Каково сопротивление воздуха. Сила сопротивления воздуха. Лобовое сопротивление (аэродинамика)

Величина силы сопротивления воздуха зависит от формы снаряда, состояния поверхности его корпуса, площади его наибольшего поперечного сечения, плотности воздуха, скорости снаряда относительно воздуха, скорости распространения звука и положения продольной оси снаряда относительно вектора скорости снаряда.

Рассмотрим кратко, как перечисленные выше факторы влияют на величину силы сопротивления воздуха.

Форма и состояние поверхности снаряда. О влиянии формы снаряда и состояния его поверхности на величину силы сопротивления воздуха указывалось при рассмотрении факторов, обусловливающих возникновение силы сопротивления воздуха.

Рис. 12. Влияние формы снаряда на ооразование головной и хвостовой

волн и завихрений позади снаряда:

а - цилиндрический снаряд; б -шаровой снаряд (ядро); в - продолговатый снаряд с цилиндрической запоясковой частью (старая фугасная граната);

г -продолговатый снаряд с конической запоясковой частью

Зависимость величины волнового и вихревого сопротивлений от формы снаряда наглядно видна на рис. 12, на котором приведены моментальные фотографии снарядов, выпущенных с примерно одинаковой начальной скоростью.

Наименьшие волны и завихрения получаются у снаряда, имеющего наиболее заостренную головную часть и скошенную донную часть, наибольшие волны и завихрения - у цилиндрического снаряда.

Но следует иметь в виду, что при выборе оптимальной формы снаряда необходимо наряду с уменьшением сопротивления воздуха обеспечить устойчивость полета снаряда, рациональное использование металла, снаряжения и эффективное действие снаряда у цели; поэтому снаряды различных типов имеют неодинаковую форму.

Зависимость величины силы сопротивления воздуха от формы снаряда выражается коэффициентом формы i.

Для снаряда данного типа, форма которого принята за эталон, коэффициент формы принимают равным единице. При изменении формы снаряда относительно эталонной коэффициент формы определяется опытным путем.

Площадь наибольшего поперечного сечения. Если угол нутации δ = 0, то количество элементарных частиц воздуха, которые снаряд будет встречать на своем пути, при прочих равных условиях будет зависеть от площади его наибольшего поперечного сечения. Чем больше площадь поперечного сечения снаряда, тем больше элементарных частиц воздуха будет воздействовать на снаряд, тем больше будет и сила сопротивления воздуха. Экспериментальные данные показывают, что сила сопротивления воздуха изменяется пропорционально изменению площади поперечного сечения снаряда.

Плотность воздуха. Под плотностью воздуха понимают массу воздуха, приходящуюся на единицу его объема. Изменение массы воздуха в единице объема может произойти за счет изменения количества элементарных частиц (молекул), приходящихся на единицу объема, или за счет изменения массы каждой частицы. Если, например, плотность воздуха увеличилась, то это значит, что или увеличилось количество элементарных частиц в каждой единице объема воздуха, или увеличилась масса частиц (или то и другое вместе), а раз так, то и сила воздействия воздуха на каждую единицу поверхностной площади снаряда возрастет, следовательно, возрастет и полное сопротивление воздуха.



Установлено, что сила сопротивления воздуха изменяется пропорционально изменению плотности воздуха.

Скорость снаряда. Исследования показывают, что сила сопротивления воздуха прямо пропорциональна квадрату скорости снаряда относительно воздуха. Если, например, скорость снаряда относительно воздуха увеличится в два раза, то сила сопротивления воздуха возрастет в четыре раза.

Это объясняется тем, что, во-первых, с увеличением скорости снаряда он будет в каждую единицу времени встречать на своем пути больше элементарных частиц воздуха и, во-вторых, инерция частиц воздуха при большей скорости "должна быть преодолена снарядом в более короткий момент времени, что вызовет большее противодействие со стороны частиц воздуха.

Скорость распространения звука в воздухе. Образование волнового сопротивления, как показано выше, происходит в момент, когда скорость снаряда становится равной скорости звука, т. е. в момент, когда ,

где v - скорость снаряда и а - скорость звука в воздухе.

Скорость звука в воздухе непостоянна (зависит от температуры и влажности воздуха). Следовательно, при одной и той же скорости снаряда из-за изменения скорости звука в воздухе величина волнового сопротивления и силы сопротивления воздуха в целом могут быть различными. Зависимость величины силы сопротивления воздуха от скорости распространения звука учитывается специальным коэффициентом . Величина , зависит от величины и от формы снаряда. График этой зависимости приводится на рис. 13.

Рис. 13 . График функции :

а. - снаряд с цилиндрической запоясковой частью (старая фугасная граната);

б - продолговатый снаряд с конической запоясковой частью

Положение продольной оси снаряда относительно касательной к траектории (вектора скорости). Полет снаряда в воздухе сопровождается сложными колебательными движениями вокруг центра тяжести, в результате чего продольная ось снаряда оказывается не совмещенной с направлением полета (с вектором скорости), т. е. появляются углы нутации.

При возникновении угла нутации снаряд летит уже не головной частью вперед, а подставляет встречному потоку воздуха и часть боковой поверхности. Условия обтекания снаряда воздухом из-за этого также резко ухудшаются.

Все это резко увеличивает силу сопротивления воздуха. Для уменьшения влияния этого фактора принимают меры к стабилизации полета снаряда, т. е. к уменьшению углов нутации.

Итак, влияние различных факторов на величину силы сопротивления воздуха сложно и многогранно. Поэтому обычно силу сопротивления воздуха определяют опытным путем для условий, что сила сопротивления воздуха во все время дви жения приложена к его центру тяжести и направлена по касательной к траектории, т. е, углы нутации отсутствуют.

Величину силы сопротивления воздуха выражают различными эмпирическими формулами. Одна из наиболее распро страненных имеет вид

(1.7)

где R - величина силы сопротивления воздуха, кг;

i- коэффициент формы;

S -площадь поперечного сечения снаряда, м 2 ;

ρ - плотность воздуха (масса 1 м 3 данного воздуха она равна ,

где П - вес 1 м 3 воздуха, или весовая плотность воздуха);

v - скорость снаряда относительно воздуха, м/с;

Эмпирический коэффициент, учитывающий влияние величины

отношения скорости снаряда к скорости звука в зависимости от формы снаряда.

В формуле 1.7 величина имеет самостоятельный смысл, ибо это есть ни что иное, как кинетическая энергия, или живая сила 1 м 3 воздуха. Эту величину называют скоростным напором.

Лекція 10

Тема 4. Заняття 2. Рух снаряда в повітрі

1. Прискорення сили опору повітря. Поперечн навантаження і балістичний коефіцієнт.

2. Необхідність прийняття мір для забезпечення стійкості снаряда в польоті.

3. Рух швидко обертаючогося снаряда в польоті. Деривація.

Все составляющие сопротивления воздуха трудно определяются аналитически. Поэтому в практике нашла применение эмпирическая формула, имеющая для диапазона скоростей движения, характерного для реального автомобиля, следующий вид:

где с х – безразмерный коэффициент обтекаемости воздухом , зависящий от формы тела; ρ в – плотность воздуха ρ в = 1,202…1,225 кг/м 3 ; А – площадь миделева сечения (площадь поперечной проекции) автомобиля, м 2 ; V – скорость автомобиля, м/с.

В литературе встречается коэффициент сопротивления воздуха k в :

F в = k в А V 2 , где k в х ρ в /2 , –коэффициент сопротивления воздуха, Нс 2 /м 4 .

и фактор обтекаемости q в : q в = k в · А.

Если вместо с х подставить с z , то получим аэродинамическую подъемную силу.

Площадь миделева сечения для авто:

А=0,9 · В max · Н ,

где В max – наибольшая колея автомобиля, м; Н – высота автомобиля, м.

Сила приложена в метацентре, при этом создаются моменты.

Скорость сопротивления потока воздуха с учетом ветра:

, где β – угол между направлениями движения автомобиля и ветра.

С х некоторых автомобилей

ВАЗ 2101…07

Оpel astra Sedan

ВАЗ 2108…15

Land Rover Free Lander

ВАЗ 2102…04

ВАЗ 2121…214

грузовик

грузовик с прицепом

      1. Сила сопротивления подъему

F п = G а sin α.

В дорожной практике величину уклона обычно оценивают величиной подъема полотна дороги, отнесенную к величине горизонтальной проекции дороги, т.е. тангенсом угла, и обозначают i , выражая полученное значение в процентах. При относительно небольшой величине уклона допустимо в расчетных формулах при определении силы сопротивления подъему использовать не sin α., а величину i в относительных значениях. При больших значениях величины уклона замена sin α величиной тангенса (i /100) недопустима.

      1. Сила сопротивления разгону

При разгоне автомобиля происходит разгон поступательно движущейся массы авто и разгон вращающихся масс, увеличивающих сопротивление разгону. Это увеличение можно учесть в расчетах, если считать, что массы автомобиля движутся поступательно, но использовать некую эквивалентную массу m э, несколько большей m a (в классической механике это выражается уравнением Кенига)

Используем метод Н.Е. Жуковского, приравняв кинетическую энергии поступательно движущейся эквивалентной массы сумме энергий:

,

где J д – момент инерции маховика двигателя и связанных с ним деталей, Н·с 2 ·м (кг·м 2); ω д угловая скорость двигателя, рад/с; J к –момент инерции одного колеса.

Так как ω к = V а / r k , ω д = V а · i кп · i o / r k , r k = r k 0 ,

то получим
.

Момент инерции J узлов трансмиссии автомобилей, кг· м 2

Автомобиль

Маховик с коленвалом J д

Ведомые колеса

(2 колеса с тормозными барабанами), J к1

Ведущие колеса

(2 колеса с тормозными барабанами и с полуосями) J к2

Произведем замену: m э = m а · δ,

Если автомобиль загружен не полностью:
.

Если автомобиль идет накатом: δ = 1 + δ 2

Сила сопротивления разгону автомобиля (инерции): F и = m э · а а = δ · m а · а а .

В первом приближении можно принять: δ = 1,04+0,04 i кп 2

Является составляющей полной аэродинамической силы.

Сила лобового сопротивления обычно представляется в виде суммы двух составляющих: сопротивления при нулевой подъёмной силе и индуктивного сопротивления. Каждая составляющая характеризуется своим собственным безразмерным коэффициентом сопротивления и определённой зависимостью от скорости движения.

Лобовое сопротивление может способствовать как обледенению летательных аппаратов (при низких температурах воздуха), так и вызывать нагревание лобовых поверхностей ЛА при сверхзвуковых скоростях ударной ионизацией .

Сопротивление при нулевой подъёмной силе

Эта составляющая сопротивления не зависит от величины создаваемой подъёмной силы и складывается из профильного сопротивления крыла, сопротивления элементов конструкции самолёта, не вносящих вклад в подъёмную силу, и волнового сопротивления. Последнее является существенным при движении с около- и сверхзвуковой скоростью, и вызвано образованием ударной волны, уносящей значительную долю энергии движения. Волновое сопротивление возникает при достижении самолётом скорости, соответствующей критическому числу Маха , когда часть потока, обтекающего крыло самолёта, приобретает сверхзвуковую скорость. Критическое число М тем больше, чем больше угол стреловидности крыла, чем более заострена передняя кромка крыла и чем оно тоньше.

Сила сопротивления направлена против скорости движения, её величина пропорциональна характерной площади S, плотности среды ρ и квадрату скорости V:

C x 0 - безразмерный аэродинамический коэффициент сопротивления, получается из критериев подобия, например, чисел Рейнольдса и Фруда в аэродинамике.

Определение характерной площади зависит от формы тела:

  • в простейшем случае (шар) - площадь поперечного сечения;
  • для крыльев и оперения - площадь крыла/оперения в плане;
  • для пропеллеров и несущих винтов вертолётов - либо площадь лопастей, либо ометаемая площадь винта;
  • для продолговатых тел вращения ориентированных вдоль потока (фюзеляж, оболочка дирижабля) - приведённая волюметрическая площадь, равная V 2/3 , где V - объём тела.

Мощность, требуемая для преодоления данной составляющей силы лобового сопротивления, пропорциональна кубу скорости.

Индуктивное сопротивление

Индуктивное сопротивление (англ. lift-induced drag ) - это следствие образования подъёмной силы на крыле конечного размаха. Несимметричное обтекание крыла приводит к тому, что поток воздуха сбегает с крыла под углом к набегающему на крыло потоку (т. н. скос потока). Таким образом, во время движения крыла происходит постоянное ускорение массы набегающего воздуха в направлении, перпендикулярном направлению полёта, и направленном вниз. Это ускорение во-первых сопровождается образованием подъёмной силы, а во-вторых - приводит к необходимости сообщать ускоряющемуся потоку кинетическую энергию. Количество кинетической энергии, необходимое для сообщения потоку скорости, перпендикулярной направлению полёта, и будет определять величину индуктивного сопротивления.

На величину индуктивного сопротивления оказывает влияние не только величина подъёмной силы, но и её распределение по размаху крыла. Минимальное значение индуктивного сопротивления достигается при эллиптическом распределении подъёмной силы по размаху. При проектировании крыла этого добиваются следующими методами:

  • выбором рациональной формы крыла в плане;
  • применением геометрической и аэродинамической крутки;
  • установкой вспомогательных поверхностей - вертикальных законцовок крыла.

Индуктивное сопротивление пропорционально квадрату подъёмной силы Y, и обратно пропорционально площади крыла S, его удлинению λ , плотности среды ρ и квадрату скорости V:

Таким образом, индуктивное сопротивление вносит существенный вклад при полёте на малой скорости (и, как следствие, на больших углах атаки). Оно также увеличивается при увеличении веса самолёта.

Суммарное сопротивление

Является суммой всех видов сил сопротивления:

X = X 0 + X i

Так как сопротивление при нулевой подъёмной силе X 0 пропорционально квадрату скорости, а индуктивное X i - обратно пропорционально квадрату скорости, то они вносят разный вклад при разных скоростях. С ростом скорости, X 0 растёт, а X i - падает, и график зависимости суммарного сопротивления X от скорости («кривая потребной тяги») имеет минимум в точке пересечения кривых X 0 и X i , при которой обе силы сопротивления равны по величине. При этой скорости самолёт обладает наименьшим сопротивлением при заданной подъёмной силе (равной весу), а значит наивысшим аэродинамическим качеством .


Wikimedia Foundation . 2010 .

Формирование силы сопротивления воздуха. На рис. 78 и 81 показаны потоки воздуха, образуемые при движении легкового и грузового автомобилей. Сила сопротивления воздуха P w состоит из нескольких составляющих, основной из которых является сила лобового сопротивления. Последняя возникает вследствие того, что при движении автомобиля (см. рис. 78) впереди него создается избыточное давление +АР воздуха, а сзади - пониженное -АР (в сравнении с атмосферным давлением). Подпор воздуха впереди автомобиля создает сопротивление движению вперед, а разрежение воздуха сзади автомобиля образует силу, которая стремится переместить автомобиль назад. Поэтому чем больше разница давлений впереди и сзади автомобиля, тем больше сила лобового сопротивления, а разница давлений, в свою очередь, зависит от размеров, формы автомобиля и скорости его движения.

Рис. 78.

Рис. 79.

На рис. 79 приведены значения (в условных единицах) лобового сопротивления в зависимости от формы тела. Из рисунка видно, что при обтекаемой передней части лобовое сопротивление воздуха снижается на 60%, а при придании обтекаемости задней части - только на 15%. Это свидетельствует о том, что создаваемый впереди автомобиля подпор воздуха оказывает большее влияние на формирование силы лобового сопротивления воздуха, чем разряжение сзади автомобиля. Об обтекаемости задней части автомобиля можно судить по заднему стеклу - при хорошей аэродинамической форме оно не бы-

вает грязным, а при плохой обтекаемости заднее стекло присасывает к себе пыль.

В общем балансе сил сопротивления воздуха на силу лобового сопротивления приходится приблизительно 60%. Среди других составляющих следует выделить: сопротивление, возникающее от прохождения воздуха через радиатор и подкапотное пространство; сопротивление, создаваемое выступающими поверхностями; сопротивление трения воздуха о поверхность и другие дополнительные сопротивления. Значения всех этих составляющих одного порядка.

Суммарная сила сопротивления воздуха P w сосредоточена в центре парусности, представляющем собой центр наибольшей площади сечения тела в плоскости, перпендикулярной к направлению движения. В общем случае центр парусности не совпадает с центром масс автомобиля.

Сила лобового сопротивления воздуха - это произведение площади поперечного сечения тела на скоростной напор воздуха с учетом обтекаемости формы:

где с х - безразмерный коэффициент лобового (аэродинамического ) сопротивления, учитывающий обтекаемость; /’-лобовая площадь или площадь фронтальной проекции, м 2 ; q = 0,5p B v a 2 - скоростной напор воздуха, Н/м 2 . Как видно из размерности, скоростной напор воздуха представляет собой удельную силу, действующую на единицу площади.

Подставив выражение скоростного напора в формулу (114), получим

где v a - скорость автомобиля; р в - плотность воздуха, кг/м 3 .

Лобовая площадь

где а - коэффициент заполнения площади; а = 0,78...0,80 для легковых автомобилей и а = 0,75...0,90 - для грузовых; H a , В а - наибольшие значения соответственно ширины и высоты автомобиля.

Силу лобового сопротивления воздуха рассчитывают также по формуле

где k w = 0,5с х р в - коэффициент сопротивления воздуха, имеющий размерность плотности воздуха - кг/м 3 или Н с 2 /м 4 . На уровне моря, где плотность воздуха р в = 1,225 кг/м 3 , k w = 0,61 с х, кг/м 3 .

Физический смысл коэффициентов k w и с х состоит в том, что они характеризуют свойства обтекаемости автомобиля.

Аэродинамические испытания автомобиля. Аэродинамические характеристики автомобиля исследуют в аэродинамической трубе, одна из которых построена в Российском научно-исследовательском центре по испытаниям и доводке автомототехники. Рассмотрим разработанную в этом центре методику испытаний автомобиля в аэродинамической трубе.

На рис. 80 изображена система осей координат и направления действия составляющих полной аэродинамической силы. При испытаниях определяют следующие силы и моменты: силу лобового аэродинамического сопротивления Р х, боковую силу Р, подъемную силу P v момент крена М х, опрокидывающий момент М у, поворачивающий момент M v

Рис. 80.

В процессе испытаний автомобиль устанавливают на шестикомпонентных аэродинамических весах и закрепляют на платформе (см. рис. 80). Автомобиль должен быть заправлен, укомплектован и загружен в соответствии с технической документацией. Давление воздуха в шинах должно соответствовать заводской инструкции по эксплуатации. Испытаниями управляет ЭВМ в соответствии с программой автоматизированного проведения типовых весовых испытаний. В процессе испытаний специальным вентилятором создаются потоки воздуха, движущиеся со скоростью от 10 до 50 м/с с интервалом 5 м/с. Могут создаваться различные углы натекания воздуха на автомобиль относительно продольной оси. Значения сил и моментов, показанных на рис. 80 и 81, регистрирует и обрабатывает ЭВМ.

При испытаниях измеряют также скоростной (динамический) напор воздуха q. По результатам измерений ЭВМ рассчитывает коэффициенты перечисленных выше сил и моментов, из которых приведем формулу для расчета коэффициента лобового сопротивления:

где q - динамический напор; F - лобовая площадь.

Остальные коэффициенты (с у, c v с тх, с ту, c mz) рассчитываются аналогично с подстановкой в числитель соответствующей величины.

Произведение ^называют фактором аэродинамического сопротивления или фактором обтекаемости.

Значения коэффициента сопротивления воздуха k w и с х для автомобилей разных типов приведены ниже.

Способы снижения силы сопротивления воздуха. Чтобы снизить лобовое сопротивление, улучшают аэродинамические свойства автомобиля или автопоезда: в легковых автомобилях изменяют форму кузова (в основном), а в грузовых - используют обтекатели, тент, лобовое стекло с наклоном.

Антенна, зеркало внешнего вида, багажник над крышей, дополнительные фары и другие выступающие детали или открытые окна увеличивают сопротивление воздуха.

Сила сопротивления воздуха автопоезда зависит не только от формы отдельных звеньев, но и от взаимодействия воздушных потоков, обтекающих звенья (рис. 81). В промежутках между ними образуются дополнительные завихрения, увеличивающие суммарное сопротивление воздуха передвижению автопоезда. У магистральных автопоездов, перемещающихся по автотрассам с высокой скоростью, расход энергии на преодоление сопротивления воздуха может достигать 50% мощности автомобильного двигателя. Чтобы снизить ее, на автопоездах устанавливают дефлекторы, стабилизаторы, обтекатели и другие приспособления (рис. 82). По данным проф. А.Н. Евграфова, применение комплекта навесных аэродинамических элементов снижает коэффициент с х седельного автопоезда на 41%, прицепного - на 45%.

Рис. 81.

Рис. 82.

При скорости до 40 км/ч сила P w меньше силы сопротивления качению на асфальтированной дороге, вследствие чего ее не учитывают. Свыше 100 км/ч сила сопротивления воздуха представляет собой основную составляющую потерь тягового баланса.

Для определения силы сопротивления воздуха создайте условия, при которых тело начнет под действием силы тяжести двигаться равномерно и прямолинейно. Рассчитайте значение силы тяжести, оно будет равно силе сопротивления воздуха. Если тело движется в воздухе, набирая скорость, сила его сопротивления находится при помощи законов Ньютона, также силу сопротивления воздуха можно найти из закона сохранения механической энергии и специальных аэродинамических формул.

Вам понадобится

  • дальномер, весы, спидометр или радар, линейка, секундомер.

Инструкция

  • Определение сопротивления воздуха равномерно падающему телу Измерьте массу тела с помощью весов. Сбросив его с некоторой высоты, добейтесь, чтобы оно двигалось равномерно. Умножьте массу тела в килограммах на ускорение свободного падения, (9,81 м/с²), результатом будет сила тяжести, действующая на тело. А поскольку оно движется равномерно и прямолинейно, сила тяжести будет равна силе сопротивления воздуха.
  • Определение сопротивления воздуха телу, набирающему скоростьОпределите массу тела с помощью весов. После того как тело начало двигаться, с помощью спидометра или радара измерьте его мгновенную начальную скорость. В конце участка измерьте его мгновенную конечную скорость. Скорости измеряйте в метрах в секунду. Если приборы измеряют ее в километрах в час, поделите значение на 3,6. Параллельно с помощью секундомера определите время, за которое происходило это изменение. Отняв от конечной скорости начальную и поделив результат на время, найдите ускорение, с которым движется тело. Затем найдите силу, которая заставляет тело изменять скорость. Если тело падает, то это сила тяжести, если тело движется горизонтально – сила тяги двигателя. От этой силы отнимите произведение массы тела на его ускорение (Fc=F+m a). Это и будет сила сопротивления воздуха. Важно, чтобы при движении тело не касалось земли, например, двигалось на воздушной подушке или падало вниз.
  • Определение сопротивления воздуха телу, падающему с высотыИзмерьте массу тела и сбросьте его с высоты, которая заранее известна. При контакте с поверхностью земли зафиксируйте скорость тела с помощью спидометра или радара. После этого найдите произведение ускорения свободного падения 9,81 м/с² на высоту, с которой падало тело, отнимите от этого значения скорость, возведенную в квадрат. Полученный результат умножьте на массу тела и поделите на высоту, с которой оно падало (Fc=m (9,81 H-v²)/H). Это и будет сила сопротивления воздуха.