Постоянная тонкой структуры физический смысл. О смысле постоянной тонкой структуры. Изменяется ли внутреннее строение мироздания

<Решение фундаментальной проблемы>
<Решение от Юсупова Роберта>

Настоящим сообщаю всем интересующимся и заинтересованным гражданам всех стран и народов, что решена фундаментальная проблема физики, проблема постоянной тонкой структуры. Выяснен физический смысл постоянной тонкой структуры. Найдена определяющая формула для постоянной тонкой структуры.

Следует сразу же сказать, что несколько предыдущих подготовленных статей с аналогичным сообщением об открытии и с детальными выкладками в обоснование и доказательство этого открытия были отправлены физическому сообществу России в различные физические и астрономические институты и в редакции научных журналов. Статьи были предоставлены в научный физический журнал УФН в 2013 и в 2016 годах, но были отклонены под единообразными надуманными несерьёзными предлогами. Аналогичная участь постигла эти статьи и при отправке их в редакции журналов ПЖЭТФ, ЖЭТФ, Доклады АН, Вестник МГУ (серия 3, Физика и Астрономия).

Все эти редакции устроены по принципу междусобойчиков: только свои, «чужих» не пускать. Письма, направленные в адрес РАН на имя трёх президентов остались без ответа. Были также направлены письма в Министерство образования и науки РФ, с просьбой дать объективную, непредвзятую оценку научной значимости и состоятельности «Теории Природы» и её мирового уровня научных открытий. Об этих ответах-отписках мы поговорим и скажем несколько слов позже. Предварительно скажем только, что ответы были отрицательные.

Займёмся сейчас делом по существу. Поговорим о постоянной тонкой структуре (ПТС, FSC) и о решении проблемы ПТС, представленном в рамках «Теории Природы» Юсупова Роберта. Формат настоящей статьи для «Прозария» не позволяет использовать математические формулы, поэтому объяснение будет даваться в основном на словах. Для более детального, серьёзного и основательного знакомства (с формулами и доказательствами) следует обратиться к статьям автора по «Теории Природы» .

А вот широко известное высказывание о ПТС ещё одного выдающегося физика-теоретика XX века Вольфганга Паули: «Когда я умру, первым делом посчитаю спросить у дьявола, – каков смысл постоянной тонкой структуры?»

О ПТС Макс Борн высказывал следующие мысли:
«Более совершенная теория должна была бы вывести число («альфа» - прим. ЮРА) с помощью чисто математических рассуждений, не ссылаясь на результаты измерений» .
«Но ведь то обстоятельство, что («альфа» - прим. ЮРА) имеет значение 1/137, а не какое-нибудь другое, конечно же, является не делом случая, а законом природы. Ясно, что объяснение числа («альфа» - прим. ЮРА) есть одна из центральных проблем естествознания» .

ПТС появляется в соотношении, связывающем физические величины: постоянную Планка, элементарный заряд и скорость света. В этой связи английский физик-теоретик, Поль Дирак писал: «… неизвестно, почему это выражение имеет именно такое, а не иное значение. Физики выдвигали по этому поводу различные идеи, однако общепринятого объяснения до сих пор нет» .
==================

Автор изначально не ставил себе задачу найти решение проблемы ПТС. Вообще-то говоря, проблема ПТС звучит так: объяснить физический смысл постоянной тонкой структуры и по возможности найти определяющие формулы для ПТС. Автор ставил перед собой более «скромную», простую задачу: найти, отыскать натуральные единицы природы: длину, массу, время. Для этого естественно первоначально выдвигалась гипотеза (научная гипотеза!) о существовании в природе таких единиц.

Автор «Теории Природы» и настоящей статьи всецело придерживается единственно верного и правильного диалектико-материалистического взгляда на окружающую природу, который выработан единственно научной философией, – марксистско-ленинской философией и её первой частью диалектическим материализмом. Моё мировоззрение – диалектико-материалистическое. Мой метод познания и исследования природы всецело диалектико-материалистический метод, разработанный К. Марксом в середине XIX века. Только что озвученное было основой, фундаментом, стержнем, стартовой позицией и единственной и ведущей позицией автора на всём долгом пути исследования основ природы и мироздания. Автор ставил себе целью отыскать конкретное проявления (явление, представление) материи в природе. Эти цели были достигнуты.

Попутно был решен целый ряд фундаментальных мировоззренческих проблем основ физики и космологии, в том числе проблема ПТС. Результаты исследований автора представлены в его «Теории Природы», которая является по сути дела новой материалистической физикой и космологией. Успехи и достижения «Теории Природы» впечатляют даже самого автора. Достигнут новый высочайший уровень в познании человеком природы и её законов. Достигнуто более углублённое понимание природы и действующих в ней законов. Материя поставлена во главу угла в физике и космологии. Материя введена в лоно физики в качестве основной физической величины.

Физика выведена из долгого, затяжного, векового, системного кризиса, порождённого отступничеством от материалистической линии и переходом под эгиду, «под флаг» «физического» идеализма. Эта вековая дружба, приверженность партии физиков «физическому» идеализму дорого обошлась самой физике: физика перестала быть наукой. Отстранённость, отдалённость, даже крайняя и неприкрытая враждебность всей партии физиков к материализму, диалектическому материализму, к материи, как основе мироздания, природы, к материи, как сущности природы и её субстанции, сыграли злую шутку над самими физиками и завели физику в болото глубокого системообразующего кризиса. Выхода из этого кризиса в рамках приверженности философии идеализма нет.

Только решительный разрыв физики с философией «физического» идеализма и решительный переход на позиции диалектического материализма позволил современной физике, как это показано в «Теории природы», выйти из этого кризиса и вернуться в строй наук о природе.

К реальному отыскания натуральных единиц природы (массы, длины и времени), привело составление системы трёх уравнений связи. В уравнениях связи использовались три неизвестных коэффициента связи между натуральными единицами природы (искомыми) и единицами СИ (известными, заданными). Вопрос отыскания натуральных единиц природы сводился поэтому к вопросу отысканию этих коэффициентов связи. Предстояло определить эти коэффициенты связи.

Одно уравнение представляло собой, по сути дела, определение (согласно определяющей формуле) фундаментальной физической величины (ФФВ) максимальной скорости в природе (это аналог скорости света в вакууме для современной физики).

Второе уравнение, аналогично, представляло собой определение (согласно определяющей формуле) фундаментальной физической величины (ФФВ) гравитационной величины Вселенной (это аналог гравитационной постоянной Ньютона в теории современной физики, ТСФ).

В основе определяющих формул лежали натуральные единицы природы (массы, длины, времени), которые предстояло отыскать. Первые два уравнения были вполне очевидны. При переходе к единицам СИ мы получали в правой части определяющих формул (уравнений) известные числовые значения для скорости света и гравитационной постоянной Ньютона. Этим две ФФВ были задействованы в уравнениях связи.

Для третьего уравнения оставались ещё две ФФВ, – это элементарный заряд в природе (заряд электрона) и постоянная тонкой структуры. Третьим определяющим равенством (тождеством), приводящим к уравнению с неизвестными коэффициентами связи стало определение элементарного импульса. Как известно из физики физическая величина импульс (I) есть произведение массы тела, частицы на его (её) скорость: I=m*v. В случае скорости света это выражение примет вид: I=m*c.

Но максимальная скорость в природе (она называется в теории современной физики (ТСФ) скоростью света в вакууме) определяется как отношение натуральных единиц (они же будут и минимальными величинами) природы длины и времени: c=l/t. С учётом этого соотношения формула элементарного импульса запишется так: I=m*l/t. Это будет определяющая формула элементарного импульса для некоторой неизвестной пока материальной частицы. Эта материальная частица будет натуральным эталоном натуральных единиц длины (l), массы (m) и времени (t). При переходе к СИ мы получим некоторое выражение из коэффициентов связи.

Возникнет вопрос: «Чему это выражение должно равняться»? Автор выдвинул гипотезу, что это должна быть безразмерностная величина постоянная тонкой структуры, вернее обратная величина ПТС. Дальнейшие рассуждения показали правильность этого предположения автора.

Но вместе с этим предположением (гипотезой о ПТС) и даже несколько раньше, автор должен был сделать ещё одно поистине вселенское фундаментальное сопутствующее и предшествующее открытие. Это предшествующее открытие состояло в том, что элементарный импульс I=m*l/t эталонной материальной частицы природы должен быть безразмерностной единицей в системе натуральных единиц природы: массы (m), длины (l) и времени (t).

Отсюда сразу же следует вывод о том, что физические величины натуральные единицы природы: длина (l), масса (m) и время (t) должны быть зависимыми между собой (в совокупности) физическими величинами и формула этой зависимости следующая: m*l/t=1, где справа стоит безразмерностная единица.

Каждое из этих открытий:
1) элементарный импульс есть безразмерностная единица,
2) элементарный импульсу в природе есть импульс минимальной материальной частицы в природе (крупицы материи),
3) крупица материи является природным материальным эталонным «носителем» физических величин натуральных единиц массы, длины и времени (m, l, t),
4) натуральные единицы природы массы длины и времени (m, l, t), как физические величины, являются зависимыми в совокупности ФВ и их зависимость задаётся, определяется формулой m*l/t=1,
5) постоянная тонкой структуры есть безразмерностная физическая величина, определяемая очень простым физическим выражением: альфа=1 s/(1 m * 1 kg) (см. рисунок)
стоит нобелевской премии по моему скромному мнению. Это, как говорится, и ёжику понятно!

Но партия современных российских физиков (несомненно врагов прогресса) никак это понять не может вот уже на протяжении 6 лет, усиленно блокируя «Теорию Природы» и замалчивая её поистине революционные достижения и успехи. Видимо звание физиков-засранцев «обязывает». Каждому своё, как говорится! За державу, за Россию обидно!

Это физическое выражение (альфа=1 s/(1 m * 1 kg)) показывает, что ПТС не является фундаментальной физической величиной (ФФВ), то есть истинной природной величиной, как, например, максимальная скорость в природе (скорость света в вакууме) или гравитационная величина Вселенной (гравитационная постоянная Ньютона) или элементарный заряд в природе (заряд электрона). ПТС является физической величиной определяющей взаимосвязь трёх единиц СИ: длины (1 метр), массы (1 килограмм) и времени (1 секунда).

Значение ПТС обусловлено нашим случайным выбором единиц измерения СИ. ПТС – это рукотворная физическая величина, но не ФФВ. В Природе ПТС нет. Физический смысл ПТС обусловлен и полностью определяется её определяющей формулой альфа=1 s/(1 m * 1 kg).

Вот, пожалуй, и весь рассказ о постоянной тонкой структуры, решение проблемы которой было найдено Юсуповым Робертом, вашим покорным слугой, в далёком 2013 году!

Но партия современных российских физиков, физическая элита, физическая власть до сих пор не признаёт это достижение, этот успех, наряду с другими не менее выдающимися достижениями в физике и космологии, представленными в непризнанной «Теории Природы» автора.
==================

Литература:
Статьи по «Теории Природы» http://vixra.org/author/robert_yusupov,
Список решённых «Теорией Природы» фундаментальных проблем мироздания, основ природы, структуры и эволюции Вселенной, проблем физики и космологии, диалектического материализма http://vixra.org/pdf/1509.0278v1.pdf.
https://ru.wikipedia.org/wiki/Постоянная_тонкой_структуры.
http://physics.nist.gov/constants.
Библиотечка Квант. Выпуск 066. Фейнман Р. КЭД - странная теория света и вещества Москва: Наука, 1988. - 144 с. - (Библиотечка Квант, выпуск 66).
Макс Борн. Таинственное число 137. УФН, 1936 г., Т. XVI, вып. 6.
Ч. Китель, У. Найт, М. Рудерман. Механика. Берклеевский курс физики. М., «Наука», 1975.
Дирак П.А.М. Элементарные частицы. М. "Наука", 1965, вып.3.
==================

31 марта 2018 года
С уважением.
Роберт Юсупов, свободный исследователь, диалектический материалист, коммунист.

Различные уравнения и физические формулы содержат целый ряд различных числовых констант. Некоторые из этих констант представляют собой числа, заимствованные из чистой математики. Пример: число 3,14159…, более известное под своим греческим именем π . Мы знаем значение π до миллиардов десятичных знаков, причём не измеряя его, а вычисляя на основе чисто математического определения: π – это отношение длины окружности к диаметру. Другие математические числа, такие как квадратный корень из двух и число, обозначаемое буквой e , тоже могут быть вычислены с бесконечной точностью, если только кто-нибудь захочет это сделать.

Но в физических формулах присутствуют и другие числа, которые не имеют специфического математического происхождения. Их можно назвать эмпирическими числами. Например, в ядерной физике используется очень важное соотношение между массой протона и массой нейтрона. Его численное значение известно до семи десятичных знаков: 1,001378. На сегодняшний день не известно способа вычислить следующие десятичные знаки чисто математическим путём. Необходимо отправиться в лабораторию и измерить их. Наиболее фундаментальные из этих эмпирических чисел удостоены звания «мировых констант». Постоянная тонкой структуры – одна из таких мировых констант. Подобно π , постоянная тонкой структуры обозначается греческой буквой α (альфа). В популярной литературе часто приводится её приближённое значение 1/137. Её наиболее точное значение известно до одиннадцатого знака после запятой: 0,00729735257, и это одна из наиболее точно измеренных физических констант.

Постоянная тонкой структуры является примером величины, которые физики называют константами связи . Каждая константа связи ассоциирована в квантовой теории поля с одним из базисных событий, с определённым типом вершины на фейнмановской диаграмме. Константа связи является мерой силы или интенсивности взаимодействия, представленного вершиной соответствующего типа. В квантовой электродинамике основной тип вершин соответствует излучению фотона электроном. Рассмотрим более подробно, что происходит при излучении фотона.

Можно начать с вопроса: что определяет конкретную точку, в которой электрон, двигаясь в пространстве-времени, испускает фотон? Ответ заключается в том, что ничто не определяет, – физика на микроуровне непредсказуема. Природа содержит элемент случайности, который буквально сводил с ума Эйнштейна в его последние годы. «Бог не играет в кости!» – протестовал Эйнштейн. Но независимо от того, нравилось ли это Эйнштейну, природа не является детерминированной. В природе, как я уже сказал, есть элемент случайности, который встроен в Законы Физики на самом глубоком уровне, и даже Эйнштейн ничего не мог с этим поделать. Но то, что природа не является детерминированной, вовсе не означает, что она полностью хаотична. Вот тут и выступают на сцену принципы квантовой механики. В отличие от ньютоновской физики, квантовая механика никогда не предсказывает будущее на основании информации о прошлом. Вместо этого она предоставляет очень точные правила для вычисления вероятности различных альтернативных результатов эксперимента. Нет никакой возможности предсказать окончательное местоположение фотона, который прошёл через щель, равно как не существует никакой возможности точно предсказать, в каком месте своей траектории электрон испустит фотон или в каком месте другой электрон сможет его поглотить. Но существует определённая вероятность для этих событий.

Хорошей иллюстрацией такой вероятности служит работа электронно-лучевой трубки старого телевизора. Свет, исходящий от телевизионного экрана, состоит из фотонов, рождаемых врезающимися в экран электронами. Электроны испускаются электронной пушкой в задней части кинескопа и направляются к экрану электрическими и магнитными полями. Но не каждый электрон, врезающийся в экран, излучает фотон. Некоторые излучают, а большинство – нет. Грубо говоря, вероятность того, что конкретный электрон испустит квант света, даётся постоянной тонкой структуры α. Другими словами, только один из 137 электронов испускает фотон. Это означает, что α – это вероятность того, что электрон, двигаясь вдоль своей траектории, соблаговолит излучить фотон.

Фейнман не просто рисовал картинки. Он изобрёл набор правил для расчёта вероятностей сложных процессов, изображённых на этих картинках. Иными словами, он изобрёл точный математический аппарат, который предсказывает вероятность любого процесса в терминах простейших событий: пропагаторов и вершин. В конечном итоге вероятности всех процессов в природе сводятся к константам связи, подобных α.

Постоянная тонкой структуры также управляет интенсивностью процессов, представленных обменной диаграммой, которая, в свою очередь, определяет силу электрического взаимодействия между заряженными частицами. Она определяет, насколько сильно атомное ядро притягивает к себе электроны. Как следствие, она определяет размер атома и скорости, с которыми электроны движутся по своим орбитам, и в конечном итоге она управляет силами, действующими между различными атомами, которые позволяют им соединяться в молекулы. Но самое важное то, что мы не знаем, почему она имеет значение 0,00729735257, а не какое-то другое. Законы Физики, обнаруженные в XX веке, оказались очень точными и полезными, но происхождение этих законов остаётся загадкой.

Теория этого упрощённого мира электронов, фотонов и точечных ядер и есть квантовая электродинамика, и её фейнмановская версия оказалась невероятно успешной. С помощью разработанных Фейнманом методов свойства фотонов, электронов и позитронов были описаны с удивительной точностью. Кроме того, если в теорию добавить упрощённый вариант ядра, то с такой же невероятной точностью удаётся описать и свойства простейшего атома – атома водорода. В 1965 году Ричард Фейнман, Джулиан Швингер и японский физик Син-Итиро Томонага получили за работы по квантовой электродинамике Нобелевскую премию.

Конец первого акта.

Если в первом акте театральное действие ограничивалось только двумя персонажами, то во втором акте разворачивается на сцене эпическое полотно с сотнями актёров. Новые частицы, обнаруженные в 1950-х и 1960-х годах, пополнили ряды неуправляемой театральной массовки и на сцене, помимо электронов и фотонов, появились нейтрино, мюоны, тау-лептоны, u-кварки, d-кварки, странные кварки, очарованные кварки, b-кварки, t-кварки, глюоны, W- и Z-бозоны, бозоны Хиггса и другие действующие лица. Никогда не верьте тому, кто говорит, что физика элементарных частиц элегантна. Эта сборная солянка названий частиц отражает такое же нагромождение масс, электрических зарядов, спинов и других свойств. Но, несмотря на обилие и разнообразие действующих лиц, мы знаем, как описать их поведение с огромной точностью. «Стандартная модель» – это название математической конструкции (особого варианта квантовой теории поля), которая лежит в основе современной теории элементарных частиц. Хотя она гораздо сложнее квантовой электродинамики, фейнмановские методы настолько мощные, что и в этот раз они позволяют выразить всё в виде простых картинок. Принципы точно такие же, как в КЭД: всё построено из пропагаторов, вершин и констант связи. Но есть новые актёры и совершенно новые сюжетные линии, одна из которых называется КХД.

Л.И. Холодов, И.В. Горячев

Соображения о физическом смысле постоянной тонкой структуры

Нашим соображениям мы предпошлем полное изложение статьи Георгия Кирокосяна «Физический смысл постоянной тонкой структуры», которая была опубликована в Интернете 7.12.2010 г., так как в ней, по нашему мнению, достаточно хорошо показана история постоянной тонкой структуры, как «загадки XX века».

«Названная фундаментальная постоянная микромира: α ≈ 1/137 была введена в физику в 20-е годы Арнольдом Зоммерфельдом для описания энергетических подуровней, обнаруженных экспериментально в спектрах излучения атомов. С тех пор были выявлены и множество других проявлений того же самого постоянного отношения в разнообразных явлениях, связанных с взаимодействиями элементарных частиц. Ведущие физики того времени постепенно осознали значение этого числа, как в мире элементарных частиц, так и в целом – в устройстве нашего мироздания. С этой точки зрения достаточно сказать только, что все основные свойства и характеристики объектов микромира: размеры электронных орбит в атомах, энергии связи (как между элементарными частицами, так и атомами), и тем самым, все физические и химические свойства вещества, определяются величиной этой константы. В дальнейшем, используя названную постоянную, удалось разработать и весьма результативную формальную теорию – современную квантовую электродинамику (КЭД), с фантастической точностью описывающую квантовое электромагнитное взаимодействие.

Из вышесказанного можно судить обо всей важности задачи выяснения физического смысла и причинного механизма возникновения этой постоянной, что является открытым вопросом в физике с тех пор, как она была обнаружена. На языке теоретиков, решение данной задачи означает: назвать ту исходную концепцию возникновения названной константы, исходя из которой последовательными выкладками можно прийти к экспериментально установленному её значению. О значимости же поставленного вопроса можно судить из шуточного высказывания знаменитого физика с мировым именем, Вольфганга Паули: «Когда я умру, первым делом посчитаю спросить у дьявола, – каков смысл постоянной тонкой структуры?» Ну, а Ричард Фейнман считал сам факт существования этого загадочного числа «проклятием для всех физиков» и советовал хорошим теоретикам «зарубить его на стене и всегда думать над ним»!

Представленный вопрос приобрел такое значение, прежде всего, потому что названная постоянная непосредственно связана с проблемой понимания физической сущности элементарных частиц, поскольку она проявляется не раздельно от них, а как их глубинное свойство. Посему многие физики в течение долгих лет упорно пытались решить эту величайшую задачу, применяя разные подходы и методы. Но пока все их усилия не увенчались успехом.

Что же предложено автором? Ему удалось обнаружить, что решение «загадки XX века» на самом деле содержится в наших учебниках и в хорошо известных формулах, относящихся к волнам, если только аккуратно подсчитать! Сказанное означает, что α является классической волновой константой. Но следует предупредить, что самое простейшее объяснение загадки может вызывать недоумение, если изначально мы не склонны слушать то, что нам предлагается. Как показал опыт, представленное решение проблемы весьма трудно воспринимается многими специалистами, хотя верность результата никем и не опровергается!

В чем же заключается причина этого затруднения? К сожалению, ведущие современные теоретики, чрезмерно увлеченные формально-математическими теориями (которые первоначально рассматривались как временный компромиссный вариант), уже успели забыть о существовании в физике нерешенной фундаментальной дилеммы «частицы – волны». В результате трудно встретить физика, которого бы не удивил подход автора – представить частицу как локализовано-стоячую волну (хотя официально это вполне допустимо, в силу той же нерешенной дилеммы). И это притом, что к аналогичному заключению уже давно пришли бесспорные авторитеты физической науки: Эйнштейн, Шредингер, Гейзенберг и др. под давлением весомых аргументов.

Представленный труд и полученный результат, на взгляд автора, может являться серьёзным указанием на правоту убеждений корифеев физики. Но этот вывод в свое время был упорно проигнорирован большинством голосов коллег (поскольку не удалось получить необходимых результатов, подтверждающих верность этого умозаключения). Как следствие, исследования в этой области теоретической физики пошли в неэффективном направлении. Предложенное решение может являться ключом к выявлению физической сущности элементарных частиц и тем самым открывать понятный путь к описанию микромира, альтернативный современным формально-феноменологическим теориям. Однако решающее слово принадлежит здесь глубоко мыслящим экспертам – теоретикам, которые, как мы надеемся, непременно найдутся и дадут объективную оценку представленному труду».

Зоммерфельда, было отношение двух угловых моментов, которые возникают в теории движения электрона по кеплеровским орбитам, - так называемого предельного момента , который отвечает за движение перицентра при релятивистском рассмотрении, и момента , соответствующего первому квантовому состоянию. Позже, в своей известной книге «Строение атома и спектры» , Зоммерфельд вводил , как отношение скорости электрона на первой круговой орбите в боровской модели атома к скорости света . Эта величина использовалась далее для расчёта тонкого расщепления спектральных линий водородоподобных атомов.

Тот факт, что много меньше единицы, позволяет использовать в квантовой электродинамике теорию возмущений . Физические результаты в этой теории представляются в виде ряда по степеням , причём члены с возрастающими степенями становятся менее и менее важными. И наоборот, большая константа взаимодействия в квантовой хромодинамике делает вычисления с учётом сильного взаимодействия чрезвычайно сложными.

Если бы предсказания квантовой электродинамики были верны, то постоянная тонкой структуры принимала бы бесконечно большое значение при значении энергии, известном как полюс Ландау . Это ограничивает область применения квантовой электродинамики только областью применимости теории возмущений .

Постоянство величины

Исследование вопроса о том, действительно ли постоянная тонкой структуры является постоянной, то есть всегда ли она имела современное значение или менялась за время существования Вселенной , имеет долгую историю . Первые идеи такого рода появились в 1930-е годы, вскоре после открытия расширения Вселенной , и преследовали цель сохранить статическую модель Вселенной за счёт изменения фундаментальных констант со временем. Так, в статье Дж. и Б. Чалмерсов предлагалось объяснение наблюдаемого красного смещения спектральных линий галактик за счёт одновременного возрастания элементарного заряда и постоянной Планка (это должно приводить и к временно́й зависимости ). В ряде других публикаций предполагалось, что постоянная тонкой структуры остаётся неизменной при одновременной вариации составляющих её констант.

Серьёзной проверке вопрос об изменении постоянной тонкой структуры со временем был подвергнут в 1967 году. Инициатором выступил Георгий Гамов , который, отказываясь принять дираковскую идею об изменении гравитационной постоянной, заменил её гипотезой о вариации элементарного заряда и, как следствие, . Он также показал, что это предположение можно проверить наблюдениями тонкой структуры спектров удалённых галактик. Против предположения Гамова были выдвинуты возражения ядерно-физического и геологического характера, с которыми выступили Фримен Дайсон и Ашер Перес (Asher Peres ) . Прямую экспериментальную проверку гипотезы Гамова предприняли Джон Баколл (John N. Bahcall ) и Маартен Шмидт , измерившие дублеты тонкого расщепления пяти радиогалактик с красным смещением . Из опыта следовало отношение измеренного значения постоянной тонкой структуры к её лабораторной величине , что противоречило предсказанию в случае (см. также обзор ). Гамов быстро признал своё поражение. Не выявили каких-либо изменений постоянной тонкой структуры и исследования природного ядерного реактора в Окло , проведённые в 1970-е годы . Все эти работы позволили установить весьма жёсткие ограничения на возможную скорость и характер изменения и других фундаментальных констант.

Тем не менее, к началу 2000-х годов усовершенствования в методиках астрономических наблюдений дали основание считать, что постоянная тонкой структуры, возможно, меняла своё значение с течением времени: анализ линий поглощения в спектрах квазаров позволил предположить , что относительная скорость изменения составляет около в год. Исследовались также последствия возможного изменения постоянной тонкой структуры для космологии . Однако более детальные наблюдения квазаров , сделанные в апреле 2004 года при помощи спектрографа UVES на одном из 8,2-метровых телескопов телескопа Паранальской обсерватории в Чили , показали, что возможное изменение не может быть больше, чем 0,6 миллионной доли () за последние десять миллиардов лет (см. статьи и пресс-релиз ). Поскольку это ограничение противоречит более ранним результатам, то вопрос о том, постоянна ли , считается открытым.

Попытки рассчитать (включая нумерологию)

Ранние попытки

Постоянная тонкой структуры, являясь безразмерной величиной, которая никак не соотносится ни с какой из известных математических констант , всегда являлась объектом восхищения для физиков. Ричард Фейнман , один из основателей квантовой электродинамики, называл её «одной из величайших проклятых тайн физики: магическое число, которое приходит к нам без какого-либо понимания его человеком» . Предпринималось большое количество попыток выразить эту постоянную через чисто математические величины или вычислить на основе каких-либо физических соображений. Так, ещё в 1914 году химики Гилберт Льюис и Эллиот Адамс (Elliot Quincy Adams ), отталкиваясь от выражения для константы Стефана , после некоторых предположений выразили постоянную Планка через заряд электрона и скорость света. Если составить из их формулы постоянную тонкой структуры, которая тогда ещё не была известна, получится

Работа Льюиса и Адамса не прошла незамеченной и была подхвачена некоторыми другими учёными . Герберт Стэнли Аллен (H. Stanley Allen ) в своей статье явным образом сконструировал вышеуказанную безразмерную величину (обозначив её через ) и попытался связать её с величиной заряда и массы электрона; он также указал на примерное соотношение между массами электрона и протона . В 1922 году чикагский физик Артур Лунн (Arthur C. Lunn ) предположил , что постоянная тонкой структуры каким-то образом связана с ядерным дефектом массы , а также рассмотрел её возможную связь с гравитацией посредством соотношения ( - ньютоновская гравитационная постоянная). Кроме того, он предложил несколько чисто алгебраических выражений для , а именно: , , , .

Первую попытку связать постоянную тонкой структуры с параметрами Вселенной предпринял в 1925 году ливерпульский физик Джеймс Райс (James Rice ), находившийся под большим впечатлением от работ астрофизика Артура Эддингтона по объединению общей теории относительности с электромагнетизмом . В своей первой статье Райс пришёл к следующему выражению, связывающему с радиусом кривизны Вселенной ,

где - электромагнитный радиус электрона, - гравитационный радиус электрона. Однако вскоре он обнаружил в своих вычислениях грубую ошибку и в следующей заметке представил исправленный вариант соотношения, а именно:

Положив для радиуса Вселенной величину см, Райс получил .

Теория Эддингтона

Другие попытки середины XX века

Хотя некоторые ведущие физики (Зоммерфельд , Шрёдингер , Йордан) с интересом отнеслись к теории Эддингтона, вскоре стала ясна трудность согласования с экспериментом; кроме того, было трудно понять методику Эддингтона. По меткому выражению Вольфганга Паули , это была скорее «романтическая поэзия, а не физика». Тем не менее, эта теория породила множество последователей, предлагавших свои более или менее спекулятивные подходы к анализу происхождения постоянной тонкой структуры . Так в 1929 году Владимир Рожанский (Vladimir Rojansky ) фактически «переоткрыл» соотношение Аллена между массами протона и электрона , а Энос Уитмер (Enos Witmer ) предложил соотношение между массами атомов гелия и водорода в виде

Аналогичные попытки связать с другими константами природы (в особенности с ) предпринимали примерно в это время Вильгельм Андерсон (Wilhelm Anderson ) , Рейнгольд Фюрт (Reinhold Fürth ) , Вальтер Глазер (Walter Glaser ) и Курт Зитте (Kurt Sitte ) (они определили максимальное количество химических элементов как ), Артур Гааз (Arthur Erich Haas ) , Альфред Ланде и другие. Большое количество такого рода работ побудило физиков Гвидо Бека , Ханса Бете и Вольфганга Рицлера (Wolfgang Riezler ) послать в журнал Die Naturwissenschaften шуточную заметку «К квантовой теории абсолютного нуля температуры» . Эта статья пародировала поиски нумерологических формул для физических констант и предлагала «объяснение» тому факту, что постоянная тонкой структуры примерно равна , где °C - абсолютный нуль температуры. Редакция журнала не осознала пародийного характера заметки и опубликовала её на страницах издания. Когда истина открылась, эта шутка вызвала гнев редактора журнала Арнольда Берлинера (Arnold Berliner ), так что, по настоянию Зоммерфельда, Бете был вынужден извиниться за свой поступок .

После открытия мюона в 1937 году возникли спекулятивные предположения о связи новой частицы с константами природы. Согласно Патрику Блэкетту , возможна связь между гравитацией и временем жизни мюона в виде

где - масса мюона. Генри Флинт (Henry Flint ), основываясь на соображениях 5-мерного расширения теории относительности, получил соотношение . Среди более поздних попыток можно отметить чисто нумерологическое соотношение между массами протона и электрона, появившееся в чрезвычайно короткой заметке некоего Фридриха Ленца (Friedrich Lenz ), и гласившее: . В 1952 году Ёитиро Намбу указал , что массы элементарных частиц тяжелее электрона можно описать следующей эмпирической формулой:

где - целое число. Например, для получается масса мюона (), для - масса пиона (), для - приблизительная масса нуклонов ().

Более научно обоснованными были попытки рассчитать величину постоянной тонкой структуры, предпринятые Максом Борном и Вернером Гейзенбергом на основе их обобщений существующих полевых теорий . Борн при помощи своего подхода, основанного на «принципе взаимности» (см., например, работы ), к концу 1940-х годов смог получить лишь оценку, которая дала . Гейзенбергу в рамках его нелинейной теории поля также удалось получить согласие с экспериментальным значением постоянной лишь по порядку величины.

Современные попытки

Возможна и ассоциация с предполагаемой размерностью пространства-времени : в одной из самых многообещающих теорий последнего времени - так называемой «М-теории », развивающейся как обобщение теории суперструн и претендующей на описание всех физических взаимодействий и элементарных частиц - пространство-время полагается 11-мерным. При этом одно измерение на макроуровне воспринимается как время, еще три - как макроскопические пространственные измерения, остальные семь - это так называемые «свернутые» (квантовые) измерения, ощущаемые только на микро-уровне. ПТС при этом объединяет числа 1, 3 и 7 с множителями, кратными десяти, причем 10 можно интерпретировать как суммарную размерность пространства в теории суперструн.

Похожим образом математик Джэймс Гилсон предложил, что постоянная тонкой структуры может быть математически, с большой степенью точности, определена как

29 и 137 являются, соответственно, 10-м и 33-м простыми числами. До данных 2002 года это значение лежало в пределах ошибок измерений . В настоящий момент оно отличается на 1,7 стандартного отклонения экспериментальных данных, что делает данное значение возможным, но маловероятным.

В недавней статье А. Ольчака приводится более компактная и внятная формула, аппроксимирующая постоянную тонкой структуры с не худшей точностью, чем формула Гилсона. Величина ПТС при этом связывается с ключевой для динамики хаоса постоянной Фейгенбаума . Эта постоянная, в самых общих словах, характеризует скорость приближения решений нелинейных динамических систем к состоянию «неустойчивости в каждой точке» или «динамического хаоса». На сегодняшний день расчётное значение постоянной Фейгенбаума (в пределах точности, требуемой для расчёта ПТС) составляет .

Величина ПТС весьма точно вычисляется как корень простого уравнения

и составляет что аппроксимирует экспериментальное значение до десятого десятичного знака. Точность совпадения составляет ~1,3 стандартных интервала сегодняшней экспериментальной погрешности.

Следует также заметить, что с точки зрения современной квантовой электродинамики постоянная тонкой структуры является бегущей константой связи , то есть зависит от энергетического масштаба взаимодействия. Этот факт лишает большей части физического смысла попытки сконструировать нумерологическую формулу для какого-то конкретного (в частности - нулевого, если речь идёт о значении ) передаваемого импульса.

См. также

Примечания

  1. Рекомендованное CODATA значение постоянной тонкой структуры .
  2. A. Sommerfeld. Die Feinstruktur der Wasserstoff- und der Wasserstoff-ähnlichen Linien // Sitzungsberichte der Königl. Bayerischen Akademie der Wissenschaften zu München . - 1915. - P. 459-500.
  3. A. Sommerfeld. Zur Quantentheorie der Spektrallinien // Annalen der Physik . - 1916. - Vol. 356 (51). - P. 1-94.
  4. A. Зоммерфельд. Строение атома и спектры. - М .: Гостехиздат, 1956. - Т. 1. - С. 81.
  5. , pp. 403–404
  6. , pp. 427–430
  7. J. A. Chalmers, B. Chalmers. The expanding universe-an alternative view // Philosophical Magazine Series 7 . - 1935. - Vol. 19. - P. 436-446.
  8. S. Sambursky. Static Universe and Nebular Red Shift // Physical Review . - 1937. - Vol. 52. - P. 335-338.
  9. K. P. Stanyukovich . Possible changes in the gravitational constant // Soviet Physics - Doklady . - 1963. - Vol. 7. - P. 1150-1152.
  10. J. O"Hanlon, K.-K. Tam. Time Variation of the Fundamental Constants of Physics // Progress of Theoretical Physics . - 1969. - Vol. 41. - P. 1596-1598.
  11. P. A. M. Dirac. A New Basis for Cosmology // Proc. R. Soc. Lond. A . - 1938. - Vol. 165. - P. 199-208.
  12. P. Jordan. Über die kosmologische Konstanz der Feinstrukturkonstanten // Zeitschrift für Physik . - 1939. - Vol. 113. - P. 660-662.
  13. E. Teller. On the Change of Physical Constants // Physical Review . - 1948. - Vol. 73. - P. 801-802.
  14. J. Brandmüller, E. Rüchardt. Die Sommerfeldsche Feinstrukturkonstante und das Problem der spektroskopischen Einheiten // Die Naturwissenschaften . - 1950. - Vol. 37. - P. 337-343.
  15. R. Baggiolini. On a Remarkable Relation between Atomic and Universal Constants // American Journal of Physics . - 1957. - Vol. 25. - P. 324-325.
  16. G. Gamow. Electricity, Gravity, and Cosmology // Physical Review Letters . - 1967. - Vol. 19. - P. 759-761.
  17. F. J. Dyson. Time Variation of the Charge of the Proton // Physical Review Letters . - 1967. - Vol. 19. - P. 1291-1293.
  18. A. Peres. Constancy of the Fundamental Electric Charge // Physical Review Letters . - 1967. - Vol. 19. - P. 1293-1294.
  19. J. N. Bahcall, M. Schmidt. Does the Fine-Structure Constant Vary with Cosmic Time? // Physical Review Letters . - 1967. - Vol. 19. - P. 1294-1295.
  20. Я. М. Крамаровский, В. П. Чечев. Изменяется ли заряд электрона с возрастом Вселенной? // УФН . - 1970. - Т. 102. - С. 141-148.
  21. G. Gamow. Numerology of the Constants of Nature // PNAS . - 1968. - Vol. 59. - P. 313-318.
  22. Ю. В. Петров. Естественный ядерный реактор Окло // УФН . - 1977. - Т. 123. - С. 473-486.
  23. M. T. Murphy, J. K. Webb, V. V. Flambaum, V. A. Dzuba, C. W. Churchill, J. X. Prochaska, J. D. Barrow, A. M. Wolfe. Possible evidence for a variable fine-structure constant from QSO absorption lines: motivations, analysis and results // . - 2001. - Vol. 327. - P. 1208-1222.
  24. J. D. Barrow, H. B. Sandvik, J. Magueijo. Behavior of varying-alpha cosmologies // Physical Review D . - 2002. - Vol. 65. - P. 063504.
  25. R. Srianand, H. Chand, P. Petitjean, B. Aracil. Limits on the Time Variation of the Electromagnetic Fine-Structure Constant in the Low Energy Limit from Absorption Lines in the Spectra of Distant Quasars // Physical Review Letters . - 2004. - Vol. 92. - P. 121302.
  26. H. Chand, R. Srianand, P. Petitjean, B. Aracil. Probing the cosmological variation of the fine-structure constant: Results based on VLT-UVES sample // Astronomy & Astrophysics . - 2004. - Vol. 417. - P. 853-871.
  27. New Quasar Studies Keep Fundamental Physical Constant Constant // ESO Press Release, 31 March 2004
  28. J. K. Webb, J. A. King, M. T. Murphy, V. V. Flambaum, R. F. Carswell, M. B. Bainbridge. Indications of a Spatial Variation of the Fine Structure Constant // Physical Review Letters . - 2011. - Vol. 107. - P. 191101. См. также .
  29. J. C. Berengut, V. V. Flambaum, J. A. King, S. J. Curran, J. K. Webb. // Physical Review D . - 2011. - Vol. 83. - P. 123506. См. также .
  30. J. A. King, M. T. Murphy, W. Ubachs, J. K. Webb. New constraint on cosmological variation of the proton-to-electron mass ratio from Q0528-250 // Monthly Notices of the Royal Astronomical Society . - 2011.
  31. S. J. Curran, A. Tanna, F. E. Koch, J. C. Berengut, J. K. Webb, A. A. Stark, V. V. Flambaum. Measuring space-time variation of the fundamental constants with redshifted submillimetre transitions of neutral carbon // Astronomy & Astrophysics . - 2011.
  32. J. C. Berengut, V. V. Flambaum. Manifestations of a spatial variation of fundamental constants in atomic and nuclear clocks, Oklo, meteorites, and cosmological phenomena // Europhysics Letters . - 2012. - Vol. 97. - P. 20006.
  33. J. D. Barrow. Cosmology, Life, and the Anthropic Principle // Annals of the New York Academy of Sciences . - 2001. - Vol. 950. - P. 139-153.
  34. G. N. Lewis and E. Q. Adams. A Theory of Ultimate Rational Units; Numerical Relations between Elementary Charge, Wirkungsquantum, Constant of Stefan"s Law // Physical Review . - 1914. - Vol. 3. - P. 92-102.
  35. , pp. 400–401
  36. , pp. 401–402
  37. H. Stanley Allen. Numerical Relationships between Electronic and Atomic Constants // Proceedings of the Physical Society of London . - 1914. - Vol. 27. - P. 425-431.
  38. A. C. Lunn. Atomic Constants and Dimensional Invariants // Physical Review . - 1922. - Vol. 20. - P. 1-14.
  39. , p. 406
  40. J. Rice. On Eddington"s natural unit of the field, and possible relations between it and the universal constants of physics // . - 1925. - Vol. 49. - P. 457-463.
  41. J. Rice. On Eddington"s natural unit of the field // Philosophical Magazine Series 6 . - 1925. - Vol. 49. - P. 1056-1057.
  42. A. S. Eddington. The Charge of an Electron // Proc. R. Soc. Lond. A . - 1929. - Vol. 122. - P. 358-369.
  43. A. S. Eddington. The Interaction of Electric Charges // Proc. R. Soc. Lond. A . - 1930. - Vol. 126. - P. 696-728.
  44. A. S. Eddington. On the Value of the Cosmical Constant // Proc. R. Soc. Lond. A . - 1931. - Vol. 133. - P. 605-615.
  45. A. S. Eddington. Theory of Electric Charge // Proc. R. Soc. Lond. A . - 1932. - Vol. 138. - P. 17-41.
  46. R. T. Birge. The general physical constants: As of august 1941 with details on the velocity of light only // Reports on Progress in Physics . - 1941. - Vol. 8. - P. 90-134.
  47. , pp. 411–415
  48. , pp. 416–418
  49. , pp. 419–422
  50. V. Rojansky. The Ratio of the Mass of the Proton to that of the Electron // Nature . - 1929. - Vol. 123. - P. 911-912.
  51. E. E. Witmer. The Relative Masses of the Proton, Electron, and Helium Nucleus // Nature . - 1929. - Vol. 124. - P. 180-181.
  52. W. Anderson. Über die Struktur der Lichtquanten // Zeitschrift für Physik . - 1929. - Vol. 58. - P. 841-857.
  53. R. Fürth. Über einen Zusammenhang zwischen quantenmechanischer Unschärfe und Struktur der Elementarteilchen und eine hierauf begründete Berechnung der Massen von Proton und Elektron // Zeitschrift für Physik . - 1929. - Vol. 57. - P. 429-446.

Обнаружено, что постоянная тонкой структуры, которая обозначается греческой буквой α, менялась в пространстве и времени, начиная с момента Большого взрыва. Это открытие специалисты, не участвовавшие в работе, уже назвали «новостью года в физике». Если данный факт справедлив, то это будет означать нарушение основополагающего принципа общей теории относительности Эйнштейна.

При этом характер асимметрии постоянной тонкой структуры может помочь ученым создать одну единую теорию физики, описывающую четыре фундаментальных взаимодействия (гравитацию, электромагнетизм, а также сильные и слабые ядерные силы), а также лучше понять природу нашей Вселенной.

Постоянная тонкой структуры α является безразмерной, приблизительно равна 1/137. Впервые она была описана в 1916 году немецким физиком Арнольдом Зоммерфельдом. Он интерпретировал ее как отношение скорости электрона на первой круговой орбите в боровской модели атома (это самая простая модель атома, в которой электроны движутся вокруг положительно заряженного ядра, словно планеты вокруг Солнца) к скорости света. В квантовой электродинамике постоянная тонкой структуры характеризует силу взаимодействия между электрическими зарядами и фотонами. Её значение не может быть предсказано теоретически и вводится на основе экспериментальных данных. Постоянная тонкой структуры является одним из двадцати странных «внешних параметров» стандартной модели в физике элементарных частиц, и существовали некоторые теоретические признаки ее возможного изменения.

Признаки изменения α Джон Уэбб, Виктор Фламбаум и их коллеги из Университета Нового Южного Уэльса стали искать с 1998 года, изучая излучение далеких квазаров. Это излучение миллиарды лет шло до Земли сквозь облака газа. Часть его поглотилась на определенных длинах волн, по которым можно сделать выводы о химическом составе облаков и из этого уже определить, какой была постоянная тонкой структуры миллиарды лет назад. По данным австралийских исследователей, которые изучали объекты в северном полушарии, эта величина раньше была на 1/100 000 меньше, чем сейчас. Этот результат, полученный несколько лет назад, был признан не всеми физиками.

Проанализировав 153 квазара на небе Южного полушария с помощью телескопа VLT в Чили, ученые обнаружили, что постоянная тонкой структуры миллиарды лет назад была на 1/100 000 больше, чем сейчас.

Эта асимметрия, которая получила название «австралийский диполь», определена с точностью 4 сигма, что означает: есть только один шанс из пятнадцати тысяч, что данный результат является ошибочным. Пространственное изменение α является доказательством того, что электромагнитное взаимодействие нарушает принцип эквивалентности Эйнштейна, согласно которому постоянная тонкой структуры должна быть одной и той же, независимо от того где и когда она измеряется.

Спектроскопист из Университета Амстердама (Нидерланды) Вим Убахс назвал работу австралийских физиков «новостью года в физике» и добавил, что она дает «новый поворот проблеме».

Постоянная тонкой структуры и другие фундаментальные параметры определяются массами и энергиями элементарных частиц, в том числе и тех, которые составляют темную материю. Если эти константы меняются, отношение степени распространенности нормальной материи, темной материи и темной энергии могут быть различными в разных частях Вселенной. Это можно было бы рассматривать в качестве дополнительной анизотропии космического микроволнового фона или асимметрии в скорости расширения Вселенной.

Самый интригующий аспект данного открытия связан с так называемым «антропным принципом», который звучит следующим образом: «Мы видим Вселенную такой, потому что только в такой Вселенной мог возникнуть наблюдатель, человек». То есть из антропного принципа следует, что фундаментальные константы имеют значения, которые позволяют веществу и энергии быть в форме звезд, планет и наших собственных тел. Если α изменяется с течением времени и в пространстве, вполне возможно, что мы обязаны своим существованием специальному месту и времени во Вселенной.