Как выглядит звезды на небе. Невероятные фотографии далекого космоса (20 фото). Жизнь небесных светил

Маленькие мерцающие точки в темном ночном небе. Они, казалось, были там всегда. Сотни миллионов человек любуются прекрасными картинами таинственного звездного неба и чтобы восхищаться этим небосводом, совсем не обязательно знать физические характеристики звезд - это красота, в ее первозданном состоянии. Загадочность всегда окружала звезды, именно это влекло к ним тысячи ученых, дилетантов, магов и просто романтиков. Человек связывал со звездным небом свою судьбу, настоящее, прошлое и грядущее. Но если рассматривать звёзды как физические объекты, естественный путь к их познанию лежит через измерения и сопоставление свойств. Чем собственно и занимается современная наука – астрономия.

Хотя де Сент-Экзюпери говорил: «Вы проинтегрировали звезды, и они утратили свою загадочность и романтичность…», мы продолжаем изучать загадочный мир, к которому принадлежим.

Что же представляли для древних культур звезды?

Может это души, а может и боги, может это слезы богов, но никто не мог представить, что это небесные тела, похожи на наше солнце.

По всему миру создавались культы Луны и Солнца, и некоторых известных созвездий и звезд. Люди поклонялись им.

Древние египтяне считали, что, когда люди разгадают природу звезд – наступит конец света. Другие народы верили, что жизнь на земле прекратиться, как только созвездие Гончих Псов догонит Большую Медведицу. Вифлеемская звезда знаменовала приход Иисуса Христа, а звезда Полынь оповестит о конце света.

Все это красноречиво говорит об огромном значении для людей знаний о звездном небе. Например, одним из величайших астрономов древности был самараканец Улугбек, точность его наблюдений и расчетов была потрясающей, а все это происходило во времена, когда еще никто не задумывался о телескопах…далеком XV веке. Ученые современности даже засомневались в подлинности этих данных. Все древние культуры имели огромные обсерватории, в которых мудрецы или жрецы, шаманы или магистры вели свои наблюдения. Такие знания были крайне необходимы. Составлялись календари, прогнозы, гороскопы. Одним из интереснейших открытий для ученых стали календари, составленные древними Майя, жрецы древнего Египта были также одними из первых астрономов.

Но для внесения ясности нужно отметить, что в те далекие времена науки астрономии еще не существовало, это было лишь как одна из составляющих астрологии. Древние большое внимание уделяли на связь судеб человека и происходящего в мире с состоянием звездного неба.

Тайны приоткрывались с огромным трудом, а ответов становилось все меньше по сравнению с вопросами, которые порождали эти же ответы.

Человек – очень интересное существо. Он накапливает знания, полученные за много тысячелетий, но вместе с тем иногда забывает, что знания намного важнее войн и разрушений – так теряется очень много и современной науке нужно все начинать сначала.

Для человека очень важным было знать что в этом мире есть нечнто вечное – как звезды, люди думали, что они существовали всегда и никогда не изменялись. Но и это мнение оказалось ошибочным, уже ни для кого не секрет, что картина звездного неба уже не такая как 4-5 тысяч лет назад, звезды появляются и исчезают, и «передвигаются» по небосводу. У них есть своя жизнь. Передвижение звезд Сириус, Процион и Арктур, относительно других заметил в 1718 г. английский астроном Эдмунд Галлей. Это были ярчайшие звезды в небе, сейчас же установлено что такое передвижение – закономерность для всех звезд. Но, например, о том, что звезды меняют свой блеск знали еще древние греки. Наука Нового времени показала, что многим звездам присуще это свойство.

Английский астроном Уильям Гершель в конце XVIII века предполагал, что все звезды излучают одинаковое количество света, а различие в видимой яркости обусловлены лишь не одинаковым удалением их от Земли. Но в 1837 г., когда измерили расстояние до ближайших звезд, его теория оказалась неверной.

Наша система оказалась в спокойной части галактики, вдали от горячих звезд и ярких светил, поэтому так долго ничего не удавалось узнать о звездах. Вследствие чего, ученые обратили взоры на ближайшую звезду – Солнце.

До середины XIX века считалось, что наружный слой Солнца горячий, а под ним скрывается холодная поверхность, изредка виднеющаяся через пятна – просветы в раскаленных солнечных облаках. Для объяснения этой гипотезы предполагалось, что на поверхность постоянно падали кометы и метеориты, которые передавали бы ему свою кинетическую энергию. Пробовали объяснить энерговыделение на Солнце привычным земным огнем – теплом, выделяющимся при химических реакциях. Но в таком случае весь запас солнечных «дров» выгорел бы за несколько тысяч лет. А даже древние знали, что светилу намного больше.

В 1853 г. немецкий физик Герман Гельмгольц предположил, что источник энергии звезд является их сжатие, ведь всем известно, что при сжатии газ нагревается. [Простым примером может служить обычный велосипедный насос, который нагревается при накачивании.] При этом на нагрев газа затрачивается не вся энергия, часть ее расходуется на излучение. Сжатие – это источник уже значительно более мощный, чем простое горение. Сжимающееся Солнце могло бы светить десятки миллионов лет. Но энергосистема Солнца непрерывно действует уже несколько миллиардов лет, и это факт уже доказан учеными.

Основными характеристиками звезды, которые могут быть тем или иным способом определены из наблюдений, это: мощность ее излучения (светимость), масса, радиус и химический состав атмосферы, а так же ее температура. При этом, зная еще некоторые дополнительные параметры можно рассчитать возраст звезды. Но к этому вернемся позже.

Жизненный путь звезды довольно сложен. В течение своей истории она разогревается до очень высоких температур и остывает до такой степени, что в сё атмосфере начинают образовываться пылинки. Звезда расширяется до грандиозных размеров, сравнимых с размерами орбиты Марса, и сжимается до нескольких десятков километров. Светимость её возрастает до огромных величин и падает почти до нуля.

Жизнь звезды не всегда протекает гладко. Картина её эволюции усложняется вращением, иногда очень быстрым, на пределе устойчивости (при быстром вращении центробежные силы стремятся разорвать звезду). Некоторые звёзды обладают скоростью вращения на поверхности 500 – 600 км/с. Для Солнца эта величина составляет около 2 км/с. Солнце – звезда относительно спокойная, но даже оно испытывает колебания с различными периодами, на его поверхности происходят взрывы и выбросы вещества. Активность некоторых других звёзд несравнимо выше. На определённых этапах своей эволюции звезда может стать переменной, начав регулярно менять свой блеск, сжиматься и опять расширяться. А иногда на звёздах происходят сильные взрывы. Когда взрываются самые массивные звёзды, их блеск на короткий срок может превысить блеск всех остальных звёзд галактики, вместе взятых.

В начале XX в., в основном благодаря трудам английского астрофизика Артура Эддингтона, окончательно сформировалось представление о звёздах как о раскалённых газовых шарах, заключающих в своих недрах источник энергии – термоядерный синтез ядер гелия из ядер водорода. Впоследствии выяснилось, что в звёздах могут синтезироваться и более тяжёлые химические элементы. Вещество, из которого сделана любая книга, также прошло через «термоядерную топку» и было выброшено в космическое пространство при взрыве породившей его звезды.

По современным представлениям, жизненный путь одиночной звезды определяется её начальной массой и химическим составом. Чему равна минимальная возможная масса звезды, с уверенностью мы сказать не можем. Дело в том, что маломассивные звёзды очень слабые объекты и наблюдать их довольно трудно. Теория звёздной эволюции утверждает, что в телах массой меньше чем семь-восемь сотых долей массы Солнца долговременные термоядерные реакции идти не могут. Эта величина близка к минимальной массе наблюдаемых звёзд. Их светимость меньше солнечной в десятки тысяч раз. Температура на поверхности подобных звёзд не превосходит 2 – 3 тыс. градусов. Одним из таких тусклых багрово-красных карликов является ближайшая к Солнцу звезда Проксима в созвездии Центавра.

В звёздах большой массы, напротив, эти реакции протекают с огромной скоростью. Если масса рождающейся звезды превышает 50 – 70 солнечных масс, то после загорания термоядерного топлива чрезвычайно интенсивное излучение своим давлением может просто сбросить излишек массы. Звёзды, масса которых близка к предельной, обнаружены, например, в туманности Тарантул в соседней с нами галактике Большое Магелланово Облако. Есть они и в нашей Галактике. Через несколько миллионов лет, а может быть и раньше, эти звёзды могут взорваться как сверхновые (так называют взрывающиеся звёзды с большой энергией вспышки).

История изучения химического состава звёзд начинается с середины XIX в. Ещё в 1835 г. французский философ Огюст Конт писал, что химический состав звёзд навсегда останется для нас тайной. Но вскоре был применён метод спектрального анализа, который теперь позволяет узнать из чего состоят не только Солнце и близкие звёзды, но и самые удалённые галактики и квазары. Спектральный анализ дал неоспоримые доказательства физического единства мира. На звёздах не обнаружено ни одного неизвестного химического элемента. Единственный элемент – гелий был открыт сначала на Солнце и лишь потом на Земле. Но неизвестные на Земле физические состояния вещества (сильная ионизация, вырождение) наблюдаются именно в атмосферах и недрах звёзд.

Наиболее обильным элементом в звёздах является водород. Приблизительно втрое меньше содержится в них гелия. Правда, говоря о химическом составе звёзд, чаще всего имеют в виду содержание элементов тяжелее гелия. Доля тяжёлых элементов невелика (около 2%), но они, по выражению американского астрофизика Дэвида Грея, подобно щепотке соли в тарелке супа, придают особый вкус работе исследователя звёзд. От их количества во многом зависят и размер, и температура, и светимость звезды.

После водорода и гелия на звёздах наиболее распространены те же элементы, которые преобладают в химическом составе Земли: кислород, углерод, азот, железо и др. Химический состав оказался различным у звёзд разного возраста. В самых старых звёздах доля элементов тяжелее гелия значительно меньше, чем на Солнце. В некоторых звёздах содержание железа меньше солнечного в сотни и тысячи раз. А вот звёзд, где этих элементов было бы больше, чем на Солнце, сравнительно немного. Эти звёзды (многие из них двойные), как правило, являются необычными и по другим параметрам: температуре, напряжённости магнитного поля, скорости вращения. Некоторые звёзды выделяются по содержанию какого-нибудь одного элемента или группы элементов. Таковы, например, бариевые или ртутно-марганцевые звёзды. Причины подобных аномалий пока малопонятны. На первый взгляд может показаться, что исследование этих малых добавок немного дает для понимания эволюции звезд. Но на самом деле это не так. Химические элементы тяжелее гелия образовались в результате термоядерных и ядерных реакций в недрах очень массивных звёзд, при вспышках новых и сверхновых звёзд предыдущих поколений. Изучение зависимости химического состава от возраста звёзд позволяет пролить свет на историю их образования в различные эпохи, на химическую эволюцию Вселенной в целом.

Важную роль в жизни звезды играет её магнитное поле. С магнитным полем связаны практически все проявления солнечной активности: пятна, вспышки, факелы и др. На звёздах, магнитное поле которых значительно сильнее солнечного, эти процессы протекают с большей интенсивностью. В частности, переменность блеска некоторых таких звёзд объясняют появлением пятен, аналогичных солнечным, но закрывающих десятки процентов их поверхности. Однако физические механизмы, обусловливающие активность звёзд, ещё не до конца изучены. Наибольшей интенсивности магнитные поля достигают на компактных звёздных остатках – белых карликах и особенно нейтронных звёздах.

За период немногим более двух столетий представление о звёздах изменилось кардинально. Из непостижимо далёких и равнодушных светящихся точек на небе они превратились в предмет всестороннего физического исследования. Как бы отвечая на упрек де Сент-Экзюпери, взгляд на эту проблему выразил американский физик Ричард Фейнман: «Поэты утверждают, что наука лишает звёзды красоты. Для нее звезды – просто газовые шары. Совсем не просто. Я тоже любуюсь звёздами и чувствую их красоту. Вот только кто из нас видит больше?»

Благодаря развитию наблюдательных технологий астрономы получили возможность исследовать не только видимое, но и невидимое глазу излучение звезд. Сейчас уже многое известно об их строении и эволюции, хотя немало остается и непонятного.

Еще впереди то время, когда исполниться мечта создателя современной науки о звездах Артура Эддингтона и мы, наконец «сможем понять такую простую вещь, как звезда».

Б лижайшая к нам звезда - это Солнце . О нем подробно рассказано на отдельной странице. Здесь же мы поговорим о звездах вообще, то есть в том числе и о тех, что можно видеть ночью.

Солнце мы тоже не станем исключать из повествования, наоборот, мы всегда будем сравнивать с ним другие звезды. До Солнца - 150 000 000 километров. Это в 270 000 раз ближе, чем до самой близкой, исключая само Солнце, звезды. Ясно, почему очень многое, что известно о звездах, мы знаем благодаря нашему дневному светилу.

Даже свет от ближайших звезд идет несколько лет, а сами звезды в самые мощные телескопы видны как точки. Впрочем, это не совсем так: звезды видны в виде крохотных дисков, но это связано с искажениями в телескопах, а не с увеличением. Звезд бесчисленное множество. Никто не в силах точно сказать, сколько существует звезд, тем более звезды рождаются и умирают. Можно лишь приближенно заявить, что в нашей Галактике около 150 000 000 000 звезд, а во Вселенной неизвестное число миллиардов галактик... А вот сколько звезд можно увидеть на небе невооруженным глазом известно точнее: около 4,5 тысяч. Более того, задавшись определенным пределом яркости звезд, близким по доступности глазу, можно это число назвать точнее, чуть ли не до единиц. Яркие звезды давно посчитаны и занесены в каталоги. Яркость звезды (или, как говорят, ее блеск) характеризуется звездной величиной, которую астрономы давно умеют определять. Так что же такое звезды?

Звезды - раскаленные газовые шары . Температура поверхности звезд различна. У некоторых звезд она может достигать 30 000 К, а у других - лишь 3 000К. Наше Солнце имеет поверхность с температурой около 6 000 К. Надо оговориться, что говоря о поверхности, мы имеем в виду лишь видимую поверхность, так как никакой твердой поверхности у газового шара быть не может.

Нормальные звезды гораздо больше планет, но главное - гораздо массивнее . Мы увидим, что есть во Вселенной странные звезды, имеющие типичные для планет размеры, но во много раз превосходящие последние по массе. Солнце в 750 раз массивнее всех остальных тел Солнечной системы. Подробнее о размерах планет, астероидов и комет и о них самих Вы сможете узнать на страницах, посвященных Солнечной Системе. Есть звезды, в сотни раз превышающие по размеру Солнце и во столько же раз уступающие ему в этом показателе. Однако, массы звезд меняются в гораздо более скромных пределах - от одной двенадцатой массы Солнца до 100 его масс. Может быть, есть и более тяжелые, но такие массивные звезды очень редки. Нетрудно догадаться, прочитав последние строки, что звезды очень сильно отличаются по плотности. Есть среди них такие, кубический сантиметр вещества которых перевешивает большой груженый океанский корабль. Вещество других звезд настолько разряжено, что его плотность меньше плотности того наилучшего вакуума, который достижим в земных лабораторных условиях. К разговору о размерах, массах и плотности звезд мы еще вернемся в дальнейшем.


Оказывается, И. Ньютон достаточно полно сформулировал их задолго до появления первых наблюдательных указаний на гравитационную неустойчивость межзвездной среды. Через 5 лет после того, как И. Ньютон опубликовал свой закон тяготения, его друг, преподобный Ричард Бентли, стоявший тогда во главе Тринити-колледжа в Кембридже, в письме к Ньютону спрашивал о том, не может ли быть описанная им сила тяготения причиной образования звезд (как нам кажется, столь точная формулировка проблемы делает Р. Бентли соавтором высказанного Ньютоном принципа гравитационной неустойчивости).


Рассмотрим на простом примере как можно сравнить размеры звезд одинаковой температуры, например Солнца и Капеллы. Эти звезды имеют одинаковые спектры, цвет и температуру, о светимость Капеллы в 120 раз превышает светимость Солнца. Так как при одинаковой температуре яркость единицы поверхности звезд тоже одинакова, то, значит, поверхность Капеллы больше, чем Солнца в 120 раз, а диаметр и радиус ее больше солнечных в корень квадратный из 120, что приближенно равно 11 раз. Определить размеры других звезд позволяет знание законов излучения.


Объект Hubble-X представляет собой сияющее газовое облако - одну из самых активных областей звездообразования в галактике NGC 6822. Наименование этой области взято из каталога объектов этой специфической галактики (X - это римское цифровое обозначение объекта). Галактика NGC 6822 находится в созвездии Стрельца на расстоянии около 1 630 000 световых лет от Земли и является одним из самых близких соседей Млечного Пути. Интенсивный процесс звездообразования в Hubble-X начался всего около 4 миллионов лет назад.

Созвездия — это участки звездного неба. Чтобы лучше ориентироваться в звездном небе, древние люди стали выделять группы звезд, которые можно было связать в отдельные фигуры, похожие предметы, мифологических персонажей и животных. Такая система позволила людям организовать ночное небо, сделав каждый его участок легко узнаваемым. Это упростило изучение небесных тел, помогло измерять время, применять астрономические знание в сельском хозяйстве и ориентироваться по звездам. Звезды, которые мы видим на нашем небе словно на одном участке, на самом деле могут находиться крайне далеко друг от друга. В одном созвездии могут быть никак не связанные между собой звезды, как очень близкие, так и очень далекие от Земли.

Всего существует 88 официальных созвездий. В 1922 году Международным астрономическим союзом было официально признано 88 созвездий, 48 из которых были описаны еще древнегреческим астрономом Птолемеем в его звездном каталоге «Альмагест» около 150 г. до н.э. В картах Птолемея были пробелы, особенно это касалось южного неба. Что вполне логично — созвездия, описанные Птолемеем, охватывали ту часть ночного неба, которая видна с юга Европы. Остальные лакуны начали заполняться во времена великих географических открытий. В XIV веке голландские ученые Герард Меркатор, Питер Кейзер и Фредерик де Хаутман добавили к существующему списку созвездий новых, а польский астроном Ян Гевелий и французский Никола Луи де Лакайль довершили начатое Птолемеем. На территории России из 88-и созвездий можно наблюдать около 54-х.

Знания о созвездиях пришли к нам из древних культур. Птолемей составил карту звездного неба, но знаниями о созвездиях люди пользовались задолго до этого. Как минимум в VIII в до н.э., когда Гомер в своих поэмах «Илиада» и «Одиссея» упоминал Волопаса, Ориона и Большую Медведицу, люди уже группировали небо в отдельные фигуры. Считается, что основной массив знаний древних греков о созвездиях пришел к ним от египтян, которые, в свою очередь, унаследовали их от жителей Древнего Вавилона, шумеров или аккадов. Около тридцати созвездий выделялось уже жителями позднего бронзового века, в 1650−1050 гг. до н.э., судя по записям на глиняных табличках Древней Месопотамии. Отсылки к созвездиям можно найти и в древнееврейских библейских текстах. Самым примечательным созвездием, пожалуй, является созвездие Ориона: практически в каждой древней культуре оно имело свое название и почиталось как особенное. Так, в Древнем Египте его считали воплощением Осириса, а в Древнем Вавилоне называли «Верный пастух небес». Но самое удивительное открытие было сделано в 1972 году: в Германии был найден кусок слоновой кости мамонта, возрастом более 32 тысячи лет, на котором было вырезано созвездие Ориона.

Мы видим различные созвездия в зависимости от времени года. В течение года нашему взору предстают разные части неба (и разные небесные тела соответственно), потому что Земля совершает свой ежегодный вояж вокруг Солнца. Созвездия, которые мы наблюдаем ночью, это те, что расположены позади Земли на нашей стороне Солнца, т.к. днем, за яркими лучами Солнца, мы не в силах их разглядеть.

Чтобы лучше понять, как это работает, представьте себе, будто вы катаетесь на карусели (это Земля), из центра которой исходит очень яркий, ослепляющий свет (Солнце). Вы не сможете увидеть, что находится напротив вас из-за света, а сможете различить лишь то, что находится за пределами карусели. При этом картинка будет постоянно меняться, поскольку вы катаетесь по кругу. Какие именно созвездия вы наблюдаете на небе и в какое время года они появляются, зависит еще и от географической широты смотрящего.

Созвездия путешествуют с востока на запад, как Солнце. Как только начинает темнеть, в сумерках, в восточной части неба появляются первые созвездия, чтобы пройти по всему небосклону и исчезнуть с рассветом в западной его части. Из-за вращения Земли вокруг своей оси создается впечатление, что созвездия, как и Солнце, восходят и заходят. Созвездия, которые мы только что наблюдали на западном горизонте сразу после захода Солнца, вскоре исчезнут из нашего поля зрения, чтобы их заменили созвездия, которые находились выше во время заката всего лишь несколько недель назад.

Созвездия, возникающие на востоке, имеют суточный сдвиг около 1 градуса в день: завершение 360-градустного путешествия вокруг Солнца за 365 дней дает примерно такую же скорость. Ровно через год в то же самое время звезды займут на небе точно такое же положение.

Движение звезд — иллюзия и вопрос перспективы. Направление, в котором звезды движутся по ночному небу, обусловлено вращением Земли вокруг своей оси и действительно зависит от перспективы и от того, в какую сторону обращен лицом наблюдающий.

Глядя на север, созвездия, кажется, движутся против часовой стрелки, вокруг неподвижной точки ночного неба, так называемого северного полюса мира, расположенного возле Полярной звезды. Подобное восприятие связано с тем, что земля вращается с запада на восток, т. е. земля под вашими ногами движется направо, а звезды, как Солнце, Луна и планеты, над вашей головой следуют по направлению восток-запад, т. е. справа налево. Однако если вы повернетесь лицом на юг, звезды будут перемещаться словно по часовой стрелке, слева направо.

Зодиакальные созвездия — это те, через которые перемещается Солнце. Самые известные созвездия из 88-и существующих — зодиакальные. К ним относятся те, через которые за год проходит центр Солнца. Принято считать, что всего существует 12 зодиакальных созвездий, хотя фактически их 13: с 30 ноября по 17 декабря Солнце находится в созвездии Змееносца, но астрологи его к зодиакальным не причисляют. Все зодиакальные созвездия расположены вдоль видимого годового пути Солнца среди звезд, эклиптики, под наклоном 23,5 градусов к экватору.

У некоторых созвездий есть семьи — это группы созвездий, расположенных в одной области ночного неба. Как правило, они присваивают имена наиболее значимого созвездия. Самое «многодетное» — созвездие Геркулес, у которого целых 19 созвездий. К другим крупным семьям относятся Большая Медведица (10 созвездий), Персей (9) и Орион (9).

Созвездия-знаменитости. Самое большое созвездие — Гидра, оно простирается более чем на 3% ночного неба, в то время как наименьшее по площади, Южный Крест, занимает всего лишь 0,165% небосвода. Центавр может похвастаться наибольшим количеством видимых звезд: 101 звезда входит в знаменитое созвездие южного полушария неба. В созвездие Большого Пса входит самая яркая звезда нашего неба, Сириус, блеск которой равен −1,46m. А вот созвездие с названием Столовая Гора считается самым тусклым и не содержит звезд ярче 5-ой звездной величины. Напомним, в числовой характеристике яркости небесных тел чем меньше значение, тем ярче объект (яркость Солнца, например, составляет −26,7m).

Астеризм — это не созвездие. Астеризмом называют группу звезд с устоявшимся названием, например «Большой Ковш», который входит в созвездие Большая Медведица, или «Пояс Ориона» — три звезды, опоясывающие фигуру Ориона в одноименном созвездии. Иными словами, это фрагменты созвездий, которые закрепили за собой отдельное имя. Сам термин не является строго научным, скорее просто представляя собой дань традиции.

Звезды… Нет ничего прекрасней вида ночного неба темной безлунной ночью. Вдали от городских огней мириады звезд усеивают небосвод, являя нам извечную картину.

Уже в глубокой древности люди начали объединять звезды в группы (или созвездия), а наиболее ярким из них дали собственные имена. Сделано это было для удобства, ведь среди тысяч звезд было не так-то легко ориентироваться. Богатая фантазия древних дала созвездиям имена мифических героев и фантастических существ.

Сириус (слева) и звезды из созвездий Ориона и Тельца над западным горизонтом озера Баконибель в Венгрии. Слева также можно видеть Млечный Путь. Фото: Tamas Ladanyi/ladanyi.csillagaszat.hu

Что представляют собой звезды? В древности люди выдвигали самые разные предположения относительно их сущности. Некоторые философы полагали, что звезды - это «прорехи» в непрозрачном куполе неба, сквозь которые мы видим отблески Небесного огня. Другие считали, что звезды буквально прикреплены к небесной сфере богами для украшения ночного неба…

Природу звезд помогли установить точные физические методы наблюдений и наше знание общих законов природы. Теперь мы знаем, что звезды - это раскаленные газовые (вернее, плазменные) шары, летящие в беспредельном и почти пустом пространстве . Звезды могут отличаться друг от друга по размерам, массе, температуре и интенсивности излучения, но источник энергии для большинства звезд один - термоядерные реакции, идущие в их недрах.

Наше Солнце - тоже звезда. Солнце является центральным телом Солнечной системы, в состав которой входят планеты (в том числе и Земля), карликовые планеты, астероиды, кометы и мельчайшая пыль. Солнце - одиночная звезда, у нее нет звезды-спутника. Но если мы заглянем дальше в космос, то обнаружим, что звезды часто группируются по две, три, а то и больше звезд, вплоть до шести. Наконец, в космосе существуют целые звездные скопления, в составе которых насчитываются от десятков и сотен до миллионов светил…

Все звезды, которые мы видим ночью на небе, вместе со звездными скоплениями входят в состав огромной системы - Галактики . Наша галактика называется Млечный Путь . Она состоит из нескольких сотен миллиардов звезд. За пределами Млечного Пути существуют миллиарды других галактик, похожих на нашу собственную. Они находятся настолько далеко от нас, что только считанные единицы галактик можно увидеть невооруженным глазом.

Нам повезло. Мы живем в эпоху, когда наука достигла значительных успехов в понимании окружающего нас мира, в том числе и космоса. Благодаря этому мы имеем возможность смотреть на звезды не пустым взглядом. Переходя от созвездия к созвездию, нам известно, что в этом участке неба находится пульсар, а здесь - близкая, похожая на Солнце, звезда, вокруг которой тоже вращаются планеты. Так в небе причудливым образом соединяются история и современность, древние мифы и научные знания. И еще - извечная тайна космоса и жажда ее познать.

Единицы измерения

Большинство звёздных характеристик как правило выражается в СИ , но также используется и СГС (например, светимость выражается в эргах в секунду). Масса, светимость и радиус обычно даются в соотношении с нашим Солнцем:

Для обозначения расстояния до звёзд приняты такие единицы как световой год и парсек

Большие расстояния, такие как радиус гигантских звёзд или большая полуось двойных звёздных систем часто выражаются с использованием астрономической единицы (а. е. ) - среднее расстояние между Землёй и Солнцем (150 млн км ).

Физические характеристики

Массы подавляющего большинства современных звёзд лежат в пределах от 0,071 масс Солнца (75 масс Юпитера) до 100-150 масс Солнца , возможно, первые звёзды были ещё более массивными. Температура в недрах звёзд достигает 10-12 млн .

Расстояние

Существуют множество способов определить расстояние до звезды. Но наиболее точный и основой для всех остальных методов является метод измерения параллаксов звёзд. Первым измерил расстояние до звезды Веги российский астроном Василий Яковлевич Струве в 1837 году. Определение параллаксов с поверхности Земли позволяет измерить расстояния до 100 парсек , а со специальных астрометрических спутников, таких как Hipparcos , - до 1000 пк. Если звезда входит в состав звездного скопления, то мы не сильно ошибемся, если примем расстояние до звезды равным расстоянию до скопления. Если звезда принадлежит к классу цефеид , то расстояние можно найти из зависимости период пульсации - абсолютная звездная величина. В основном, для определения расстояния до далеких звёзд используется фотометрия .

Масса

Достоверно определить массу звезды можно, только если она является компонентом двойной звезды . В этом случае массу можно вычислить, используя обобщенный третий закон Кеплера . Но даже при этом оценка погрешности составляет от 20 % до 60 % и, в значительной степени, зависит от погрешности определения расстояния до звезды. Во всех прочих случаях приходится определять массу по косвенным признакам, например, зависимости светимости и массы звезды. .

Химический состав

Крайне важной характеристикой является ее химический состав, как с точки зрения звезды, так и с точки зрения наблюдателя. И хотя доля элементов тяжелее гелия исчисляется не более чем несколько процентов, но они играют важную роль в жизни звезды. Благодаря им ядерные реакции могут замедляться или ускорятся, а это отразиться как на яркости, звезды, так и на цвете, так и на продолжительности жизни. Так чем больше металличность массивной звезды, тем меньше будет остаток при взрыве сверхновой. Наблюдатель, зная химический состав звезды, может довольно уверенно сказать время образования звезды. Так как все те трагические изменения, происходящие со звездой на протяжении ее жизни, не касаются поверхности звезды. Это всегда так мало массивных и средне массивных звезд, и почти всегда для массивных звезд.

Строение звёзд

Возникновение и эволюция звёзд

Звезда начинает свою жизнь как холодное разреженное облако межзвёздного газа, сжимающееся под действием собственного тяготения. При сжатии энергия гравитации переходит в тепло, и температура газовой глобулы возрастает. Когда температура в ядре достигает нескольких миллионов Кельвинов , начинаются термоядерные реакции и сжатие прекращается. В таком состоянии звезда пребывает большую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга - Рассела , пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превратится в гелий, термоядерное горение водорода продолжается на периферии гелиевого ядра.

В этот период структура звезды начинает заметно меняться. Её светимость растёт, внешние слои расширяются, а внутрениие наоборот, сжимаются. И до поры до времени яркость звезды тоже понижается. Температура поверхности снижается - звезда становится красным гигантом . На ветви гигантов звезда проводит значительно меньше времени, чем на главной последовательности. Когда масса её изотермического гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; возрастающая при этом температура стимулирует термоядерное превращение гелия в более тяжёлые элементы.

Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию . В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды , звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

У звёзд более массивных, чем Солнце, давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны , упакованные так плотно, что размер звезды измеряется километрами, а плотность в 280 трлн. раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Схема эволюции одиночных звёзд

малые массы 0.08M sun

умеренные массы
0.5M sun

массивные звёзды
8M sun

0.5M sun 3M sun 8M sun M * >10M sun

горение водорода в ядре

гелиевые бел. карлики

вырожд. He ядро

невырожд. He ядро

гелиевая вспышка

спокойное горение гелия в ядре

CO белый карлик

вырожд. CO ядро невырожд. CO ядро

углеродная дет.

горение углерода в ядре. CO в Fe

горение углерода в ядре. C в O, Ne, Si, Fe, Ni..

O,Ne,Mg… белый карлик или нейтронная звезда

чёрная дыра

Схема эволюции одиночных звёзд. По В. А. Батурину и И. В. Мироновой

Продолжительность эволюции звёзд

Классификация звёзд

Звёзды классифицируют по светимости, массе, температуре поверхности, химическому составу, особенностям спектра (спектральному классу) и кратности.

Кратные звёзды

Звёздные системы могут быть одиночными и кратными: двойными, тройными и большей кратности. В случае если в систему входит более десяти звёзд то принято её называть звёздным скоплением . Двойные (кратные) звёзды очень распространены. По некоторым оценкам более 70% звёзд в галактике кратные . Так среди 32 ближайших к Земле звёзд 12 кратных из которых 10 двойных в том числе и самая яркая из визуально наблюдаемых звёзд Сириус . В окрестностях 20 парсек от Солнечной системы из более 3000 звёзд, около половины - двойные звёзды всех типов

Обозначения звёзд

В прекрасно иллюстрированной Уранометрии (Uranometria, ) немецкого астронома И. Байера ( -), где изображены созвездия и связанные с их названиями легендарные фигуры, звёзды были впервые обозначены буквами греческого алфавита приблизительно в порядке убывания их блеска: α - ярчайшая звезда созвездия, β - вторая по блеску, и т. д. Когда не хватало букв греческого алфавита, Байер использовал латинский . Полное обозначение звезды состояло из упомянутой буквы и латинского названия созвездия. Например, Сириус - ярчайшая звезда в созвездии Большого Пса (Canis Major), поэтому его обозначают как α Canis Majoris, или сокращённо α CMa; Алголь - вторая по яркости звезда в Персее обозначается как β Persei, или β Per. Байер, однако, не всегда следовал введенному им правилу, и в байеровских обозначениях есть большое количество исключений.

Реакции термоядерного синтеза в недрах звёзд

Реакции термоядерного синтеза элементов - основной источник энергии большинства звёзд.

Самые известные звёзды

обозначение название