Линейные неравенства, примеры, решения. Как решать линейные неравенства Линейные неравенства как решать

На этом уроке мы начнём изучать неравенства и их свойства. Мы рассмотрим простейшие неравенства - линейные и методы решения систем и совокупностей неравенств.

Мы часто сравниваем те или иные объекты по их числовым характеристикам: товары по их ценам, людей по их росту или возрасту, смартфоны по их диагонали или результаты команд по количеству забитых мячей в матче.

Соотношения вида или называют неравенствами . Ведь в них записано, что числа не равны, а больше или меньше друг друга.

Чтобы сравнивать натуральные числа в десятичной записи, мы упорядочили цифры: , а дальше чаще всего использовали преимущества десятичной записи: начинали сравнивать цифры чисел с крайних левых разрядов до первого несоответствия.

Но этот способ не всегда удобен.

Проще всего сравнивать положительные числа, т.к. они обозначают количества. Действительно, если число можно эквивалентно представить в виде суммы числа с каким-то другим числом , то больше : .

Эквивалентная запись: .

Это определение можно расширить не только на положительные числа, но и на любые два числа: .

Число больше числа (записывается как или ), если число является положительным. Соответственно, если число отрицательно, то .

Например, сравним две дроби: и . Сразу так и не скажешь, какая из них больше. Поэтому обратимся к определению и рассмотрим разность :

Получили отрицательное число, значит, .

На числовой оси большее число всегда будет располагаться правее, меньшее - левее (Рис. 1).

Рис. 1. На числовой оси большее число располагается правее, меньшее - левее

Зачем нужны такие формальные определения? Одно дело - наше понимание, а другое - техника. Если сформулировать строгий алгоритм сравнения чисел, то его можно поручить компьютеру. В этом есть плюс - такой подход избавляет нас от выполнения рутинных операций. Но есть и минус - компьютер точно следует заданному алгоритму. Если компьютеру поставлена задача: поезд должен отправиться со станции в , то, даже если вы окажетесь на платформе в , на этот поезд вы уже не успеете. Поэтому алгоритмы, которые мы задаём компьютеру для выполнения различных вычислений или решения задач, должны быть очень точными и максимально формализованными.

Как и в случае равенств, с неравенствами можно совершать некоторые действия и получать эквивалентные неравенства.

Рассмотрим некоторые из них.

1. Если , то для любого числа . Т.е. можно прибавлять или вычитать одно и то же число к обеим частям неравенства.

У нас уже есть хороший образ - весы. Если одна из чашек весов перевешивала, то, сколько бы мы ни добавляли (или не забирали) к обеим чашам, эта ситуация не изменится (Рис. 2).

Рис. 2. Если чаши весов не уравновешены, то после добавления (убавления) к ним одинакового количества гирь они останутся в таком же неуравновешенном положении

Это действие можно сформулировать по-другому: можно переносить слагаемые из одной части неравенства в другую, изменяя их знак на противоположный: .

2. Если , то и для любого положительного . Т.е. обе части неравенства можно умножать или делить на положительное число и его знак не изменится.

Для понимания этого свойства можно опять воспользоваться аналогией с весами: если, к примеру, левая чаша перевешивала, то, если возьмём две левые чаши и две правые, перевес точно сохранится. Та же ситуация для , чаш и т.д. Даже если возьмём половины каждой из чаш, ситуация тоже не изменится (Рис. 3).

Рис. 3. Если чаши весов не уравновешены, то, после того как забрать половину каждой из них, они останутся в таком же неуравновешенном положении

Если же умножить или разделить обе части неравенства на отрицательное число, то знак неравенства изменится на противоположный. С аналогией для этой операции чуть сложнее - отрицательных количеств нет. Здесь поможет тот факт, что у отрицательных чисел всё наоборот (чем больше модуль числа, тем меньше само число): .

Для чисел разных знаков ещё легче: . Т.е., умножая на , мы должны изменить знак неравенства на противоположный.

Что касается умножения на отрицательное число , то можно выполнить эквивалентную операцию из двух частей: сначала умножить на противоположное положительное число - как мы уже знаем, знак неравенства не изменится: .

Подробнее о сложении и умножении

В первом свойстве мы записали: , но при этом сказали, что можно не только прибавлять, но и вычитать. Почему? Потому что вычитание числа - это то же самое, что и прибавление противоположного числа: . Именно поэтому мы говорим не только о сложении, но и о вычитании.

Аналогично и со вторым свойством: деление - это умножение на обратное число: . Поэтому во втором свойстве мы говорим не только об умножении на число, но и о делении.

3. Для положительных чисел и , если , то .

Это свойство мы хорошо знаем: если мы торт делим на человек, то, чем больше , тем меньше достанется каждому. Например: , поэтому (действительно, четвёртая часть торта явно меньше третьей части того же торта) (Рис. 4).

Рис. 4. Четвёртая часть торта меньше третьей части того же торта

4. Если и , то .

Продолжая аналогию с весами: если на одних весах левая чаша перевешивает правую и на других - такая же ситуация, то, ссыпав отдельно содержимое левых и отдельно содержимое правых чаш, снова получим, что левая чаша перевешивает (Рис. 5).

Рис. 5. Если левые чаши двух весов перевешивают правые, то, ссыпав отдельно содержимое левых и отдельно содержимое правых чаш, получится, что левая чаша перевешивает

5. Для положительных , если и , то .

Здесь аналогия чуть более сложная, но тоже ясная: если левая чаша тяжелее правой и мы возьмём больше левых чаш, чем правых, то точно получим более массивную чашу (Рис. 6).

Рис. 6. Если левая чаша тяжелее правой, то если взять больше левых чаш, чем правых, то получится более массивная чаша

Последние два свойства интуитивно понятны: сложив или умножив числа побольше, мы в результате получим большее число.

Большинство из этих свойств можно строго доказать, используя различные алгебраические аксиомы и определения, но мы не будем этого делать. Для нас процесс доказательства представляет не такой интерес, как непосредственно полученный результат, который мы будем использовать на практике.

До сих пор мы говорили о неравенствах как о способе записи результата сравнения двух чисел: или . Но неравенства можно использовать и для записи различной информации об ограничениях для того или иного объекта. В жизни мы часто используем такие ограничения для описания, например: Россия - это миллионы людей от Калининграда до Владивостока; в лифте можно перевозить не больше кг, а в пакет - класть не больше кг. Ограничения могут быть использованы и для классификации объектов. Например, в зависимости от возраста выделяют различные категории населения - дети, подростки, молодёжь и т.д.

Во всех рассмотренных примерах можно выделить общую идею: некоторая величина ограничена сверху или снизу (или с обеих сторон сразу). Если - грузоподъёмность лифта, а - допустимая масса товаров, которые можно класть в пакет, то описанную выше информацию можно записать так: , и т.д.

В рассмотренных примерах мы были немного неточны. Формулировка «не больше» подразумевает, что в лифте можно перевозить ровно кг, а в пакет можно положить ровно кг. Поэтому правильнее было записать так: или . Естественно, так писать неудобно, поэтому придумали специальный знак: , который читается как «меньше или равно». Такие неравенства называются нестрогими (соответственно, неравенства со знаками - строгими ). Их используют тогда, когда переменная может быть не только строго больше или меньше, но может и равняться граничному значению.

Решением неравенства называются все такие значения переменной, при подстановке которых полученное числовое неравенство будет верным. Рассмотрим, например, неравенство: . Числа - решения этого неравенства, т.к. неравенства являются верными. А вот числа и не являются решениями, поскольку числовые неравенства и не являются верными. Решить неравенство , значит, найти все значения переменных, при которых неравенство будет верным.

Вернемся к неравенству . Его решения можно эквивалентно описать так: все действительные числа, которые больше . Понятно, что таких чисел бесконечное множество, как же в таком случае записать ответ? Обратимся к числовой оси: все числа, большие , расположены справа от . Заштрихуем эту область, тем самым показывая, что это и будет ответ к нашему неравенству. Чтобы показать, что число не является решением, его заключают в пустой круг, или, по-другому, выкалывают точку (Рис. 7).

Рис. 7. На числовой оси показано, что число не является решением (выколотая точка)

Если же неравенство нестрогое и выбранная точка является решением, то её заключают в закрашенный круг.

Рис. 8. На числовой оси показано, что число является решением (закрашенная точка)

Итоговый ответ удобно записывать с помощью промежутков . Промежуток записывается по следующим правилам:

Знак обозначает бесконечность, т.е. показывает, что число может принимать сколь угодно большое () или сколь угодно малое значение ().

Ответ к неравенству мы можем записать так: или просто: . Это означает, что неизвестная принадлежит указанному промежутку, т.е. может принимать любые значения из этого промежутка.

Если обе скобки промежутка круглые, как в нашем примере, то такой промежуток ещё называют интервалом .

Обычно решением неравенства является промежуток, но возможны и другие варианты, например, решением может быть множество, состоящее из одного или несколько чисел. Например, неравенство имеет только одно решение . Ведь при любых других значениях выражение будет положительным, а значит, соответствующее числовое неравенство выполняться не будет.

Неравенство может и не иметь решений. В этом случае ответ записывают как («Переменная принадлежит пустому множеству»). В том, что решением неравенства может быть пустое множество, нет ничего необычного. Ведь в реальной жизни ограничения также могут привести к тому, что не найдется ни одного элемента, удовлетворяющего требованиям. Например, людей с ростом выше метров и при этом весом до кг - точно нет. Множество таких людей не содержит ни одного элемента, или, как говорят, это пустое множество.

Неравенства могут использоваться не только для записи известной информации, но и, как математические модели, для решения различных задач. Пусть у вас есть рублей. Сколько мороженых по рублей вы можете купить на эти деньги?

Другой пример. У нас есть рублей и нам нужно купить мороженое на друзей. По какой цене мы можем выбрать мороженое для покупки?

В жизни каждый из нас умеет решать такие простые задачи в уме, но задача математики - разработать удобный инструмент, с помощью которого можно решить не одну конкретную задачу, а целый класс разных задач независимо от того, о чём идёт речь - количество порций мороженого, машин для перевозки грузов или рулонов обоев для комнаты.

Перепишем условие первой задачи про мороженое на математическом языке: одна порция стоит рублей, количество порций, которое мы можем купить, нам неизвестно, обозначим как . Тогда общая стоимость нашей покупки: рублей. И, по условию, эта сумма не должна превышать рублей. Избавляясь от наименований, получаем математическую модель: .

Аналогично для второй задачи (где - стоимость порции мороженого): . Конструкции , - простейшие примеры неравенств с переменной, или линейных неравенств.

Линейными называются неравенства вида , а также те, которые можно привести к такому виду эквивалентными преобразованиями. Например: ; ; .

Ничего нового в таком определении для нас нет: отличие линейных неравенств от линейных уравнений только в замене знака равенства на знак неравенства. Название также связано с линейной функцией , которая фигурирует в левой части неравенства (Рис. 9).

Рис. 9. График линейной функции

Соответственно, алгоритм решения линейных неравенств почти такой же, как и алгоритм решения линейных уравнений:

Разберём несколько примеров.

Пример 1. Решить линейное неравенство: .

Решение

Перенесём слагаемое с неизвестной из правой части неравенства в левую: .

Делим обе части на отрицательное число , знак неравенства меняется на противоположный: . Сделаем рисунок на оси (Рис. 10).

Рис. 10. Иллюстрация к примеру 1

Левого края у промежутка нет, поэтому пишем . Левый край промежутка , неравенство строгое, поэтому запишем с круглой скобкой. Получаем интервал: .

Пример 2. Решить линейное неравенство:

Решение

Раскроем скобки в левой и правой частях неравенства: .

Приведём подобные слагаемые: .

Сделаем рисунок на оси (Рис. 11).

Рис. 11. Иллюстрация к примеру 2

Получаем промежуток: .

Что делать, если после приведения подобных слагаемых пропала неизвестная

Пример 1. Решить линейное неравенство: .

Решение

Раскроем скобки: .

Перенесём в левую часть все слагаемые с переменной, а в правую - без переменной:

Приведём подобные слагаемые: .

Получаем: .

Неизвестной нет, что же делать? На самом деле снова ничего нового. Вспомните, что мы делали в таких случаях для линейных уравнений: если получилось верное равенство, то решение - любое действительное число, если получилось неверное равенство, то решений у уравнения - нет.

Так же поступаем и здесь. Если получившееся числовое неравенство верно, значит, неизвестная может принимать любые значения: ( - множество всех действительных чисел). Но числовой оси это можно изобразить следующим образом (Рис. 1):

Рис. 1. Неизвестная может принимать любые значения

А с помощью интервала записать так: .

Если же числовое неравенство получилось неверным, то исходное неравенство не имеет решений: .

В нашем случае неравенство неверно, поэтому ответ: .

В различных задачах нам может встретиться не одно, а сразу несколько условий или ограничений. Например, чтобы решить транспортную задачу, нужно учесть количество машин, время в пути, грузоподъёмность и прочее. Каждое из условий на математическом языке будет описываться своим неравенством. При этом возможны два варианта:

1. Все условия выполняются одновременно. Такой случай описывается системой неравенств . При записи они объединяются фигурной скобкой (можно прочитать её как союз И): .

2. Должно выполняться хотя бы одно из условий. Это описывается совокупностью неравенств (можно прочитать её как союз ИЛИ): .

Системы и совокупности неравенств могут содержать несколько переменных, их количество и сложность могут быть любыми. Но мы будем подробно изучать самый простой случай: системы и совокупности неравенств с одной переменной.

Как их решать? Нужно по отдельности решить каждое из неравенств, а дальше всё зависит от того, система перед нами или совокупность. Если это система , должны выполняться все условия. Если Шерлок Холмс определил, что преступник был блондином и имел размер ноги, то среди подозреваемых должны остаться только блондины с размером ноги. Т.е. нам подойдут только те значения, которые соответствуют и одному, и второму, и, если есть, третьему, и другим условиям. Они находятся на пересечении всех полученных множеств. Если использовать числовую ось, то - на пересечении всех заштрихованных частей оси (Рис. 12).

Рис. 12. Решение системы - пересечение всех заштрихованных частей оси

Если это совокупность , то нам подойдут все значения, которые являются решениями хотя бы одного неравенства. Если Шерлок Холмс определил, что преступником мог быть или блондин, или человек с размером ноги, то среди подозреваемых должны оказаться как все блондины (независимо от размера обуви), так и все люди с размером ноги (независимо от цвета волос). Т.е. решением совокупности неравенств будет объединение множеств их решений. Если использовать числовую ось, то - объединение всех заштрихованных частей оси (Рис. 13).

Рис. 13. Решение совокупности - объединение всех заштрихованных частей оси

Подробнее о пересечении и объединении вы можете узнать ниже.

Пересечение и объединение множеств

Термины «пересечение» и «объединение» относятся к понятию множества. Множество - набор элементов, отвечающим некоторым критериям. Примеров множеств вы можете придумать сколько угодно: множество одноклассников, множество футболистов сборной России, множество машин в соседнем дворе и т.д.

Вы уже знакомы с числовыми множествами: множеством натуральных чисел , целых , рациональных , действительных чисел . Есть и пустые множества , они не содержат элементов. Решения неравенств - это тоже множества чисел.

Пересечением двух множеств и называется такое множество , которое содержит все элементы, принадлежащие одновременно и множеству , и множеству (Рис. 1).

Рис. 1. Пересечение множеств и

Например, пересечение множества всех женщин и множества президентов всех стран будут все женщины-президенты.

Объединением двух множеств и называется такое множество , которое содержит все элементы, которые принадлежат хотя бы одному из множеств или (Рис. 2).

Рис. 2. Объединение множеств и

Например, объединением множества футболистов «Зенита» в сборной России и футболистов «Спартака» в сборной России будут все футболисты «Зенита» и «Спартака», которые играют за сборную. Кстати, пересечение этих множеств будет пустым множеством (игрок не может одновременно играть за два клуба).

С объединением и пересечением числовых множеств вы уже сталкивались, когда искали НОК и НОД двух чисел. Если и - это множества, состоящие из простых множителей, полученных при разложении чисел, то НОД получается из пересечения этих множеств, а НОК - из объединения. Пример:

Пример 3. Решить систему неравенств: .

Решение

Решим по отдельности неравенства. В первом неравенстве перенесём слагаемое без переменной в правую часть с противоположным знаком: .

Приведём подобные слагаемые: .

Разделим обе части неравенства на положительное число , знак неравенства не меняется:

Во втором неравенстве перенесём в левую часть слагаемое с переменной, а в правую - без переменной: . Приведём подобные слагаемые: .

Разделим обе части неравенства на положительное число , знак неравенства не меняется:

Изобразим решения отдельных неравенств на числовой оси. По условию, у нас система неравенств, поэтому ищем пересечение решений (Рис. 14).

Рис. 14. Иллюстрация к примеру 3

По сути первая часть решения систем и совокупностей неравенств с одной переменной сводится к решению отдельных линейных неравенств. В этом вы можете попрактиковаться самостоятельно (например, с помощью наших тестов и тренажёров), а мы подробнее остановимся на нахождении объединений и пересечений множеств решений.

Пример 4. Пусть было получено следующее решение отдельных уравнений системы:

Решение

Заштрихуем на оси область, соответствующую решению первого уравнения (Рис. 15); решение второго уравнения - пустое множество, ему на оси ничего не соответствует.

Рис. 15. Иллюстрация к примеру 4

Это система, поэтому нужно искать пересечение решений. Но их нет. Значит, ответом к системе будем также пустое множество: .

Пример 5. Еще пример: .

Решение

Отличие в том, что это уже совокупность неравенств. Поэтому нужно выбрать область на оси, которая соответствует решению хотя бы одного из уравнений. Получим ответ: .

После получения начальных сведений о неравенствах с переменными, переходим к вопросу их решения. Разберем решение линейных неравенств с одной переменной и все методы для их разрешения с алгоритмами и примерами. Будут рассмотрены только линейные уравнения с одной переменной.

Что такое линейное неравенство?

В начале необходимо определить линейное уравнение и выяснить его стандартный вид и чем оно будет отличаться от других. Из школьного курса имеем, что у неравенств нет принципиального различия, поэтому необходимо использовать несколько определений.

Определение 1

Линейное неравенство с одной переменной x – это неравенство вида a · x + b > 0 , когда вместо > используется любой знак неравенства < , ≤ , ≥ , а и b являются действительными числами, где a ≠ 0 .

Определение 2

Неравенства a · x < c или a · x > c , с x являющимся переменной, а a и c некоторыми числами, называют линейными неравенствами с одной переменной .

Так как ничего не сказано за то, может ли коэффициент быть равным 0 , тогда строгое неравенство вида 0 · x > c и 0 · x < c может быть записано в виде нестрогого, а именно, a · x ≤ c , a · x ≥ c . Такое уравнение считается линейным.

Их различия заключаются в:

  • форме записи a · x + b > 0 в первом, и a · x > c – во втором;
  • допустимости равенства нулю коэффициента a , a ≠ 0 - в первом, и a = 0 - во втором.

Считается, что неравенства a · x + b > 0 и a · x > c равносильные, потому как получены переносом слагаемого из одной части в другую. Решение неравенства 0 · x + 5 > 0 приведет к тому, что его необходимо будет решить, причем случай а = 0 не подойдет.

Определение 3

Считается, что линейными неравенствами в одной переменной x считаются неравенства вида a · x + b < 0 , a · x + b > 0 , a · x + b ≤ 0 и a · x + b ≥ 0 , где a и b являются действительными числами. Вместо x может быть обычное число.

Исходя из правила, имеем, что 4 · x − 1 > 0 , 0 · z + 2 , 3 ≤ 0 , - 2 3 · x - 2 < 0 являются примерами линейных неравенств. А неравенства такого плана, как 5 · x > 7 , − 0 , 5 · y ≤ − 1 , 2 называют сводящимися к линейному.

Как решить линейное неравенство

Основным способом решения таких неравенств сводится к равносильным преобразованиям для того, чтобы найти элементарные неравенства x < p (≤ , > , ≥) , p являющееся некоторым числом, при a ≠ 0 , а вида a < p (≤ , > , ≥) при а = 0 .

Для решения неравенства с одной переменной, можно применять метода интервалов или изображать графически. Любой из них можно применять обособленно.

Используя равносильные преобразования

Чтобы решить линейное неравенство вида a · x + b < 0 (≤ , > , ≥) , необходимо применить равносильные преобразования неравенства. Коэффициент может быть равен или не равен нулю. Рассмотрим оба случая. Для выяснения необходимо придерживаться схемы, состоящей из 3 пунктов: суть процесса, алгоритм, само решение.

Определение 4

Алгоритм решение линейного неравенства a · x + b < 0 (≤ , > , ≥) при a ≠ 0

  • число b будет перенесено в правую часть неравенства с противоположным знаком, что позволит прийти к равносильному a · x < − b (≤ , > , ≥) ;
  • будет производиться деление обеих частей неравенства на число не равное 0 . Причем, когда a является положительным, то знак остается, когда a – отрицательное, меняется на противоположный.

Рассмотрим применение данного алгоритма на решении примеров.

Пример 1

Решить неравенство вида 3 · x + 12 ≤ 0 .

Решение

Данное линейное неравенство имеет a = 3 и b = 12 . Значит, коэффициент a при x не равен нулю. Применим выше сказанные алгоритмы, решим.

Необходимо перенести слагаемое 12 в другую часть неравенства с изменением знака перед ним. Тогда получаем неравенство вида 3 · x ≤ − 12 . Необходимо произвести деление обеих частей на 3 . Знак не поменяется, так как 3 является положительным числом. Получаем, что (3 · x) : 3 ≤ (− 12) : 3 , что даст результат x ≤ − 4 .

Неравенство вида x ≤ − 4 является равносильным. То есть решение для 3 · x + 12 ≤ 0 – это любое действительное число, которое меньше или равно 4 . Ответ записывается в виде неравенства x ≤ − 4 , или числового промежутка вида (− ∞ , − 4 ] .

Весь выше прописанный алгоритм записывается так:

3 · x + 12 ≤ 0 ; 3 · x ≤ − 12 ; x ≤ − 4 .

Ответ: x ≤ − 4 или (− ∞ , − 4 ] .

Пример 2

Указать все имеющиеся решения неравенства − 2 , 7 · z > 0 .

Решение

Из условия видим, что коэффициент a при z равняется - 2 , 7 , а b в явном виде отсутствует или равняется нулю. Первый шаг алгоритма можно не использовать, а сразу переходить ко второму.

Производим деление обеих частей уравнения на число - 2 , 7 . Так как число отрицательное, необходимо поменять знак неравенства на противоположный. То есть получаем, что (− 2 , 7 · z) : (− 2 , 7) < 0: (− 2 , 7) , и дальше z < 0 .

Весь алгоритм запишем в краткой форме:

− 2 , 7 · z > 0 ; z < 0 .

Ответ: z < 0 или (− ∞ , 0) .

Пример 3

Решить неравенство - 5 · x - 15 22 ≤ 0 .

Решение

По условию видим, что необходимо решить неравенство с коэффициентом a при переменной x , которое равняется - 5 , с коэффициентом b , которому соответствует дробь - 15 22 . Решать неравенство необходимо, следуя алгоритму, то есть: перенести - 15 22 в другую часть с противоположным знаком, разделить обе части на - 5 , изменить знак неравенства:

5 · x ≤ 15 22 ; - 5 · x: - 5 ≥ 15 22: - 5 x ≥ - 3 22

При последнем переходе для правой части используется правило деления числе с разными знаками 15 22: - 5 = - 15 22: 5 , после чего выполняем деление обыкновенной дроби на натурально число - 15 22: 5 = - 15 22 · 1 5 = - 15 · 1 22 · 5 = - 3 22 .

Ответ: x ≥ - 3 22 и [ - 3 22 + ∞) .

Рассмотрим случай, когда а = 0 . Линейное выражение вида a · x + b < 0 является неравенством 0 · x + b < 0 , где на рассмотрение берется неравенство вида b < 0 , после чего выясняется, оно верное или нет.

Все основывается на определении решения неравенства. При любом значении x получаем числовое неравенство вида b < 0 , потому что при подстановке любого t вместо переменной x , тогда получаем 0 · t + b < 0 , где b < 0 . В случае, если оно верно, то для его решения подходит любое значение. Когда b < 0 неверно, тогда линейное уравнение не имеет решений, потому как не имеется ни одного значения переменной, которое привело бы верному числовому равенству.

Все суждения рассмотрим в виде алгоритма решения линейных неравенств 0 · x + b < 0 (≤ , > , ≥) :

Определение 5

Числовое неравенство вида b < 0 (≤ , > , ≥) верно, тогда исходное неравенство имеет решение при любом значении, а неверно тогда, когда исходное неравенство не имеет решений.

Пример 4

Решить неравенство 0 · x + 7 > 0 .

Решение

Данное линейное неравенство 0 · x + 7 > 0 может принимать любое значение x . Тогда получим неравенство вида 7 > 0 . Последнее неравенство считается верным, значит любое число может быть его решением.

Ответ : промежуток (− ∞ , + ∞) .

Пример 5

Найти решение неравенства 0 · x − 12 , 7 ≥ 0 .

Решение

При подстановке переменной x любого числа получим, что неравенство получит вид − 12 , 7 ≥ 0 . Оно является неверным. То есть 0 · x − 12 , 7 ≥ 0 не имеет решений.

Ответ: решений нет.

Рассмотрим решение линейных неравенств, где оба коэффициента равняется нулю.

Пример 6

Определить не имеющее решение неравенство из 0 · x + 0 > 0 и 0 · x + 0 ≥ 0 .

Решение

При подстановке любого числа вместо x получим два неравенства вида 0 > 0 и 0 ≥ 0 . Первое является неверным. Значит, 0 · x + 0 > 0 не имеет решений, а 0 · x + 0 ≥ 0 имеет бесконечное количество решений, то есть любое число.

Ответ : неравенство 0 · x + 0 > 0 не имеет решений, а 0 · x + 0 ≥ 0 имеет решения.

Данный метод рассматривается в школьном курсе математики. Метод интервалов способен разрешать различные виды неравенств, также и линейные.

Метод интервалов применяется для линейных неравенств при значении коэффициента x не равному 0 . Иначе придется вычислять при помощи другого метода.

Определение 6

Метод интервалов – это:

  • введение функции y = a · x + b ;
  • поиск нулей для разбивания области определения на промежутки;
  • определение знаков для понятия их на промежутках.

Соберем алгоритм для решения линейных уравнений a · x + b < 0 (≤ , > , ≥) при a ≠ 0 с помощью метода интервалов:

  • нахождение нулей функции y = a · x + b , чтобы решить уравнение вида a · x + b = 0 . Если a ≠ 0 , тогда решением будет единственный корень, который примет обозначение х 0 ;
  • построение координатной прямой с изображением точки с координатой х 0 , при строгом неравенстве точка обозначается выколотой, при нестрогом – закрашенной;
  • определение знаков функции y = a · x + b на промежутках, для этого необходимо находить значения функции в точках на промежутке;
  • решение неравенства со знаками > или ≥ на координатной прямой добавляется штриховка над положительным промежутком, < или ≤ над отрицательным промежутком.

Рассмотрим несколько примеров решения линейного неравенства при помощи метода интервалов.

Пример 6

Решить неравенство − 3 · x + 12 > 0 .

Решение

Из алгоритма следует, что для начала нужно найти корень уравнения − 3 · x + 12 = 0 . Получаем, что − 3 · x = − 12 , x = 4 . Необходимо изобразить координатную прямую, где отмечаем точку 4 . Она будет выколотой, так как неравенство является строгим. Рассмотрим чертеж, приведенный ниже.

Нужно определить знаки на промежутках. Чтобы определить его на промежутке (− ∞ , 4) , необходимо произвести вычисление функции y = − 3 · x + 12 при х = 3 . Отсюда получим, что − 3 · 3 + 12 = 3 > 0 . Знак на промежутке является положительным.

Определяем знак из промежутка (4 , + ∞) , тогда подставляем значение х = 5 . Имеем, что − 3 · 5 + 12 = − 3 < 0 . Знак на промежутке является отрицательным. Изобразим на числовой прямой, приведенной ниже.

Мы выполняем решение неравенства со знаком > , причем штриховка выполняется над положительным промежутком. Рассмотрим чертеж, приведенный ниже.

Из чертежа видно, что искомое решение имеет вид (− ∞ , 4) или x < 4 .

Ответ : (− ∞ , 4) или x < 4 .

Чтобы понять, как изображать графически, необходимо рассмотреть на примере 4 линейных неравенства: 0 , 5 · x − 1 < 0 , 0 , 5 · x − 1 ≤ 0 , 0 , 5 · x − 1 > 0 и 0 , 5 · x − 1 ≥ 0 . Их решениями будут значения x < 2 , x ≤ 2 , x > 2 и x ≥ 2 . Для этого изобразим график линейной функции y = 0 , 5 · x − 1 , приведенный ниже.

Видно, что

Определение 7

  • решением неравенства 0 , 5 · x − 1 < 0 считается промежуток, где график функции y = 0 , 5 · x − 1 располагается ниже О х;
  • решением 0 , 5 · x − 1 ≤ 0 считается промежуток, где функция y = 0 , 5 · x − 1 ниже О х или совпадает;
  • решением 0 , 5 · x − 1 > 0 считается промежуток, гре функция располагается выше О х;
  • решением 0 , 5 · x − 1 ≥ 0 считается промежуток, где график выше О х или совпадает.

Смысл графического решения неравенств заключается в нахождении промежутков, которое необходимо изображать на графике. В данном случае получаем, что левая часть имеет y = a · x + b , а правая – y = 0 , причем совпадает с О х.

Определение 8

Построение графика функции y = a · x + b производится:

  • во время решения неравенства a · x + b < 0 определяется промежуток, где график изображен ниже О х;
  • во время решения неравенства a · x + b ≤ 0 определяется промежуток, где график изображается ниже оси О х или совпадает;
  • во время решения неравенства a · x + b > 0 производится определение промежутка, где график изображается выше О х;
  • во время решения неравенства a · x + b ≥ 0 производится определение промежутка, где график находится выше О х или совпадает.

Пример 7

Решить неравенство - 5 · x - 3 > 0 при помощи графика.

Решение

Необходимо построить график линейной функции - 5 · x - 3 > 0 . Данная прямая является убывающей, потому как коэффициент при x является отрицательным. Для определения координат точки его пересечения с О х - 5 · x - 3 > 0 получим значение - 3 5 . Изобразим графически.

Решение неравенства со знаком > , тогда необходимо обратить внимание на промежуток выше О х. Выделим красным цветом необходимую часть плоскости и получим, что

Необходимый промежуток является частью О х красного цвета. Значит, открытый числовой луч - ∞ , - 3 5 будет решением неравенства. Если бы по условию имели нестрогое неравенство, тогда значение точки - 3 5 также являлось бы решением неравенства. И совпадало бы с О х.

Ответ : - ∞ , - 3 5 или x < - 3 5 .

Графический способ решения используется, когда левая часть будет отвечать функции y = 0 · x + b , то есть y = b . Тогда прямая будет параллельна О х или совпадающей при b = 0 . Эти случаю показывают, что неравенство может не иметь решений, либо решением может быть любое число.

Пример 8

Определить из неравенств 0 · x + 7 < = 0 , 0 · x + 0 ≥ 0 то, которое имеет хотя бы одно решение.

Решение

Представление y = 0 · x + 7 является y = 7 , тогда будет задана координатная плоскость с прямой, параллельной О х и находящейся выше О х. Значит, 0 · x + 7 < = 0 решений не имеет, потому как нет промежутков.

График функции y = 0 · x + 0 , считается y = 0 , то есть прямая совпадает с О х. Значит, неравенство 0 · x + 0 ≥ 0 имеет множество решений.

Ответ : второе неравенство имеет решение при любом значении x .

Неравенства, сводящиеся к линейным

Решение неравенств можно свести к решению линейного уравнения, которые называют неравенствами, сводящимися к линейным.

Данные неравенства были рассмотрены в школьном курсе, так как они являлись частным случаем решения неравенств, что приводило к раскрытию скобок и приведению подобных слагаемых. Для примера рассмотрим, что 5 − 2 · x > 0 , 7 · (x − 1) + 3 ≤ 4 · x − 2 + x , x - 3 5 - 2 · x + 1 > 2 7 · x .

Неравенства, приведенные выше, всегда приводятся к виду линейного уравнения. После чего раскрываются скобки и приводятся подобные слагаемые, переносятся из разных частей, меняя знак на противоположный.

При сведении неравенства 5 − 2 · x > 0 к линейному, представляем его таким образом, чтобы оно имело вид − 2 · x + 5 > 0 , а для приведения второго получаем, что 7 · (x − 1) + 3 ≤ 4 · x − 2 + x . Необходимо раскрыть скобки, привести подобные слагаемые, перенести все слагаемые в левую часть и привести подобные слагаемые. Это выглядит таким образом:

7 · x − 7 + 3 ≤ 4 · x − 2 + x 7 · x − 4 ≤ 5 · x − 2 7 · x − 4 − 5 · x + 2 ≤ 0 2 · x − 2 ≤ 0

Это приводит решение к линейному неравенству.

Эти неравенства рассматриваются как линейные, так как имеют такой же принцип решения, после чего возможно приведение их к элементарным неравенствам.

Для решения такого вида неравенства такого вида необходимо свести его к линейному. Это следует делать таким образом:

Определение 9

  • раскрыть скобки;
  • слева собрать переменные, а справа числа;
  • привести подобные слагаемые;
  • разделить обе части на коэффициент при x .

Пример 9

Решить неравенство 5 · (x + 3) + x ≤ 6 · (x − 3) + 1 .

Решение

Производим раскрытие скобок, тогда получим неравенство вида 5 · x + 15 + x ≤ 6 · x − 18 + 1 . После приведения подобных слагаемых имеем, что 6 · x + 15 ≤ 6 · x − 17 . После перенесения слагаемых с левой в правую, получим, что 6 · x + 15 − 6 · x + 17 ≤ 0 . Отсюда имеет неравенство вида 32 ≤ 0 из полученного при вычислении 0 · x + 32 ≤ 0 . Видно, что неравенство неверное, значит, неравенство, данное по условию, не имеет решений.

Ответ : нет решений.

Стоит отметить, что имеется множество неравенств другого вида, которые могут сводится к линейному или неравенству вида, показанного выше. Например, 5 2 · x − 1 ≥ 1 является показательным уравнением, которое сводится к решению линейного вида 2 · x − 1 ≥ 0 . Эти случаи будут рассмотрены при решении неравенств данного вида.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Теория:

При решении неравенств используют следующие правила:

1. Любой член неравенства можно перенести из одной части
неравенства в другую с противоположным знаком, при этом знак неравенства не меняется.

2. Обе части неравенства можно умножить или разделить на одно
и то же положительное число, не изменив при этом знак неравенства.

3. Обе части неравенства можно умножить или разделить на одно
и то же отрицательное число, изменив при этом знак неравенства на
противоположный.

Решить неравенство − 8 x + 11 < − 3 x − 4
Решение.

1. Перенесём член − 3 x в левую часть неравенства, а член 11 — в правую часть неравенства, при этом поменяем знаки на противоположные у − 3 x и у 11 .
Тогда получим

− 8 x + 3 x < − 4 − 11

− 5 x < − 15

2. Разделим обе части неравенства − 5 x < − 15 на отрицательное число − 5 , при этом знак неравенства < , поменяется на > , т.е. мы перейдём к неравенству противоположного смысла.
Получим:

− 5 x < − 15 | : (− 5 )

x > − 15 : (− 5 )

x > 3

x > 3 — решение заданного неравенства.

Обрати внимание!

Для записи решения можно использовать два варианта: x > 3 или в виде числового промежутка.

Отметим множество решений неравенства на числовой прямой и запишем ответ в виде числового промежутка.

x ∈ (3 ; + ∞ )

Ответ: x > 3 или x ∈ (3 ; + ∞ )

Алгебраические неравенства.

Квадратные неравенства. Рациональные неравенства высших степеней.

Методы решения неравенств зависят в основном от того, к какому классу относятся функции, составляющие неравенство.

  1. I . Квадратные неравенства , то есть неравенства вида

ax 2 + bx + c > 0 (< 0), a ≠ 0.

Чтобы решить неравенство можно:

  1. Квадратный трехчлен разложить на множители, то есть неравенство записать в виде

a (x - x 1) (x - x 2) > 0 (< 0).

  1. Корни многочлена нанести на числовую ось. Корни разбивают множество действительных чисел на промежутки, в каждом из которых соответствующая квадратичная функция будет знакопостоянной.
  2. Определить знак a (x - x 1) (x - x 2) в каждом промежутке и записать ответ.

Если квадратный трехчлен не имеет корней, то при D<0 и a>0 квадратный трехчлен при любом x положителен.

  • Решить неравенство. x 2 + x - 6 > 0.

Разложим квадратный трехчлен на множители (x + 3) (x - 2) > 0

Ответ: x (-∞; -3) (2; +∞).

2) (x - 6) 2 > 0

Это неравенство верно при любом х, кроме х = 6.

Ответ: (-∞; 6) (6; +∞).

3) x² + 4x + 15 < 0.

Здесь D < 0, a = 1 > 0. Квадратный трехчлен положителен при всех х.

Ответ: x Î Ø.

Решить неравенства:

  1. 1 + х - 2х² < 0. Ответ:
  2. 3х² - 12х + 12 ≤ 0. Ответ:
  3. 3х² - 7х + 5 ≤ 0. Ответ:
  4. 2х² - 12х + 18 > 0. Ответ:
  5. При каких значениях a неравенство

x² - ax > выполняется для любых х? Ответ:

  1. II . Рациональные неравенства высших степеней, то есть неравенства вида

a n x n + a n-1 x n-1 + … + a 1 x + a 0 > 0 (<0), n>2.

Многочлен высшей степени следует разложить на множители, то есть неравенство записать в виде

a n (x - x 1) (x - x 2) ·…· (x - x n) > 0 (<0).

Отметить на числовой оси точки, в которых многочлен обращается в нуль.

Определить знаки многочлена на каждом промежутке.

1) Решить неравенство x 4 - 6x 3 + 11x 2 - 6x < 0.

x 4 - 6x 3 + 11x 2 - 6x = x (x 3 - 6x 2 + 11x -6) = x (x 3 - x 2 - 5x 2 + 5x +6x - 6) =x (x - 1)(x 2 -5x + 6) =

x (x - 1) (x - 2) (x - 3). Итак, x (x - 1) (x - 2) (x - 3)<0

Ответ: (0; 1) (2; 3).

2) Решить неравенство (x -1) 5 (x + 2) (x - ½) 7 (2x + 1) 4 <0.

Отметим на числовой оси точки, в которых многочлен обращается в нуль. Это х = 1, х = -2, х = ½, х = - ½.

В точке х = - ½ смены знака не происходит, потому что двучлен (2х + 1) возводится в четную степень, то есть выражение (2x + 1) 4 не меняет знак при переходе через точку х = - ½.

Ответ: (-∞; -2) (½; 1).

3) Решить неравенство: х 2 (х + 2) (х - 3) ≥ 0.

Данное неравенство равносильно следующей совокупности

Решением (1) является х (-∞; -2) (3; +∞). Решением (2) являются х = 0, х = -2, х = 3. Объединяя полученные решения, получаем х Î (-∞; -2] {0} {0} }