналитическом изложении», знаменующий новый этап в развитии этой древней науки. 29-летний Эйлер отказался от традиционного геометрического подхода к механике и подвёл под неё строгий аналитический фундамент. По существу, с этого момента механика становится прикладной математической дисциплиной.

В 1755 году публикуются «Общие принципы движения жидкостей», в которых положено начало теоретической гидродинамике. Выведены основные уравнения гидродинамики (уравнение Эйлера) для жидкости без вязкости. Разобраны решения системы для разных частных случаев.

Эйлер обобщил принцип наименьшего действия, довольно путано изложенный Мопертюи, и указал на его основополагающее значение в механике. К сожалению, он не раскрыл вариационный характер этого принципа, но всё же привлёк к нему внимание физиков, которые позднее выяснили его фундаментальную роль в природе.

Эйлер много работал в области небесной механики. Он заложил основу теории возмущений, позднее завершённой Лапласом, и разработал очень точную теорию движения Луны. Эта теория оказалась пригодной для решения насущной задачи определения долготы на море, и английское Адмиралтейство выплатило за неё Эйлеру специальную премию.

В 1757 году Эйлер впервые в истории нашёл формулы для определения критической нагрузки при сжатии упругого стержня. Однако в те годы эти формулы не могли найти практического применения.

Несомненно, Эйлер принадлежит к числу гениальнейших математиков всех времен. В истории точных наук его имя ставят рядом с именами Ньютона, Декарта, Галилея. Он был не только математиком, но и физиком, и астрономом. Его труды оказали огромное влияние на развитие этих наук. Нет учёного, имя которого упоминалось бы в учебной математической литературе столь же часто, как имя Эйлера. Великий французский математик Лаплас сказал о работах Эйлера:

Читайте, читайте Эйлера - он наш великий учитель.

Почти сто лет спустя, когда во многих странах - и прежде всего в Англии - стали строить железные дороги, потребовалось рассчитать прочность железнодорожных мостов. Модель Эйлера принесла практическую пользу в проведении экспериментов.

В начале 1780-х годов Эйлер все чаще стал жаловаться на головные боли и общую слабость. 18 сентября 1883 года он вел послеобеденную беседу с академиком Андреем Лекселем. Оба математики и астрономы, они обсуждали недавно открытую планету Уран и ее орбиту. Внезапно Эйлер почувствовал себя плохо. Он только успел сказать: «Я умираю», - после чего сразу потерял сознание. Через несколько часов, незадолго до полуночи, его не стало. Врачи установили, что смерть произошла от кровоизлияния в мозг.

Он был похоронен рядом с первой женой на Смоленском лютеранском кладбище на Васильевском острове. Академия заказала известному скульптору Ж.Д. Рашетту, хорошо знавшему Эйлера, мраморный бюст покойного, а княгиня Дашкова подарила мраморный пьедестал. На надгробном камне высекли слова: «Здесь покоятся бренные останки мудрого, справедливого, знаменитого Леонарда Эйлера».

В 1955 году прах великого математика был перенесён в «Некрополь XVIII века» на Лазаревском кладбище Александро-Невской лавры. Плохо сохранившийся надгробный памятник при этом заменили.

Дети математика так и остались в России. Старший сын, тоже талантливый математик и механик Иоганн Эйлер (1734-1800), как и обещала императрица Екатерина, был секретарем Императорской академии наук, которого сменил Фусс, а в 1826 году - сын Фусса, Павел Николаевич, так что организационной стороной жизни академии около ста лет ведали потомки Леонарда Эйлера. Младший, Христофор (1743-1808), дослужился до генерал-лейтенанта и командовал Сестрорецким оружейным заводом. Внук, Александр Христофорович (1773-1849) стал генералом от артиллерии, героем Отечественной войны 1812 года. Еще один потомок, правда вернувшийся на родину предков, в Швецию, Ханс Карл Август Симон фон Эйлер-Хельпин (1873-1964) стал известным биохимиком, иностранным членом Академии Наук СССР, лауреатом Нобелевской премии по химии за 1929 год. Другую Нобелевскую премию, только уже в 1970 году, получил его сын, шведский биолог Ульф фон Ойлер (1905-1983).

Эйлеровские традиции оказали сильное влияние на П.Л. Чебышева и его учеников: А.М. Ляпунова, А.Н. Коркина, Е.И. Золотарёва, А.А. Маркова и других, определив основные черты петербургской математической школы.

В честь Эйлера названы:

  • улица в Алма-Ате
  • кратер на Луне
  • астероид
  • Международный математический институт им. Леонарда Эйлера Российской Академии наук, основанный в 1988 году в Петербурге
  • благотворительный фонд поддержки отечественных учёных
  • Медаль, с 1993 года ежегодно присуждаемая канадским Институтом комбинаторики и её приложений за достижения в этой области математики.


В 2007 году Центробанк РФ выпустил памятную монету в ознаменование 300-летия со дня рождения Леонарда Эйлера:

Портрет Эйлера помещался также на швейцарскую 10-франковую банкноту

и на почтовые марки Швейцарии, России и Германии.

Имя Эйлера носят следующие математические объекты:

  • теорема Эйлера в теории чисел
  • теорема вращения Эйлера
  • теорема Эйлера в планиметрии
  • теорема Эйлера в комбинаторике
  • гипотеза Эйлера в теории чисел
  • теорема Эйлера для многогранников
  • лемма Эйлера
  • уравнения Эйлера - Лагранжа
  • уравнения Эйлера - Пуассона
  • уравнения Эйлера в механике
  • уравнение Эйлера в гидродинамике
  • эйлеровы точки либрации
  • уравнение Эйлера - Бернулли
  • функция Эйлера в теории чисел
  • функция Эйлера в комплексном анализе
  • тождество Эйлера в теории чисел
  • тождество Эйлера в комплексном анализе
  • тождество Эйлера о четырёх квадратах
  • тождество Эйлера в алгебре многочленов
  • формула Эйлера в комплексном анализе
  • формула Эйлера в кинематике твёрдого тела
  • формула Эйлера в геометрии треугольника
  • формула Эйлера в геометрии четырёхугольника
  • формула Эйлера для суммы первых членов гармоничного ряда.
  • формула Эйлера в теории графов
  • эйлерова характеристика (алгебраическая топология)
  • интегралы Эйлера первого рода и второго рода
  • интеграл Эйлера - Пуассона
  • постоянная Эйлера - Маскерони
  • число Эйлера
  • углы Эйлера
  • многочлены Эйлера
  • преобразование Эйлера
  • прямая Эйлера в геометрии треугольника
  • окружность Эйлера (окружность девяти точек)
  • круги Эйлера
  • эйлеров цикл, эйлерова цепь, эйлеров граф в теории графов
  • эйлеров сплайн
  • эйлерова сила
  • подстановки Эйлера.

По материалам книг: Д. Самин «100 великих учёных» (Москва, «Вече», 2004) и «Шеренга великих математиков» (Варшава, изд. Наша Ксенгарня, 1970), сайта aif.ru и Википедии.

Швейцария (1707-1727)

Базельский университет в XVII-XVIII веках

В последующие два года юный Эйлер написал несколько научных работ. Одна из них, «Диссертация по физике о звуке», получившая благоприятный отзыв, была представлена на конкурс для замещения неожиданно освободившейся в Базельском университете должности профессора физики (). Но, несмотря на положительный отзыв, 19-летнего Эйлера сочли слишком юным, чтобы включить в число кандидатов на профессорскую кафедру. Надо отметить, что число научных вакансий в Швейцарии было совсем невелико. Поэтому братья Даниил и Николай Бернулли уехали в Россию, где как раз шла организация Академии наук ; они обещали похлопотать там и о должности для Эйлера.

Эйлер отличался феноменальной работоспособностью. По отзывам современников, для него жить означало заниматься математикой. А работы у молодого профессора было много: картография , всевозможные экспертизы, консультации для кораблестроителей и артиллеристов, составление учебных руководств, проектирование пожарных насосов и т. д. От него даже требуют составления гороскопов , каковой заказ Эйлер со всем возможным тактом переадресовал штатному астроному. Но всё это не мешает ему активно проводить собственные исследования.

За первый период пребывания в России он написал более 90 крупных научных работ. Значительная часть академических «Записок» заполнена трудами Эйлера. Он делал доклады на научных семинарах, читал публичные лекции, участвовал в выполнении различных технических заказов правительственных ведомств.

Все сии диссертации не токмо хороши, но и весьма превосходны, ибо он [Ломоносов] пишет о материях физических и химических весьма нужных, которые по ныне не знали и истолковать не могли самые остроумные люди, что он учинил с таким успехом, что я совершенно уверен в справедливости его изъяснений. При сём случае г. Ломоносову должен отдать справедливость, что имеет превосходное дарование для изъяснения физических и химических явлений. Желать должно, чтоб и другия Академии в состоянии были произвести такия откровения, как показал г. Ломоносов.

Эйлер, в ответ к его сиятельству г. президенту 1747 года

Этой высокой оценке не помешало даже то, что Ломоносов математических работ не писал и высшей математикой не владел .

Портрет 1756 года, выполненный Эмануэлем Хандманном (Kunstmuseum, г. Базель)

По отзывам современников, Эйлер всю жизнь оставался скромным, жизнерадостным, чрезвычайно отзывчивым человеком, всегда готовым помочь другому. Однако отношения с королём не складываются: Фридрих находит нового математика невыносимо скучным, совершенно не светским, и обращается с ним пренебрежительно. В 1759 году умер Мопертюи , президент Берлинской Академии наук. Пост президента Академии король Фридрих II предложил Даламберу , но тот отказался. Фридрих, недолюбливавший Эйлера, всё же поручил ему руководство Академией, однако без титула президента.

Эйлер возвращается в Россию, теперь уже навсегда.

Снова Россия (1766-1783)

Эйлер активно трудился до последних дней. В сентябре 1783 года 76-летний учёный стал ощущать головные боли и слабость. 7 () сентября после обеда, проведённого в кругу семьи, беседуя с академиком А. И. Лекселем о недавно открытой планете Уран и её орбите, он внезапно почувствовал себя плохо. Эйлер успел произнести: «Я умираю», - и потерял сознание. Через несколько часов, так и не приходя в сознание, он скончался от кровоизлияния в мозг.

«Он перестал вычислять и жить», - сказал Кондорсе на траурном заседании Парижской Академии наук (фр. Il cessa de calculer et de vivre ).

Эйлер был заботливым семьянином, охотно помогал коллегам и молодёжи, щедро делился с ними своими идеями. Известен случай, когда Эйлер задержал свои публикации по вариационному исчислению, чтобы молодой и никому тогда не известный Лагранж , независимо пришедший к тем же открытиям, смог опубликовать их первым . Лагранж всегда с восхищением относился к Эйлеру и как к математику, и как к человеку; он говорил: «Если вы действительно любите математику, читайте Эйлера».

Вклад в науку

Эйлер оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук. С точки зрения математики, XVIII век - это век Эйлера. Если до него достижения в области математики были разрозненны и не всегда согласованны, то Эйлер впервые увязал анализ, алгебру, тригонометрию, теорию чисел и др. дисциплины в единую систему, и добавил немало собственных открытий. Значительная часть математики преподаётся с тех пор «по Эйлеру».

Благодаря Эйлеру в математику вошли общая теория рядов, удивительная по красоте «формула Эйлера », операция сравнения по целому модулю , полная теория непрерывных дробей , аналитический фундамент механики, многочисленные приёмы интегрирования и решения дифференциальных уравнений, число e , обозначение i для мнимой единицы , гамма-функция с её окружением и многое другое.

По существу, именно он создал несколько новых математических дисциплин - теорию чисел , вариационное исчисление , теорию комплексных функций , дифференциальную геометрию поверхностей , специальные функции . Другие области его трудов: диофантов анализ , астрономия , оптика , акустика , статистика и т. д. Познания Эйлера были энциклопедичны; кроме математики, он глубоко изучал ботанику , медицину , химию , теорию музыки , множество европейских и древних языков.

  • Спор с Д"Аламбером о свойствах комплексного логарифма .
  • Спор с английским оптиком Джоном Доллондом о том, возможно ли создать ахроматическую линзу .

Во всех упомянутых случаях Эйлер отстаивал правильную позицию.

Теория чисел

Он опроверг гипотезу Ферма о том, что все числа вида - простые; оказалось, что делится на 641.

где вещественно . Эйлер вывел для неё разложение:

,

где произведение берётся по всем простым числам . Благодаря этому он доказал, что сумма ряда обратных простых расходится.

Первая книга по вариационному исчислению

Геометрия

В элементарной геометрии Эйлер обнаружил несколько фактов, не замеченных Евклидом :

  • Три высоты треугольника пересекаются в одной точке (ортоцентре).
  • В треугольнике ортоцентр, центр описанной окружности и центр тяжести лежат на одной прямой - «прямой Эйлера ».
  • Основания трёх высот произвольного треугольника, середины трёх его сторон и середины трёх отрезков, соединяющих его вершины с ортоцентром, лежат все на одной окружности (окружности Эйлера).
  • Число вершин (В), граней (Г) и рёбер (Р) у любого выпуклого многогранника связаны простой формулой : В + Г = Р + 2.

Второй том «Введения в анализ бесконечно малых» () - это первый в мире учебник по аналитической геометрии и основам дифференциальной геометрии . Термин аффинные преобразования впервые введён в этой книге вместе с теорией таких преобразований.

При решении комбинаторных задач он глубоко изучил свойства сочетаний и перестановок , ввёл в рассмотрение числа Эйлера .

Другие области математики

  • Теория графов началась с решения Эйлером задачи о семи мостах Кёнигсберга .
  • Метод ломаных Эйлера.

Механика и математическая физика

Множество работ Эйлера посвящены математической физике: механике, гидродинамике , акустике и др. В 1736 году вышел трактат «Механика, или наука о движении, в аналитическом изложении», знаменующий новый этап в развитии этой древней науки. 29-летний Эйлер отказался от традиционного геометрического подхода к механике и подвёл под неё строгий аналитический фундамент. По существу, с этого момента механика становится прикладной математической дисциплиной.

Инженерное дело

  • 29 томов по математике;
  • 31 том по механике и астрономии;
  • 13 - по физике.

Восемь дополнительных томов будут посвящены научной переписке Эйлера (свыше 3000 писем ).

Марки, монеты, банкноты

Библиография

  • Новая теория движения Луны. - Л. : Изд. АН СССР, 1934.
  • Метод нахождения кривых линий, обладающих свойствами либо максимума, либо минимума. - М.-Л.: ГТТИ, 1934.
  • Основы динамики точки. - М.-Л.: ОНТИ, 1938.
  • Дифференциальное исчисление. - М.-Л., 1949.
  • Интегральное исчисление. В 3 томах. - М .: Гостехиздат, 1956-58.
  • Избранные картографические статьи. - М.-Л.: Геодезиздат, 1959.
  • Введение в анализ бесконечных. В 2 томах. - М .: Физматгиз, 1961.
  • Исследования по баллистике. - М .: Физматгиз, 1961.
  • Письма к немецкой принцессе о разных физических и философских материях. - СПб. : Наука, 2002. - 720 с. - ISBN 5-02-027900-5 , 5-02-028521-8
  • Опыт новой теории музыки, ясно изложенной в соответствии с непреложными принципами гармонии / пер. с лат. Н. А. Алмазовой . - Санкт-Петербург: Рос. акад. наук, С.-Петерб. науч. центр, изд-во Нестор-История, 2007. - ISBN 978-598187-202-0 (Перевод Tentamen novae theoriae musicae ex certissismis harmoniae principiis dilucide expositae (Tractatus de musica) . - Petropol.: Typ. Acad. Sci., 1739. )

См. также

  • Астрономическая обсерватория Петербургской академии наук

Примечания

Использованная литература

  1. Математика XVIII столетия. Указ. соч. - С. 32.
  2. Глейзер Г. И. История математики в школе . - М .: Просвещение, 1964. - С. 232.
  3. , с. 220.
  4. Яковлев А. Я. Леонард Эйлер. - М .: Просвещение, 1983.
  5. , с. 218.
  6. , с. 225.
  7. , с. 264.
  8. , с. 230.
  9. , с. 231.
  10. К 150-летию со дня смерти Эйлера: сборник. - Изд-во АН СССР, 1933.
  11. А. С. Пушкин. Анекдоты, XI // Собрание сочинений . - Т. 6.
  12. Marquis de Condorcet. Eulogy of Euler. History of the Royal Academy of Sciences (1783) . - Paris, 1786. - P. 37-68. ; см. оригинальный текст : фр. Madame, répondit-il, parce que je viens d’un pays où, quand on parle, on est pendu
  13. Белл Э. Т. Указ. соч. - С. 123.

(1707-1783) швейцарский и русский математик

Леонард Эйлер родился в апреле 1707 года в Швейцарии, в городе Базеле. Его отец, Пауль Эйлер, пастор, имел небольшой приход в местечке Риэн. Он получил хорошее образование, учился в Базельском университете и увлекался математикой. В Базельском университете преподавали знаменитые братья Бернулли, Якоб и Иоганн. Мать Леонарда, Маргарет Брукер, была из семьи пастора.

Первые уроки математики Леонард получил дома, в семье, с ним много занимался отец, защитивший диссертацию по математике. Несмотря на свое юношеское увлечение математикой, отец хотел сделать из Леонарда священника, дать ему духовное образование.

Школьные годы мальчика прошли в латинской школе. И хотя это была городская школа и находилась в Базеле, она больше напоминала сельскую по уровню преподавания, который был очень низок, и о получении серьезных математических знаний говорить не приходилось.

В тринадцать лет Леонард поступает на факультет свободных искусств Базельского университета. Здесь на него обратил внимание профессор Иоганн Бернулли. Он был из знаменитой династии Бернулли, известных во всем мире ученых.

Жизнь профессора Базельского университета была нелегкой, денег не хватало, приходилось давать частные уроки. Это все стало известно Леонарду Эйлеру, и он отправился к профессору Бернулли с просьбой позаниматься с ним за отдельную плату. Профессор поговорил с Леонардом и... отказал ему, сказав, что очень занят. Правда, потом он все-таки согласился, и чутье его не подвело. Не забывал Эйлер и другие университетские курсы, гуманитарные предметы. Юноша был широко образован, впечатляли его успехи по истории римского права и натурфилософии.

Эйлер получает звание магистра искусств после блестящей речи о сравнении картезианской и ньютонианской философии. Интересно, что вместе с ним это же звание магистра получил сын профессора Бернулли, тоже Иоганн, причем ему было только тринадцать лет. В будущем он станет профессором красноречия, а затем и профессором математики, и кафедра Базельского университета перейдет от отца к сыну.

Леонард Эйлер заканчивает факультет свободных искусств, и отец настаивает на богословском образовании. Для юноши слово отца закон, и он начинает изучать древнееврейский и греческий языки. Дело идет с трудом, потому что он продолжает встречаться по субботам с профессором Бернулли, где вместе с его сыновьями увлеченно занимается математикой. Пауль Эйлер был вынужден отступить, и теперь Леонарду ничто не мешает заниматься любимой математикой.

Ему семнадцать лет, и он заканчивает университет. Теперь, как говорится, пора подумать и о работе по специальности. Выясняется, что в Базеле нет работы, все места заняты. Но в это время как раз открылась Петербургская Академия наук, и Леонард Эйлер и братья Николай и Даниил Бернулли получают приглашение в Петербург.

24 мая 1727 года Леонард прибывает в Петербург. Россия становится для него второй родиной. 20-летний математик быстро акклиматизировался, изучил русский язык настолько, что свободно говорил и писал на нем. Прошло три года, и Петербургская Академия по достоинству оценила молодого ученого. В двадцать три года он уже профессор физики, а еще через три года получает кафедру высшей математики.

Ученый много работает, читает лекции, пишет книги. Круг его научных интересов необычайно широк. За четырнадцать лет работы Эйлер написал 80 работ по математике, гидравлике, архитектуре, навигации, картографии и механике. Это мог сделать только человек с неуемной энергией.

Запад узнает о великом русском ученом швейцарского происхождения Леонарде Эйлере. Его учитель, профессор Бернулли, в письме обращается к нему как к «знаменитейшему и замечательнейшему мужу» и даже как к «несравненному Леонарду Эйлеру, принцепсу математиков».

И в личной жизни ученого все складывается как нельзя лучше. Он женился на Катерине Гзель, швейцарке, дочери художника, академического живописца и учителя рисования в гимназии. Незадолго перед женитьбой Леонард Эйлер приобрел участок земли на 10-ой линии Васильевского острова между Большим проспектом и Невой и построил дом. Теперь к нему приезжает и младший брат Иоганн Генрих. Он живописец и начинает работать в Академии наук.

В 1738 году случилось несчастье: Леонард Эйлер тяжело заболел и ослеп на правый глаз. Но жизнь и научная работа великого ученого в Петербурге продолжается. Первый петербургский период его деятельности длился четырнадцать лет. Затем ученый уезжает в Берлин. Прусский король Фридрих II предложил ему весьма и весьма выгодные условия. В планах короля было преобразование Общества наук в Берлинскую академию наук и литературы.

19 июля 1741 года 34-летний Эйлер со всеми своими домочадцами отплыл из Петербурга. Начинается так называемый берлинский период жизни ученого. Его дом в Берлине находится на Беренштрассе, в двух шагах от здания Комической оперы.

Хотя король Фридрих II и пригласил великого математика, но на этом его любовь к Эйлеру и закончилась, поскольку тот не соответствовал тому образу придворного ученого, который нарисовал себе сам король. Эйлер был не похож на важного придворного вельможу, салонного острослова. Среднего роста, плотного телосложения, он был благожелателен и прост в обращении, очень доступен, любил пошутить, был вспыльчив и горяч, но отходчив.

В Берлине Эйлер ведет переписку с Михаилом Васильевичем Ломоносовым. Они никогда не встречались, но их письма говорят о том, что взгляды двух великих ученых на многие проблемы совпадают. Эйлер поддерживал также хорошие отношения с физиком Моро де Мопертюи, президентом Академии наук, который часто болел. Когда он уезжал домой, во Францию, то во время его отсутствия обязанности президента выполнял Эйлер.

Эйлер стал первым математиком мира, его работы в области математического анализа и теории чисел стали классикой. Новый подход ученого в геометрии привел к рождению новой науки, которую назовут топологией. Вариационное исчисление, изложенное им, содержало целый ряд новых результатов. Интересы Эйлера простираются от кораблестроения до небесной механики, где он создал теорию движения Луны, когда учитывается притяжение и Луны, и Солнца. Диоптрика и музыка, гидравлика и механика - его интересует все.

Леонард Эйлер поддерживает тесные контакты с Петербургской Академией наук и ведет переговоры о своем возможном возвращении в Петербург. Его обидело то, что король не предложил ему освободившееся место президента Академии. Двадцать пять лет прожил Леонард Эйлер в Берлине, и вот он снова возвращается в Россию, в Петербург, его приглашает сама Екатерина II, покровительница наук. Место Эйлера в Берлине занимает молодой Лагранж, в будущем знаменитый математик.

60-летнего ученого принимает Екатерина II, он полон энергии и душевных сил, желания работать на благо России. Но Эйлер уже не молодой человек и каждый удар судьбы переносит с трудом. Во-первых, он почти полностью ослеп. Во-вторых, умирает жена, и в довершение всего - пожар. Но сломить Эйлера нельзя. Он работает и как ученый, и как организатор науки, участвует в решении научных проблем. Выходят его книги и монографии. За семнадцать лет жизни в Петербурге после возвращения из Берлина Леонард Эйлер опубликовал двести сочинений. Он женится во второй раз, его жена, Саломея-Абигайль Гзель, - родная сестра его первой супруги. Эйлер любит дом, семью, у него пятеро детей и двадцать шесть внуков. Эйлеры прочно обосновались в Петербурге, дети приняли русское подданство.

Идет 1783 год. Ученому 75 лет. Его здоровье ухудшается, теперь он почти не покидает дом, почти прекращает переписку, которая отнимает так много сил и времени. Правительство позаботилось о том, чтобы великий математик ни в чем не нуждался.

До последнего дня жизни он сохранял ясную голову, оживленно беседовал, делал расчеты.

Великий ученый Леонард Эйлер занимает одно из первых мест в истории мировой науки. Полное собрание его трудов составляет 72 тома, 800 научных работ. Этот тихий и скромный человек, полностью ослепший, много работал, совершив великое множество научных открытий. Его окружали ученики, которых он любил, коллеги, друзья.

Леонард Эйлер – яркий представитель и основатель фундаментальных учений в математике 18-го столетия. Родился он 15 апреля 1707 года в Базеле, Швейцария, в семье пастора. Первое образование получал с отцовских рук, который готовил своего сына к богословской деятельности. Хотя вся программа была построена сугубо на духовной основе, все-таки, чтобы развивать логическое мышление своего чада, пастор занимался с ним и математикой, в которой юный Леонард Эйлер проявил свои высокие способности.

Дальнейшее свое образование продолжил в Базельской гимназии, а затем в Базельском университете. В 1720 году оказался под покровительством профессора Иоганна Бернулли, который кропотливо работал над развитием таланта юного дарования. В 1723 году Леонард получил первую награду за математические достижения в Базельском университете. 8 июля 1724 года случилось следующее отличительное событие: Леонард произнес на латыни речь о философских воззрениях Декарта и Ньютона, за что удостоился даже ученой степени магистра искусств.

В 1726 году благодаря приглашению в Санкт-Петербург, получил должность помощника профессора (адьюнкта) на кафедре физиологии, поэтому его дальнейшая деятельность продолжалась в России. Недолгий период своего обучения посвятил изучению медицинских наук, чтобы быть достойным новой должности. В 1730 году занял пост на кафедре физики. В 1733 году Леонард Эйлер стал почетным академиком. Леонард внес значительные изменения в вектор развития образования в России. За 15 лет своей деятельности в этой стране он написал и издал первый учебник по теоретической механике, читал курс математической навигации и написал огромное количество разнообразных трудов, которые помогли следующим последователям глубже копнуть.

В 1741 году получил предложение Фридриха II переехать в Берлин. Теперь ученый работал и преподавал на две страны. 1746 год характеризуется успешным изданием трех томов статей по баллистике. Ее труды только росли с каждым годом и в 1749 году выпустил двухтомный труд о вопросах навигации в математической форме. такая его работа была сенсационной, потому что никто из ученых не занимался этим вопросом ранее и не рассматривал навигацию на этом поприще. Также известны достижения Эйлера в математическом анализе – была издана книга «Введение в анализ бесконечно малых величин» в 1748 году. В следующей своей четырех томной работе исследовал прохождение и преломление света, а результатом исследований стало его предложение сложного объектива в 1747 году.

В 1766 году Леонард Эйлер возвратился в Россию и выпустил следующую свою работу «Элементы алгебры», которая была начитана им из-за потери зрения к тому времени. В этот же период вышли на свет такие его труды, как «Вычисление кометы 1769», «Вычисление затмения Солнца», «Навигация», «Новая теория Луны», три тома интегрального вычисления, два тома элементов алгебры, а также мемуары ученого.

Леонарду Эйлеру принадлежат более чем 800 трудов, которые в значительной мере ускорили развитие математической науки. Скончался известный математик и ученый 18 сентября 1783 года в Петербурге и был похоронен на Смоленском кладбище.

Скачать данный материал:

(Пока оценок нету)