Конспект и презентация по алгебре на тему "Степень с иррациональным показателем"(11 класс)


В этой статье мы разберемся, что такое степень числа . Здесь мы дадим определения степени числа, при этом подробно рассмотрим все возможные показатели степени, начиная с натурального показателя, заканчивая иррациональным. В материале Вы найдете массу примеров степеней, покрывающих все возникающие тонкости.

Навигация по странице.

Степень с натуральным показателем, квадрат числа, куб числа

Для начала дадим . Забегая вперед, скажем, что определение степени числа a с натуральным показателем n дается для a , которое будем называть основанием степени , и n , которое будем называть показателем степени . Также отметим, что степень с натуральным показателем определяется через произведение, так что для понимания нижеизложенного материала нужно иметь представление об умножении чисел.

Определение.

Степень числа a с натуральным показателем n - это выражение вида a n , значение которого равно произведению n множителей, каждый из которых равен a , то есть, .
В частности, степенью числа a с показателем 1 называется само число a , то есть, a 1 =a .

Сразу стоит сказать о правилах чтения степеней. Универсальный способ чтения записи a n таков: «a в степени n ». В некоторых случаях также допустимы такие варианты: «a в n -ой степени» и «n -ая степень числа a ». Для примера возьмем степень 8 12 , это «восемь в степени двенадцать», или «восемь в двенадцатой степени», или «двенадцатая степень восьми».

Вторая степень числа, а также третья степень числа имеют свои названия. Вторую степень числа называют квадратом числа , например, 7 2 читается как «семь в квадрате» или «квадрат числа семь». Третья степень числа называется кубом числа , к примеру, 5 3 можно прочитать как «пять в кубе» или сказать «куб числа 5 ».

Пришло время привести примеры степеней с натуральными показателями . Начнем со степени 5 7 , здесь 5 – основание степени, а 7 – показатель степени. Приведем еще пример: 4,32 является основанием, а натуральное число 9 – показателем степени (4,32) 9 .

Обратите внимание, что в последнем примере основание степени 4,32 записано в скобках: чтобы избежать разночтений мы будем брать в скобки все основания степени, которые отличны от натуральных чисел. В качестве примера приведем следующие степени с натуральными показателями , их основания не являются натуральными числами, поэтому они записаны в скобках. Ну и для полной ясности в этом моменте покажем разницу, заключенную в записях вида (−2) 3 и −2 3 . Выражение (−2) 3 – это степень −2 с натуральным показателем 3, а выражение −2 3 (его можно записать как −(2 3) ) соответствует числу, значению степени 2 3 .

Заметим, что встречается обозначение степени числа a с показателем n вида a^n . При этом, если n – многозначное натуральное число, то показатель степени берется в скобки. Например, 4^9 – это другая запись степени 4 9 . А вот еще примеры записи степеней при помощи символа «^ »: 14^(21) , (−2,1)^(155) . В дальнейшем мы преимущественно будем пользоваться обозначением степени вида a n .

Одной из задач, обратной возведению в степень с натуральным показателем, является задача нахождения основания степени по известному значению степени и известному показателю. Эта задача приводит к .

Известно, что множество рациональных чисел состоит из целых и дробных чисел, причем каждое дробное число может быть представлено в виде положительной или отрицательной обыкновенной дроби. Степень с целым показателем мы определили в предыдущем пункте, поэтому, чтобы закончить определение степени с рациональным показателем, нужно придать смысл степени числа a с дробным показателем m/n , где m – целое число, а n - натуральное. Сделаем это.

Рассмотрим степень с дробным показателем вида . Чтобы сохраняло силу свойство степени в степени, должно выполняться равенство . Если учесть полученное равенство и то, как мы определили , то логично принять при условии, что при данных m , n и a выражение имеет смысл.

Несложно проверить, что при справедливы все свойства степени с целым показателем (это сделано в разделе свойства степени с рациональным показателем).

Приведенные рассуждения позволяют сделать следующий вывод : если при данных m , n и a выражение имеет смысл, то степенью числа a с дробным показателем m/n называют корень n -ой степени из a в степени m .

Это утверждение вплотную подводит нас к определению степени с дробным показателем. Остается лишь расписать, при каких m , n и a имеет смысл выражение . В зависимости от ограничений, накладываемых на m , n и a существуют два основных подхода.

    Проще всего наложить ограничение на a , приняв a≥0 для положительных m и a>0 для отрицательных m (так как при m≤0 степень 0 m не определена). Тогда мы получаем следующее определение степени с дробным показателем.

    Определение.

    Степенью положительного числа a с дробным показателем m/n , где m – целое, а n – натуральное число, называется корень n -ой из числа a в степени m , то есть, .

    Также определяется дробная степень нуля с той лишь оговоркой, что показатель должен быть положительным.

    Определение.

    Степень нуля с дробным положительным показателем m/n , где m – целое положительное, а n – натуральное число, определяется как .
    При степень не определяется, то есть, степень числа нуль с дробным отрицательным показателем не имеет смысла.

    Следует отметить, что при таком определении степени с дробным показателем существует один нюанс: при некоторых отрицательных a и некоторых m и n выражение имеет смысл, а мы отбросили эти случаи, введя условие a≥0 . Например, имеют смысл записи или , а данное выше определение заставляет нас говорить, что степени с дробным показателем вида не имеют смысла, так как основание не должно быть отрицательным.

    Другой подход к определению степени с дробным показателем m/n заключается в раздельном рассмотрении четных и нечетных показателях корня . Этот подход требует дополнительного условия: степень числа a , показателем которой является , считается степенью числа a , показателем которой является соответствующая несократимая дробь (важность этого условия поясним чуть ниже). То есть, если m/n – несократимая дробь, то для любого натурального числа k степень предварительно заменяется на .

    При четных n и положительных m выражение имеет смысл при любом неотрицательном a (корень четной степени из отрицательного числа не имеет смысла), при отрицательных m число a должно быть еще отличным от нуля (иначе будет деление на нуль). А при нечетных n и положительных m число a может быть любым (корень нечетной степени определен для любого действительного числа), а при отрицательных m число a должно быть отличным от нуля (чтобы не было деления на нуль).

    Приведенные рассуждения приводят нас к такому определению степени с дробным показателем.

    Определение.

    Пусть m/n – несократимая дробь, m – целое, а n – натуральное число. Для любой сократимой обыкновенной дроби степень заменяется на . Степень числа a с несократимым дробным показателем m/n - это для

    Поясним, зачем степень с сократимым дробным показателем предварительно заменяется степенью с несократимым показателем. Если бы мы просто определили степень как , и не оговорились о несократимости дроби m/n , то мы бы столкнулись с ситуациями, подобными следующей: так как 6/10=3/5 , то должно выполняться равенство , но , а .


Информационный бум В биологии - колонии микробов в чашке Петри Кролики в Австралии Цепные реакции – в химии В физике - радиоактивный распад, изменение атмосферного давления с изменением высоты, охлаждение тела.В физике - радиоактивный распад, изменение атмосферного давления с изменением высоты, охлаждение тела. Выбрасывание адреналина в кровь и его разрушение А так же утверждают, что количество информации удваивается каждые 10 лет.А так же утверждают, что количество информации удваивается каждые 10 лет.


(3/5) -1 a 1 3 1/2 (4/9) 0 a *81 (1/2) -3 a -n 36 1/2* 8 1/ /3 2 -3,5


Выражение 2 х 2 2 =4 2 5 = = =1/2 4 =1/16 2 4/3 = 32 4 = ,5 = 1/2 3,5 =1/2 7= 1/(8 2)= 2/16 2)=






3=1, … 1; 1,7 1,73; 1,732;1,73205; 1, ;… последовательность возрастает 2 1 ; 2 1,7 ; 2 1,73 ;2 1,732 ; 2 1,73205 ; 2 1, ;… последовательность возрастает Ограниченная, а значит сходится к одному пределу - значение 2 3


Можно определить π 0












10 10 18 Свойства функции у = а х п \ п а >10 10 10 10 10 title="Свойства функции у = а х п \ п а >10 21


Количество информации удваивается каждые 10 лет По оси Ох – по закону арифметической прогрессии:1,2,3,4…. По оси Оу – по закону геометрической прогрессии: 2 1,2 2,2 3,2 4 … График показательной функции, его называют экспонентой (от латинского exponere - выставлять напоказ)


После того как определена степень числа , логично поговорить про свойства степени . В этой статье мы дадим основные свойства степени числа, при этом затронем все возможные показатели степени. Здесь же мы приведем доказательства всех свойств степени, а также покажем, как применяются эти свойства при решении примеров.

Навигация по странице.

Свойства степеней с натуральными показателями

По определению степени с натуральным показателем степень a n представляет собой произведение n множителей, каждый из которых равен a . Отталкиваясь от этого определения, а также используя свойства умножения действительных чисел , можно получить и обосновать следующие свойства степени с натуральным показателем :

  1. основное свойство степени a m ·a n =a m+n , его обобщение ;
  2. свойство частного степеней с одинаковыми основаниями a m:a n =a m−n ;
  3. свойство степени произведения (a·b) n =a n ·b n , его расширение ;
  4. свойство частного в натуральной степени (a:b) n =a n:b n ;
  5. возведение степени в степень (a m) n =a m·n , его обобщение (((a n 1) n 2) …) n k =a n 1 ·n 2 ·…·n k ;
  6. сравнение степени с нулем:
    • если a>0 , то a n >0 для любого натурального n ;
    • если a=0 , то a n =0 ;
    • если a<0 и показатель степени является четным числом 2·m , то a 2·m >0 , если a<0 и показатель степени есть нечетное число 2·m−1 , то a 2·m−1 <0 ;
  7. если a и b – положительные числа и a
  8. если m и n такие натуральные числа, что m>n , то при 00 справедливо неравенство a m >a n .

Сразу заметим, что все записанные равенства являются тождественными при соблюдении указанных условий, и их правые и левые части можно поменять местами. Например, основное свойство дроби a m ·a n =a m+n при упрощении выражений часто применяется в виде a m+n =a m ·a n .

Теперь рассмотрим каждое из них подробно.

    Начнем со свойства произведения двух степеней с одинаковыми основаниями, которое называют основным свойством степени : для любого действительного числа a и любых натуральных чисел m и n справедливо равенство a m ·a n =a m+n .

    Докажем основное свойство степени. По определению степени с натуральным показателем произведение степеней с одинаковыми основаниями вида a m ·a n можно записать как произведение . В силу свойств умножения полученное выражение можно записать как , а это произведение есть степень числа a с натуральным показателем m+n , то есть, a m+n . На этом доказательство завершено.

    Приведем пример, подтверждающий основное свойство степени. Возьмем степени с одинаковыми основаниями 2 и натуральными степенями 2 и 3 , по основному свойству степени можно записать равенство 2 2 ·2 3 =2 2+3 =2 5 . Проверим его справедливость, для чего вычислим значения выражений 2 2 ·2 3 и 2 5 . Выполняя возведение в степень , имеем 2 2 ·2 3 =(2·2)·(2·2·2)=4·8=32 и 2 5 =2·2·2·2·2=32 , так как получаются равные значения, то равенство 2 2 ·2 3 =2 5 - верное, и оно подтверждает основное свойство степени.

    Основное свойство степени на базе свойств умножения можно обобщить на произведение трех и большего числа степеней с одинаковыми основаниями и натуральными показателями. Так для любого количества k натуральных чисел n 1 , n 2 , …, n k справедливо равенство a n 1 ·a n 2 ·…·a n k =a n 1 +n 2 +…+n k .

    Например, (2,1) 3 ·(2,1) 3 ·(2,1) 4 ·(2,1) 7 = (2,1) 3+3+4+7 =(2,1) 17 .

    Можно переходить к следующему свойству степеней с натуральным показателем – свойству частного степеней с одинаковыми основаниями : для любого отличного от нуля действительного числа a и произвольных натуральных чисел m и n , удовлетворяющих условию m>n , справедливо равенство a m:a n =a m−n .

    Прежде чем привести доказательство этого свойства, обговорим смысл дополнительных условий в формулировке. Условие a≠0 необходимо для того, чтобы избежать деления на нуль, так как 0 n =0 , а при знакомстве с делением мы условились, что на нуль делить нельзя. Условие m>n вводится для того, чтобы мы не выходили за рамки натуральных показателей степени. Действительно, при m>n показатель степени a m−n является натуральным числом, в противном случае он будет либо нулем (что происходит при m−n ), либо отрицательным числом (что происходит при m

    Доказательство. Основное свойство дроби позволяет записать равенство a m−n ·a n =a (m−n)+n =a m . Из полученного равенства a m−n ·a n =a m и из следует, что a m−n является частным степеней a m и a n . Этим доказано свойство частного степеней с одинаковыми основаниями.

    Приведем пример. Возьмем две степени с одинаковыми основаниями π и натуральными показателями 5 и 2 , рассмотренному свойству степени отвечает равенство π 5:π 2 =π 5−3 =π 3 .

    Теперь рассмотрим свойство степени произведения : натуральная степень n произведения двух любых действительных чисел a и b равна произведению степеней a n и b n , то есть, (a·b) n =a n ·b n .

    Действительно, по определению степени с натуральным показателем имеем . Последнее произведение на основании свойств умножения можно переписать как , что равно a n ·b n .

    Приведем пример: .

    Данное свойство распространяется на степень произведения трех и большего количества множителей. То есть, свойство натуральной степени n произведения k множителей записывается как (a 1 ·a 2 ·…·a k) n =a 1 n ·a 2 n ·…·a k n .

    Для наглядности покажем это свойство на примере. Для произведения трех множителей в степени 7 имеем .

    Следующее свойство представляет собой свойство частного в натуральной степени : частное действительных чисел a и b , b≠0 в натуральной степени n равно частному степеней a n и b n , то есть, (a:b) n =a n:b n .

    Доказательство можно провести, используя предыдущее свойство. Так (a:b) n ·b n =((a:b)·b) n =a n , а из равенства (a:b) n ·b n =a n следует, что (a:b) n является частным от деления a n на b n .

    Запишем это свойство на примере конкретных чисел: .

    Теперь озвучим свойство возведения степени в степень : для любого действительного числа a и любых натуральных чисел m и n степень a m в степени n равна степени числа a с показателем m·n , то есть, (a m) n =a m·n .

    Например, (5 2) 3 =5 2·3 =5 6 .

    Доказательством свойства степени в степени является следующая цепочка равенств: .

    Рассмотренное свойство можно распространить на степень в степени в степени и т.д. Например, для любых натуральных чисел p , q , r и s справедливо равенство . Для большей ясности приведем пример с конкретными числами: (((5,2) 3) 2) 5 =(5,2) 3+2+5 =(5,2) 10 .

    Осталось остановиться на свойствах сравнения степеней с натуральным показателем.

    Начнем с доказательства свойства сравнения нуля и степени с натуральным показателем.

    Для начала обоснуем, что a n >0 при любом a>0 .

    Произведение двух положительных чисел является положительным числом, что следует из определения умножения. Этот факт и свойства умножения позволяют утверждать, что результат умножения любого числа положительных чисел также будет положительным числом. А степень числа a с натуральным показателем n по определению является произведением n множителей, каждый из которых равен a . Эти рассуждения позволяют утверждать, что для любого положительного основания a степень a n есть положительное число. В силу доказанного свойства 3 5 >0 , (0,00201) 2 >0 и .

    Достаточно очевидно, что для любого натурального n при a=0 степень a n есть нуль. Действительно, 0 n =0·0·…·0=0 . К примеру, 0 3 =0 и 0 762 =0 .

    Переходим к отрицательным основаниям степени.

    Начнем со случая, когда показатель степени является четным числом, обозначим его как 2·m , где m - натуральное. Тогда . По каждое из произведений вида a·a равно произведению модулей чисел a и a , значит, является положительным числом. Следовательно, положительным будет и произведение и степень a 2·m . Приведем примеры: (−6) 4 >0 , (−2,2) 12 >0 и .

    Наконец, когда основание степени a является отрицательным числом, а показатель степени есть нечетное число 2·m−1 , то . Все произведения a·a являются положительными числами, произведение этих положительных чисел также положительно, а его умножение на оставшееся отрицательное число a дает в итоге отрицательное число. В силу этого свойства (−5) 3 <0 , (−0,003) 17 <0 и .

    Переходим к свойству сравнения степеней с одинаковыми натуральными показателями, которое имеет следующую формулировку: из двух степеней с одинаковыми натуральными показателями n меньше та, основание которой меньше, а больше та, основание которой больше. Докажем его.

    Неравенство a n свойств неравенств справедливо и доказываемое неравенство вида a n .

    Осталось доказать последнее из перечисленных свойств степеней с натуральными показателями. Сформулируем его. Из двух степеней с натуральными показателями и одинаковыми положительными основаниями, меньшими единицы, больше та степень, показатель которой меньше; а из двух степеней с натуральными показателями и одинаковыми основаниями, большими единицы, больше та степень, показатель которой больше. Переходим к доказательству этого свойства.

    Докажем, что при m>n и 00 в силу исходного условия m>n , откуда следует, что при 0

    Осталось доказать вторую часть свойства. Докажем, что при m>n и a>1 справедливо a m >a n . Разность a m −a n после вынесения a n за скобки принимает вид a n ·(a m−n −1) . Это произведение положительно, так как при a>1 степень a n есть положительное число, и разность a m−n −1 есть положительное число, так как m−n>0 в силу начального условия, и при a>1 степень a m−n больше единицы. Следовательно, a m −a n >0 и a m >a n , что и требовалось доказать. Иллюстрацией этого свойства служит неравенство 3 7 >3 2 .

Свойства степеней с целыми показателями

Так как целые положительные числа есть натуральные числа, то все свойства степеней с целыми положительными показателями в точности совпадают со свойствами степеней с натуральными показателями, перечисленными и доказанными в предыдущем пункте.

Степень с целым отрицательным показателем , а также степень с нулевым показателем мы определяли так, чтобы оставались справедливыми все свойства степеней с натуральными показателями, выражаемые равенствами. Поэтому, все эти свойства справедливы и для нулевых показателей степени, и для отрицательных показателей, при этом, конечно, основания степеней отличны от нуля.

Итак, для любых действительных и отличных от нуля чисел a и b , а также любых целых чисел m и n справедливы следующие свойства степеней с целыми показателями :

  1. a m ·a n =a m+n ;
  2. a m:a n =a m−n ;
  3. (a·b) n =a n ·b n ;
  4. (a:b) n =a n:b n ;
  5. (a m) n =a m·n ;
  6. если n – целое положительное число, a и b – положительные числа, причем ab −n ;
  7. если m и n – целые числа, причем m>n , то при 01 выполняется неравенство a m >a n .

При a=0 степени a m и a n имеют смысл лишь когда и m , и n положительные целые числа, то есть, натуральные числа. Таким образом, только что записанные свойства также справедливы для случаев, когда a=0 , а числа m и n – целые положительные.

Доказать каждое из этих свойств не составляет труда, для этого достаточно использовать определения степени с натуральным и целым показателем, а также свойства действий с действительными числами. Для примера докажем, что свойство степени в степени выполняется как для целых положительных чисел, так и для целых неположительных чисел. Для этого нужно показать, что если p есть нуль или натуральное число и q есть нуль или натуральное число, то справедливы равенства (a p) q =a p·q , (a −p) q =a (−p)·q , (a p) −q =a p·(−q) и (a −p) −q =a (−p)·(−q) . Сделаем это.

Для положительных p и q равенство (a p) q =a p·q доказано в предыдущем пункте. Если p=0 , то имеем (a 0) q =1 q =1 и a 0·q =a 0 =1 , откуда (a 0) q =a 0·q . Аналогично, если q=0 , то (a p) 0 =1 и a p·0 =a 0 =1 , откуда (a p) 0 =a p·0 . Если же и p=0 и q=0 , то (a 0) 0 =1 0 =1 и a 0·0 =a 0 =1 , откуда (a 0) 0 =a 0·0 .

Теперь докажем, что (a −p) q =a (−p)·q . По определению степени с целым отрицательным показателем , тогда . По свойству частного в степени имеем . Так как 1 p =1·1·…·1=1 и , то . Последнее выражение по определению является степенью вида a −(p·q) , которую в силу правил умножения можно записать как a (−p)·q .

Аналогично .

И .

По такому же принципу можно доказать все остальные свойства степени с целым показателем, записанные в виде равенств.

В предпоследнем из записанных свойств стоит остановиться на доказательстве неравенства a −n >b −n , которое справедливо для любого целого отрицательного −n и любых положительных a и b , для которых выполняется условие a. Так как по условию a0 . Произведение a n ·b n тоже положительно как произведение положительных чисел a n и b n . Тогда полученная дробь положительна как частное положительных чисел b n −a n и a n ·b n . Следовательно, откуда a −n >b −n , что и требовалось доказать.

Последнее свойство степеней с целыми показателями доказывается так же, как аналогичное свойство степеней с натуральными показателями.

Свойства степеней с рациональными показателями

Степень с дробным показателем мы определяли, распространяя на нее свойства степени с целым показателем. Иными словами, степени с дробными показателями обладают теми же свойствами, что и степени с целыми показателями. А именно:

Доказательство свойств степеней с дробными показателями базируется на определении степени с дробным показателем, на и на свойствах степени с целым показателем. Приведем доказательства.

По определению степени с дробным показателем и , тогда . Свойства арифметического корня позволяют нам записать следующие равенства . Дальше, используя свойство степени с целым показателем, получаем , откуда по определению степени с дробным показателем имеем , а показатель полученной степени можно преобразовать так: . На этом доказательство завершено.

Абсолютно аналогично доказывается второе свойство степеней с дробными показателями:

По схожим принципам доказываются и остальные равенства:

Переходим к доказательству следующего свойства. Докажем, что для любых положительных a и b , a b p . Запишем рациональное число p как m/n , где m – целое число, а n – натуральное. Условиям p<0 и p>0 в этом случае будут эквивалентны условия m<0 и m>0 соответственно. При m>0 и a

Аналогично, при m<0 имеем a m >b m , откуда , то есть, и a p >b p .

Осталось доказать последнее из перечисленных свойств. Докажем, что для рациональных чисел p и q , p>q при 00 – неравенство a p >a q . Мы всегда можем привести к общему знаменателю рациональные числа p и q , пусть при этом мы получим обыкновенные дроби и , где m 1 и m 2 – целые числа, а n - натуральное. При этом условию p>q будет соответствовать условие m 1 >m 2 , что следует из . Тогда по свойству сравнения степеней с одинаковыми основаниями и натуральными показателями при 01 – неравенство a m 1 >a m 2 . Эти неравенства по свойствам корней можно переписать соответственно как и . А определение степени с рациональным показателем позволяет перейти к неравенствам и соответственно. Отсюда делаем окончательный вывод: при p>q и 00 – неравенство a p >a q .

Свойства степеней с иррациональными показателями

Из того, как определяется степень с иррациональным показателем , можно заключить, что она обладает всеми свойствами степеней с рациональными показателями. Так для любых a>0 , b>0 и иррациональных чисел p и q справедливы следующие свойства степеней с иррациональными показателями :

  1. a p ·a q =a p+q ;
  2. a p:a q =a p−q ;
  3. (a·b) p =a p ·b p ;
  4. (a:b) p =a p:b p ;
  5. (a p) q =a p·q ;
  6. для любых положительных чисел a и b , a0 справедливо неравенство a p b p ;
  7. для иррациональных чисел p и q , p>q при 00 – неравенство a p >a q .

Отсюда можно сделать вывод, что степени с любыми действительными показателями p и q при a>0 обладают этими же свойствами.

Список литературы.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. МатематикаЖ учебник для 5 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 7 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 9 кл. общеобразовательных учреждений.
  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

Дата: 27.10.2016

Класс: 11Б

Тема урока Степень с иррациональным показателем.

Иррациональное выражение. Преобразования иррациональных выражений.

Цель урока:

Обобщение и систематизация знаний по данной теме

Задачи урока:

Повышение вычислительной культуры уч-ся;

Проверка уровня усвоения темы путем дифференцированного

опроса уч-ся;

Развитие интереса к предмету;

Воспитание навыков контроля и самоконтроля.

Ход урока.

I этап урока (1 минута)

Организационный момент

Учитель сообщает учащимся тему урока, цель и задачи урока (слайд№2); поясняет, как во время урока будет использоваться раздаточный материал, который находится на рабочем месте каждого ученика, обращает внимание учащихся на лист самоконтроля, в который постепенно в ходе урока будут заноситься баллы, полученные за выполнение заданий разноуровневых тестов, выполнения заданий у доски, за активную работу на уроке.

Лист самоконтроля

Вопросы

теории

Разноуровневая самостоятельная работа «Повышение вычислительной культуры»

Работа на уроке (оценка учителя)

Разноуровневый тест

«Обобщение понятия степени.»

Итог

Резуль

таты

са мо

оц ен ки

Учитель обращается к учащимся:

«В конце урока мы увидим результаты вашей самооценки. Древнегреческий поэт Нивей утверждал, что математику нельзя изучать, наблюдая, как это делает сосед.

Поэтому вы сегодня должны работать самостоятельно и объективно оценивать свои знания».

II этап урока (3 минуты)

Повторение теоретического материала по теме.

Учитель просит учащихся дать определение степени с натуральным показателем.

Звучит определение.

Определение. Степенью действительного числа а с натуральным показателем п называется произведение п множителей, каждый из которых равен а.

Учитель просит учащихся дать определение степени с целым показателем.

Звучит определение.

Определение. Если - целое отрицательное число, то , где 0 Учитель спрашивает: «Чему равна нулевая, первая степень любого действительного числа?» ; .

Учитель просит учащихся дать определение степени с рациональным

показателем. Звучит определение.

Определение. Степенью действительного числа а > 0 c рациональным показателем r = , где m - целое, n - натуральное, называется число:

Если, то.

Учитель: «Вспомните основные свойства степени».

Учащиеся перечисляют свойства степени:

Для любых действительных чисел т и п и для любых положительных а и в выполняются равенства:

1. 4.

2. 5.

Во время ответов на интерактивной доске учащиеся видят определения и свойства степени, и если надо вносят дополнения и исправления в ответы своих товарищей.

III этап урока (3 минуты)

Устная работа по решению простейших задач по теме « Основные свойства степени»

Работа с диском « Новые возможности для усвоения курса математики».

(Учебное электронное издание «Математика 5-11»/ Дрофа.)

Учитель предлагает учащимся применить только что сформулированные теоретические факты к решению упражнений:

    Вычислите

2. Упростите

3) () 6)

3. Выполните действия

К компьютеру вызываются по очереди 3 ученика, они решают предложенные задачи устно, комментируя свой ответ, ссылаясь на теорию. Если задача решена правильно, то звучат аплодисменты, на экране и на доске появляется улыбающееся лицо, а если упражнение выполнено неверно, то лицо грустное, и тогда учитель предлагает взять подсказку. С помощью программы все учащиеся видят на интерактивной доске правильное решение.

IV этап урока (5 минут)

Вариант 1

Вычислите:

648

Уровень II

(2-)

7- 4

0,0640,49

0,28

Уровень III

0,3

Вариант 2

Вычислите:

4 64

Уровень II

(-2)

при а =

125 16-36

Уровень III

1,5

Учащийся должен решить задания своего уровня сложности. Если у него остается ещё время, то он может набирать дополнительные баллы, решая задания другого уровня сложности. Сильные учащиеся, прорешав задания менее сложного уровня, смогут помочь своим товарищам из другой группы в случае необходимости. (По просьбе учителя они выступают в роли консультантов).

Проверка теста с помощью инструмента « Шторка» интерактивной доски.

V этап урока (15 минут)

Разноуровневый тест тематического контроля знаний

«Обобщение понятия степени».

У доски учащиеся группы III записывают и подробно объясняют решение варианта 7 и 8

Во время выполнения работы учитель, если необходимо, помогает учащимся группы III выполнять задания и контролирует решение задач на доске.

Учащиеся двух других групп и остальные учащиеся группы III решают в это время разноуровневый тест (1 и 2 вариант)

VI этап урока (7 минут)

Обсуждение решений задач представленных на доске.

На доске учащиеся решали пять задач. Учащиеся, выполнявшие задачи у доски, комментируют свои решения, а остальные вносят, при необходимости, коррективы.

VII этап урока (5 минут) Подведение итогов урока, комментарии по домашнему заданию. Учитель еще раз обращает внимание, на те типы заданий и те теоретические факты, которые вспоминали на уроке, говорит о необходимости выучить их. Отмечает наиболее успешную работу на уроке отдельных учащихся.

1). Подсчет баллов (слайд)

Каждое задание самостоятельной работы и теста, если

оно выполнено верно, оценивается в 1 балл.

Не забудьте прибавить оценки-баллы учителя за урок…

2). Заполнение листа самоконтроля (слайд)

«5» - 15 баллов

«4» - 10 баллов

«3» - 7баллов < 7 баллов

мы надеемся, что ты очень старался,

просто сегодня – не твой день!..

Решения теста и самостоятельной работы учащиеся забирают с собой, чтобы дома сделать работу над ошибками, листы самоконтроля сдают учителю. Учитель после урока анализирует их и выставляет оценки, докладывая о результатах анализа на следующем уроке.

3). Домашнее задание:

    Работа над ошибками в тестах.

    Творческое задание для группы III : составить карточку с заданиями на применение свойств степеней для опроса на следующем уроке.

    Выучить определение и свойства

    Выполнить упражнения

Разноуровневая самостоятельная работа «Повышение вычислительной культуры»:

Вариант 1

Вычислите:

Уровень II

Степень с рациональным показателем, её свойства.

Выражение а n определено для всех а и n, кроме случая а=0 при n≤0. Напомним свойства таких степеней.

Для любых чисел а, b и любых целых чисел m и п справедливы равенства:

A m *a n =a m+n ; a m:а n =a m-n (а≠0); (а m) n = а mn ; (ab) n = a n *b n ; (b≠0); а 1 =а; а 0 =1 (а≠0).

Отметим также следующее свойство:

Если m>n, то а m >а n при а>1 и а m <а n при 0<а<1.

В этом пункте мы обобщим понятие степени числа, придав смысл выражениям типа 2 0.3 , 8 5/7 , 4 -1/2 и т. д. Естественно при этом дать определение так, чтобы степени с рациональными показателями обладали теми же свойствами (или хотя бы их частью), что и степени с целым показателем. Тогда, в частности, n-я степень числа должна быть равна а m . Действительно, если свойство

(a p) q =a pq

выполняется, то



Последнее равенство означает (по определению корня n-й степени), что число должно быть корнем п-й степени из числа а m .

Определение.

Степенью числа а>0 с рациональным показателем r=, где m — целое число, а n — натуральное (n > 1), называется число

Итак, по определению

(1)

Степень числа 0 определена только для положительных показателей; по определению 0 r = 0 для любого r>0.

Степень с иррациональным показателем.

Иррациональное число можно представить в виде предела последовательности рациональных чисел : .

Пусть . Тогда существуют степени с рациональным показателем . Можно доказать, что последовательность этих степеней является сходящейся. Предел этой последовательности называется степенью с основанием и иррациональным показателем : .

Зафиксируем положительное число а и поставим в соответствие каждому числу . Тем самым получим числовую функцию f(x) = a x , определенную на множестве Q рациональных чисел и обладающую ранее перечисленными свойствами. При а=1 функция f(x) = a x постоянна, так как 1 x =1 для любого рационального х.



Нанесем несколько точек графика функции у =2 x предварительно вычислив с помощью калькулятора значения 2 x на отрезке [—2; 3] с шагом 1/4 (рис. 1, а), а затем с шагом 1/8 (рис. 1, б).Продолжая мысленно такие же построения с шагом 1/16, 1/32 и т. д., мы видим, что получающиеся точки можно соединить плавной кривой, которую естественно считать графиком некоторой функции, определенной и возрастающей уже на всей числовой прямой и принимающей значения в рациональных точках (рис. 1, в). Построив достаточно большое число точек графика функции , можно убедиться в том, что аналогичными свойствами обладает и эта функция (отличие состоит в том, что функция убывает на R).

Эти наблюдения подсказывают, что можно так определить числа 2 α и для каждого иррационального α, что функции, задаваемые формулами y=2 x и будут непрерывными, причем функция у=2 x возрастает, а функция убывает на всей числовой прямой.

Опишем в общих чертах, как определяется число a α для иррациональных α при а>1. Мы хотим добиться того, чтобы функция у = a x была возрастающей. Тогда при любых рациональных r 1 и r 2 , таких, что r 1 <α должно удовлетворять неравенствам a r 1 <а α <а r 1 .

Выбирая значения r 1 и r 2 , приближающиеся к х, можно заметить, что и соответствующие значения a r 1 и a r 2 будут мало отличаться. Можно доказать, что существует, и притом только одно, число у, которое больше всех a r 1 для всех рациональных r 1 и меньше всех a r 2 для всех рациональных r 2 . Это число у по определению есть а α .

Например, вычислив с помощью калькулятора значения 2 x в точках х n и х` n , где х n и х` n — десятичные приближения числа мы обнаружим, что, чем ближе х n и х` n к , тем меньше отличаются 2 x n и 2 x` n .

Так как , то



и, значит,



Аналогично, рассматривая следующие десятичные приближения по недостатку и избытку, приходим к соотношениям

;

;

;

;

.

Значение вычисленное на калькуляторе, таково:

.

Аналогично определяется число a α для 0<α<1. Кроме того полагают 1 α =1 для любого α и 0 α =0 для α>0.

Показательная функция.


При a > 0, a = 1, определена функция y = a x , отличная от постоянной. Эта функция называется показательной функцией с основанием a .

y = a x при a > 1:

Графики показательных функций с основанием 0 < a < 1 и a > 1 изображены на рисунке.

Основные свойства показательной функции y = a x при 0 < a < 1:

  • Область определения функции - вся числовая прямая.
  • Область значений функции - промежуток (0; + ) .
  • Функция строго монотонно возрастает на всей числовой прямой, то есть, если x 1 < x 2 , то a x 1 > a x 2 .
  • При x = 0 значение функции равно 1.
  • Если x > 0 , то 0 < a < 1 и если x < 0, то a x > 1.
  • К общим свойствам показательной функции как при0 < a < 1, так и при a > 1 относятся:
    • a x 1 a x 2 = a x 1 + x 2 , для всех x 1 и x 2.
    • a − x = ( a x ) − 1 = 1 a x для любого x .
    • n a x = a