Иммунологические эффекты комплемента. Активация системы комплемента. Комплемент способен отличать «свое» от «не-своего»

Комплемент - это система, состоящая из собственно белков комплемен-та, мембранных рецепторов к комплементу, плазменных и мембранных регуля-торов активности комплемента.

Белки системы комплемента

Собственно белки комплемента — это ряд гликопротеиновых и белковых фак-торов плазмы крови, включающий 9 различных компонентов. Они образуют мульти ферментный молекулярный каскад, при котором продукт одной реакции является субстратом для последующей. При этом происходит постепенное на-ращивание литического потенциала и первоначально слабый инициирующий стимул приводит к мощному конечному противомикробному эффекту.

Рецепторы к системе комплемента

Различают 4 типа рецепторов к компонентам комплемента (complement receptor, CR — I, II, Ш, IV). Рецептор первого типа (CR,) содержится на поверхности антигенпрезентирующих клеток и эритроцитов. Он опосредует захват патогена, к которому присоединены опсонины C3b и C4b. Связывание эритроцитами им-мунных комплексов обеспечивает их транспорт в печень и селезенку, где содер-жатся макрофаги. Рецептор второго типа (CR II) экспрессируется на В-лимфоцитах и фолликулярных дендритных клетках . Он принимает участие в фиксации ука-занными клетками: иммунных комплексов в зародышевых центрах фолликулов лимфатических узлов, обуславливая дальнейший соматический гипермутагенез иммуноглобулиновых рецепторов В-лимфоцитов и формирование В-клеток па-мяти. CR III и CR IV по своей природе принадлежат к β 2 -интегринам (ад-гезионным молекулам) и являются специфическими к iC3b (инактивированного под влиянием фактора Н) и С3d. Указанные рецепторы содержатся преимущест-венно на фагоцитах и выполняют двоякую функцию. Во-первых, они способству-ют миграции фагоцитов в очаг воспаления , поскольку могут взаимодействовать с адгезионными мембранными молекулами ICAM-1 и ICAM-2, экспрессия ко-торых на клетках тканей является одним из ориентиров для направленного перемещения. Во-вторых, фагоциты, проникая в очаг благодаря именно CR III CR IV , распознают компоненты комплемента, что способствует фагоцитозу меченною опсонинами патогена.

Ингибиторы системы комплемента

Наряду с многочисленными компонентами комплемента в плазме крови цир-кулируют белки со свойствами антагонистов, которые ограничивают активацию системы комплемента во время обезвреживают патогена. Один из наиболее важных — ингибитор первого компонента (С1-ингибитор), дефицит которого обуславливает повышенный риск развития наследственного ангионевротическо-го отека. Так называемый фактор Н обеспечивает инактивацию C3b, способствуя его дальнейшему расщеплению на фрагменты C3c и C3d, а фактор I разрушает C3b и C4b.

Как видно, сразу 2 плазменных фактора нейтрализуют C3b. Это необходимо для корректной работы альтернативного пути, так как излишек указанного фрагмен-та обуславливает необоснованную гиперактивацию комплемента, вызывающую сильное самоповреждение. Инициация каскада происходит именно за счет C3b, образующегося при спонтанном гидролизе С3. Следует отме-тить, что спонтанный гидролиз всегда носит ограниченный характер, что предупре-ждает возможную гиперактивацию системы. В то же время под действием С3-конвертазы фрагмент C3b образуется в количестве, достаточном для инициирования нового каскада, при разворачивании которого высвобождается дополнительная порция C3b. За счет указанной положительной обратной связи комплемент на-ращивает литический потенциал при неизменном количестве патогена. Однако, если описанный процесс не контролируется надлежащим образом, вполне воз-можна необоснованная гиперактивация комплемента но альтернативному пути и, как следствие — повреждение собственных тканей. Причем потенцировать аль-тернативный механизм может и C3b, высвободившийся в результате параллельно реализующегося классического пути активации. Поэтому для корректной работы всей системы необходима адекватная инактивация образующегося C3b.

Поскольку комплемент осуществляет шаблонное распознавание, а мембран-ные структуры собственных клеток в норме претерпевают динамические изме-нения, существует потенциальная опасность комплемент-опосредованной ауто-агрессии. Для ее предотвращения в мембраны собственных клеток «вмонтирова-ны» защитные белки, инактивирующие каскад комплемента. Речь идет о факторе, ускоряющем распад (англ. Decay accelerating factor, DAF), который содержится на форменных элементах крови , эпителиоцитах и клетках эндотелия. Он усиливает катаболизм ключевых ферментов каскада — С3- и С5-конвертаз. К мембранным защитным белкам относится также мембранный кофакторный протеин (МСР), яв-ляющийся кофактором в протеолизе C3b и C4b с помощью 1-фактора.

Роль системы комплемента

Роль системы комплемента заключается в: Материал с сайта

  • Обеспечение цитолиза (разрушения модифицированных собственных клеток) и бактерицидности (деструкции бактерий). В этом смысле комплемент дополняет (лат. complementare — дополнять) действие ли-зоцима.
  • Образование анафилатоксинов (C3a, C4a и C5a), которые индуцируют высвобождение гистамина и других биологически активных веществ из тучных клеток и базофилов, обуславливая развитие вазодилатации, плазморрагии и сокращения гладкой мускулатуры бронхов.
  • Реализация хемотаксического влияния на нейтрофилы , эозинофилы и мо-ноциты, что приводит к клеточной инфильтрации очага воспаления.
  • Обеспечение адгезии, опсонизации и фагоцитоза, что способствует унич-тожению патогенов.
  • Обеспечение резистентности к вирусам (фрагменты С1 —С9 способны ли-зировать вирусы; C3b -фрагмент является опсонином; отдельные компо-ненты комплемента блокируют пенетрацию вируса в клетку).
  • Участие в осуществлении клиренса иммунных комплексов, которые раз-рушаются как непосредственно комплементом, так и макрофагами селе-зенки и печени, содержащими рецепторы к комплементу (в первую оче-редь, к Clq).
  • Обеспечение профилактики самоповреждения при воспалении, так как за счет разрушения циркулирующих иммунных комплексов предотвра-щается возможность развития иммунокомплексной патологии (гломерулонефрита, васкулитов).
  • Осуществление активации

26.1. Общее понятие
Комплемент – сложный белковый комплекс сыворотки крови.
А. Система комплемента состоит из 30 белков (компонентов, или фракций, системы комплемента).
Б. Активируется система комплемента за счет каскадного процесса: продукт предыдущей реакции исполняет роль катализатора последующей реакции. Причем при активации фракции компонента происходит, у первых пяти компонентов, ее расщепление. Продукты этого расщепления и обозначаются как активные фракции системы комплемента.
1. Больший из фрагментов (обозначаемый буквой b), образовавшихся при расщеплении неактивной фракции, остается на поверхности клетки – активация комплемента всегда происходит на поверхности микробной клетки, но не собственных эукариотических клеток. Этот фрагмент приобретает свойства фермента и способность воздействовать на последующий компонент, активируя его.
2. Меньший фрагмент (обозначается буквой a) является растворимым и «уходит» в жидкую фазу, т.е. в сыворотку крови.
В. Фракции системы комплемента обозначаются по-разному.
1. Девять – открытых первыми – белков системы комплемента обозначаются буквой С (от английского слова complement) с соответствующей цифрой.
2. Остальные фракции системы комплемента обозначаются другими латинскими буквами или их сочетаниями.
Г. Значение комплемента для макроорганизма велико и разнообразно (подробнее – см. раздел 26.6).
1. Часть активных фракций системы комплемента являются протеазами.
2. Некоторые – связываются с комплексом антиген-антитело (иммунным комплексом).
3. Другие – активируют тучные клетки и, связанные с ними сосудистые реакции воспаления.
4. И, наконец, часть фракций комплемента осуществляет перфорацию оболочек бактериальных клеток.

26.2. Пути активации комплемента
Существуют три пути активации комплемента: классический, лектиновый и альтернативный.
А. Классический путь активации комплемента является основным. Участие в этом пути активации комплемента – главная функция антител.

Рис 26.2-2. Схема классического пути активации комплемента

1. Активацию комплемента по классическому пути запускает иммунный комплекс: комплекс антигена с иммуноглобулином (класса G – первых трех подклассов – или М). Место антитела может «занять» С-реактивный белок – такой комплекс также активирует комплемент по классическому пути.
2. Классический путь активации комплемента осуществляется следующим образом (рис 26.2-1).
а. Сначала активируется фракция С1: она собирается из трех субфракций (C1q, C1r, C1s) и превращается в фермент С1-эстеразу (С1qrs).
б. С1-эстераза расщепляет фракцию С4.
в. Активная фракция С4b ковалентно связывается с поверхностью микробных клеток (но не с собственными эукариотическими клетками макроорганизма) с здесь присоединяет к себе фракцию С2.
г. Фракция С2 в комплексе с фракцией С4b расщепляется С1-эстеразой с образованием активной фракции С2b.
д. Активные фракции С4b и С2b в один комплекс – С4bС2b – обладающий ферментативной активностью. Это так называемая С3-конвертаза классического пути.
е. С3-конвертаза расщепляет фракцию С3, нарабатываю большие количества активной фракции С3b.
ж. Активная фракция С3b присоединяется к комплексу С4bС2b и превращает его в С5-конвертазу (С4bС2bС3b).
з. С5-конвертаза расщепляет фракцию С5.
и. Появившаяся в результате этого активная фракция С5b присоединяет фракцию С6.
к. Комплекс С5bС6 присоединяет фракцию С7.
л. Комплекс С5bС6С7 встраивается в фосфолипидный бислой мембраны микробной клетки.
м. К этому комплексу присоединяется белок С8.
н. Будучи вместе со всем комплексом в фосфолипидный бислой мембраны микробной клетки, белок С8 катализирует полимеризацию 10 – 16 молекул белка С9. Данный полимер формирует в мембране микробной клетки неспадающую пору диаметром около 10 нм (рис 26.2-2)., что приводит к лизису микроба (так как на его поверхности образуется множество таких пор – «деятельность» одной единицы С3-конвертазы приводит к появлению около 1000 пор). Комплекс С5bС6С7С8С9, образующийся в результате активации комплемента, называется мемранатакующим комплексом (МАК).


Рис. 26.2-2. Схема образования МАК (слева) и результат активации комплемента – формирование поры в фосфолипидном бислое микробной мембраны, приводящей к осмотическому лизису микробной клетки (справа)


Рис 26.2-3. Схема лектинового пути активации комплемента

Б. Лектиновый путь активации комплемента запускается комплексом нормального белка сыворотки крови – маннансвязывающего лектина (МСЛ) – с углеводами поверхностных структур микробных клеток (с остатками маннозы). Активизирующаяся в результате этого процесса МСЛ-ассоциированная сериновая протеаза действует аналогично С1-эстеразе классического пути, по которому, собственно, и развиваются дальнейшие события, заканчивающиеся формированием МАК (рис. 26.2-3).
В. Альтернативный путь активации комплемента (рис. 26.2-4) начинается с ковалентного связывания активной фракции С3b – которая всегда присутствует в сыворотке крови в результате постоянно протекающего здесь спонтанного расщепления фракции С3 – с поверхностными молекулами не всех, но некоторых микроорганизмов.


Рис. 26.2-4. Схема альтернативного пути активации комплемента

1. Дальнейшие события развиваются следующим образом.
а. С3b связывает фактор В (который структурно и функционально гомологичен фактору С2), образуя комплекс С3bВ.
б. В связанном с С3b виде фактор В выступает в качестве сусбтрата для фактора D (сывороточной сериновой протеазы), которая расщепляет его с образованием активного комплекса С3bВb. Этот комплекс обладает ферментативной активностью, структурно и функционально гомологичен С3-конвертазе классического пути (С4bС2b) и называется С3-конвертазой альтернативного пути.
в. Сама по себе С3-конвертаза альтернативного пути нестабильна. Чтобы альтернативный путь активации комплемента успешно продолжался этот фермент стабилизируется фактором Р (пропердином).
г. То, что происходит дальше, аналогично классическому пути активации комплемента.
1. Нарабатывается много С3b и образуется комплекс С3bВbС3b, являющийся С5-конвертазой.
2. Активация С5 дает начало образованию мембранатакующего комплекса (см. разделы 26.2.А.2.и – 26.2.А.2.н).
2. Основное функциональное отличие альтернативного пути активации комплемента, по сравнению с классическим, заключается в быстроте ответа на патоген: так как не требуется время для накопления специфических антител и образования иммунных комплексов.
Г. Важно понимать, что и классический и альтернативный пути активации комплемента действуют параллельно, еще и амплифицируя (т.е. усиливая) друг друга. Другими словами комплемент активируется не «или по классическому или по альтернативному», а «и по классическому и по альтернативному» путям активации. Это, еще и с добавлением лектинового пути активации, – единый процесс (см. рис. 26.2-5), разные составляющие которого могут просто проявляться в разной степени.

26.3. Анафилотоксины
Активные фракции комплемента С3а и С5а называются анафилотоксинами, так как участвуют, помимо прочего, в аллергической реакции, называемой анафилаксия (см. ниже). Наиболее сильным анафилотоксином является С5а.
А. Анафилотоксины действуют на разные клетки и ткани макроорганизма.
1. Действие их на тучные клетки вызывает дегрануляцию последних.
2. Анафилотоксины действуют также на гладкие мышцы, вызывая их сокращение.
3. Действуют они и на стенку сосуда: вызывают активацию эндотелия и повышение его проницаемости, что создает условия для экстравазации из сосудистого русла жидкости и клеток крови в ходе развития воспалительной реакции.
Б. Корме того, анафилотоксины являются иммуномодуляторами, т.е. они выступают в роли регуляторов иммунного ответа.
1. С3а выступает в роли иммуносупрессора (т.е. подавляет иммунный ответ).
2. С5а является иммуностимулятором (т.е. усиливает иммунный ответ).


26.2-4. Общая схема активации комплемента


26.2-5. Схема, иллюстрирующая взаимосвязь путей активации комплемента

26.4. Рецепторы для компонентов комплемента
Фракции комплемента могут воздействовать на клетки макроорганизма лишь в том случае, если на последних существуют соответствующие рецепторы.
А. Фагоциты имеют рецептор для С3b. Этот рецептор обуславливает большую активности фагоцитов по отношению к опсонизированным микробами (а именно, к тем из них, на поверхности которых наличествует фракции С3b).
Б. Эритроциты обладают специфическими рецепторами для фракций С3b и С4b. Этими рецепторами эритроциты связывают соответствующие фракции комплемента в составе циркулирующих иммунных комплексов (ЦИК) и транспортируют эти комплексы к макрофагам селезенки и печени, которые, их уничтожают, осуществляя тем самым клиренс (т.е. очищение) крови от ЦИК.
В. На тучных клетках локализованы рецепторы к фракции С5а, через которые этот анафилатоксин активирует эти клетки и вызывает их дегрануляцию.
Г. Таким же рецептором обладают макрофаги, благодаря чему фракция С5а активирует и эти клетки.

26.5. Регуляция системы комплемента
В норме, в отсутствие во внутренней среде макроорганизма патогена, уровень спонтанной активности системы комплемента невысок. Каскадный механизм активации комплемента «запускается» активаторами, а регуляция его работы по типу «обратной связи» – ингибиторами, без которых каждый эпизод активации заканчивался бы полным истощением всей системы.
А. Активаторами системы комплемента являются молекулярные комплексы, располагающиеся на поверхности микроорганизма, и запускающие процесс активации комплемента по тому или иному пути. О них уже упоминалось выше (см. раздел 26.2).
1. Активаторами классического пути активации комплемента выступают два комплекса.
а. Иммунный комплекс (комплекс антиген-антитело).
б. Комплекс антигена с С-реактивным белком.
2. Активатором лектинового пути активации комплемента выступает комплекс нормального белка сыворотки крови – маннансвязывающего лектина (МСЛ) – с углеводами поверхностных структур микробных клеток (а именно – с остатками маннозы).
3. Активаторами альтернативного пути активации комплемента выступают два комплекса.
а. Комплекс (в результате ковалентного связывания) активной фракции С3b – которая всегда присутствует в сыворотке крови в результате постоянно протекающего здесь спонтанного расщепления фракции С3 – с поверхностными молекулами не всех, но некоторых микроорганизмов.
б. Агрегированные на поверхности микроба иммуноглобулины классов А и Е.
Б. Ингибиторы системы комплемента локализуются в сыворотке крови или на мембране клеток.
1. В сыворотке крови локализуются пять белков – ингибиторов системы комплемента.
а. С1-ингибитор (С1inh) инактивирует активную фракцию С1qrs (т.е. С1-эстеразу).
б. С4-связывающий протеин (C4BP) делает фактор С4b доступным для деградации фактором I.
в. Фактор Н – делает фактор С3b доступным для деградации фактором I.
г. Фактор I расщепляет С3b (в комплексе с фактором Н) и С4b (в комплексе с С4ВР).
д. Белок S связывается с комплексом С5bС6С7 и предотвращает дальнейшее образование мембранатакующего комплекса.
2. На клетках млекопитающих (и, соответственно человека) локализуются три белка – ингибитора системы комплемента.
а. DAF (decay-accelerating factor = фактор, ускоряющий распад) инактивирует С4bС2b (т.к. вместо С2 связывается с С4b).
б. МСР (мембранный кофактор протеолиза) делает фактор С3b доступным для деградации фактором I.
в. Протектин (обозначаемый также как молекула CD59) инактивирует белки мембранатакующего комплекса (препятствует С-опосредованному лизису собственных клеток)

26.6. Функции системы комплемента
Система комплемента играет очень важную роль в защите макроорганизма от патогенов.
А. Система комплемента участвует в инактивации микроорганизмов, в т.ч. опосредует действие на микробы антител.
Б. Активные фракции системы комплемента активируют фагоцитоз.
В. Активные фракции системы комплемента принимают участие в формировании воспалительной реакции.

26.7. Определение активности системы комплемента
Для определения активности комплемента в современных иммунологических лабораториях используют реакцию гемолиза и иммуноферментный анализ (ИФА), пришедший на смену реакции радиальной иммунодиффузии по Манчини.
А. Реакция гемолиза используется для определения титра комплемента и для измерения общей активности системы комплемента.
1. Титр комплемента определяется как максимальное разведение сыворотки крови, вызывающее лизис эритроцитов барана, нагруженных антиэритроцитарными антителами (так называемой гемсистемы).
2. Под общей активностью системы комплемента понимают количество комплемента, обеспечивающее лизис 50% эритроцитов гемсистемы (обозначается как СН50).
Б. Иммуноферментный анализ используется для определения концентрации в сыворотке крови отдельных компонентов системы комплемента (C1q, C1s, C2, C3, C4, C5, C6, C7, C8, C9, пропердина, фактора В, С1-ингибитора). Раньше концентрацию наиболее важных в функциональном отношении фракций системы комплемента (чаще – С3 и С4) определяли с помощью реакции иммунодиффузии по Манчини, но в современных лабораториях, оснащенных ИФА-анализаторами, с этой целью используют иммуноферментный анализ, значительно расширивший возможности оценки функционального состояния у пациента его системы комплемента.

Система комплемента - группа по меньшей мере 26 сывороточных белков (компонентов комплемента), опосредующих воспалительные реакции при участии гранулоцитов и макрофагов (табл. 16–3). Компоненты системы участвуют в реакциях свёртывания крови, способствуют межклеточным взаимодействиям, необходимым для процессинга Аг, вызывают лизис бактерий и клеток, инфицированных вирусами. В норме компоненты системы находятся в неактивной форме. Активация комплемента приводит к поочередному (каскадному) появлению его активных компонентов в серии протеолитических реакций, стимулирующих защитные процессы. Основные функции компонентов комплемента в защитных реакциях - стимуляция фагоцитоза , нарушение целостности клеточных стенок микроорганизмов мембраноповреждающим комплексом (особенно у видов, устойчивых к фагоцитозу, например гонококков) и индукция синтеза медиаторов воспалительного ответа (например, ИЛ1; табл. 16–4). Кроме того, система комплемента стимулирует воспалительные реакции (некоторые компоненты - хемоаттрактанты для фагоцитов), участвует в развитии иммунных (через активацию макрофагов) и анафилактических реакций. Активация компонентов комплемента может происходит по классическому и альтернативному путям.

Ы Вёрстка Таблица 16-3

Таблица 16 3 . Компоненты системы комплемента

Компонент Биологическая активность
Классический путь
C1q Взаимодействует с Fc-фрагментами АТ иммунных комплексов; взаимодействие активирует C1r
C1r C1r расщепляется с образованием протеазы C1s, гидролизующей компоненты С4 и С2
С4 С4 расщепляется с образованием С4а и С4b, адсорбирующегося на мембранах и принимающего участие в конвертировании С3
С2 С2 взаимодействует с С4b и конвертируется C1s в С2b (протеазный компонент С3/С5 конвертазы)
С3* Расщепляется С2b на анафилатоксин С3а и опсонин C3b; также является компонентом С3/С5 конвертазы
Альтернативный путь
Фактор В Аналог С2 классического пути активации
Фактор D Сывороточная протеаза, активирующая фактор В путём его расщепления
Мембраноповреждающий комплекс
С5 Расщепляется комплексом С3/С5; С5а является анафилатоксином, С5b фиксирует С6
С6 Взаимодействует с С5b и образует фиксирующий комплекс для С7
С7 Взаимодействует с С5b и С6, затем весь комплекс встраивается в клеточную стенку и фиксирует С8
С8 Взаимодействует с комплексом С5b, С6 и С7; образует стабильный мембранный комплекс и фиксирует С9
С9 После взаимодействия с комплексом С5–С8 полимеризуется, что приводит к лизису клетки
Рецепторы к компонентам комплемента
С1-рецептор Усиливает диссоциацию С3-конвертаз, стимулирует фагоцитоз микроорганизмов, опсонизированных С3b и С4b
С2-рецептор Опосредует сорбцию комплемент-содержащих иммунных комплексов; рецептор для вируса Эпстайна–Барр
С3-рецептор Обусловливает адгезию (белок семейства интегринов), стимулирует фагоцитоз микроорганизмов, опсонизированных С3b
С4-рецептор Белок семейства интегринов, стимулирует фагоцитоз микроорганизмов, опсонизированных С3b

* С3 также служит компонентом альтернативного пути активации.



Ы Вёрстка Таблица 16-4

Таблица 16 4 . Основные эффекты белков системы комплемента и фрагментов их расщепления

Компонент Активность
C2a Эстеразная активность по отношению к некоторым эфирам аргинина и лизина
С2b Кининоподобная активность, увеличение подвижности фагоцитов
C3a, C4a, C5a Анафилатоксины, освобождают гистамин, серотонин и другие вазоактивные медиаторы из тучных клеток, увеличивают проницаемость капилляров
C3b, iC3b, C4b Иммунная адгезия и опсонизация, связывают иммунные комплексы с мембранами макрофагов, нейтрофилов (усиление фагоцитоза) и эритроцитов (элиминация комплексов макрофагами селезёнки и печени)
C5a Хемотаксис и хемокинез, привлечение фагоцитирующих клеток в очаг воспаления и увеличение их общей активности
С5b6789 (мембраноповреждающий комплекс) Повреждение мембраны, формирование трансмембранных каналов, выход содержимого клетки. Клетки млекопитающих набухают и лопаются, бактерии теряют важные внутриклеточные метаболиты, но обычно не лизируются
Ba Хемотаксис нейтрофилов
Bb Активация макрофагов (прилипание и распластывание на поверхности)

Классический путь

Активация комплемента по классическому пути комплексами Аг–АТ. Включает поочередное образование всех 9 компонентов (от С1 до С9). Компоненты классического пути обозначают латинской буквой «С» и арабскими цифрами (С1, С2...С9), для субкомпонентов комплемента и продуктов расщепления к соответствующему обозначению добавляют строчные латинские буквы (С1q, C3b и т.д.). Активированные компоненты выделяют чертой над литерой, инактивированные компоненты - буквой «i» (например, iC3b). Первоначально с комплексом Аг–АТ взаимодействует С1 (субкомпоненты C1q, C1r, C1s), затем к ним присоединяются «ранние» компоненты С4, С2 и С3. Они активируют компонент С5, прикрепляющийся к мембране клетки-мишени (бактерии, опухолевые или инфицированные вирусами клетки) и запускающий образование литического комплекса (С5b, С6, С7, С8 и С9). Иначе он называется мембраноповреждающий (мембраноатакующий ) комплекс , так как его образование на мембране вызывает разрушение клетки. Примеры микробных продуктов, активирующих систему комплемента по классическому пути, - ДНК и белок А стафилококков.

Без регуляторных механизмов , действующих на многих этапах, система комплемента оказалась бы неэффективной; неограниченное расходование ее компонентов могло бы привести к тяжелым, потенциально смертельным повреждениям клеток и тканей организма. На первом этапе ингибитор С1 блокирует ферментативную активность Clr и Cls и, следовательно, расщепление С4 и С2. Активированный С2 сохраняется лишь короткое время, и его относительная нестабильность ограничивает время существования С42 и С423. Активирующий СЗ фермент альтернативного пути, С3bВb, также обладает коротким временем полувыведения, хотя связывание пропердина ферментным комплексом продлевает время существования комплекса.

В сыворотке присутствует инактиватор анафилатоксинов - фермент, отщепляющий N-концевой аргинин от С4а, С3а и С5а и тем самым резко снижающий их биологическую активность. Фактор I инактивирует C4b и С3b, фактор Н ускоряет инактивацию С3b фактором I, а аналогичный фактор, С4-связывающий белок (С4-сб), ускоряет расщепление С4b фактором I. Три конституциональных белка клеточных мембран - РК1, мембранный кофакторный белок и фактор, ускоряющий распад (ФУР) - разрушают С3- и С5-конвертазные комплексы, формирующиеся на этих мембранах.

Другие компоненты клеточных мембран - ассоциированные белки (среди которых наиболее изучен CD59) - могут связывать С8 или С8 и С9, что препятствует встраиванию мембраноатакующего комплекса (С5b6789). Некоторые белки сыворотки крови (среди которых наиболее изучены протеин S и кластерин) блокируют присоединение к клеточной мембране комплекса С5b67, связывание им С8 или С9 (т. е. образование полноценного мембраноатакующего комплекса) или как-то иначе препятствуют образованию и встраиванию этого комплекса.

Защитная роль комплемента

Нейтрализация вирусов антителами усиливается С1 и С4 и еще больше возрастает при фиксации С3b, образующегося по ходу классического или альтернативного пути. Таким образом, комплемент приобретает особую важность на ранних стадиях вирусной инфекции, когда количество антител еще невелико. Антитела и комплемент ограничивают инфектив-ность по крайней мере некоторых вирусов и за счет образования типичных комплементных «дыр», видимых при электронной микроскопии. Взаимодействие Clq с его рецептором опсонизирует мишень, т. е. облегчает ее фагоцитоз.

С4а, С3а и С5а фиксируются тучными клетками, которые начинают секретировать гистамин и другие медиаторы, приводя к расширению сосудов и характерным для воспаления отеку и гиперемии. Под влиянием С5а моноциты выделяют ФНО и ИЛ-1, усиливающие воспалительную реакцию. С5а - основной хемотактический фактор для нейтрофилов, моноцитов и эозинофилов, способных фагоцитировать микроорганизмы, опсонизированные С3b или продуктом его расщепления iC3b. Дальнейшая инактивация связанного с клеткой С3b, приводящая к появлению C3d, лишает его опсонизирующей активности, но способность его связывания с В-лимфоцитами сохраняется. Фиксация С3b на клетке-мишени облегчает ее лизис NK-клетками или макрофагами.

Связывание С3b с нерастворимыми иммунными комплексами солюбилизирует их, так как С3b, по-видимому, разрушает решетчатую структуру комплекса антиген-антитело. Одновременно появляется возможность взаимодействия этого комплекса с рецептором С3b (РК1) на эритроцитах, которые переносят комплекс в печень или селезенку, где он поглощается макрофагами. Этот феномен частично объясняет развитие сывороточной болезни (болезни иммунных комплексов) у лиц с недостаточностью С1, С4, С2 или С3.

Комплемент – система белков сыворотки крови, принимающая участие в регуляции воспалительных процессов, активации фагоцитоза и разрушающем (литическом) действии на клеточные мембраны.

В систему комплемента входит около двух десятков белков, их содержание составляет ~ 5 % от всех белков плазмы крови, т. е. концентрация в крови 3 – 4 г/л. Белки комплемента обозначают символом ʼʼСʼʼ и цифрой, соответствующей хронологии их открытия, продукты расщепления компонентов комплемента – маленькой латинской буквой (С3b, C5a и др.). В наибольшем количестве в крови содержится компонент С3, который выполняет центральную роль в активации комплемента.

Для этой системы характерен быстрый, многократно усиленный ответ на антигеннный сигнал за счёт каскадного процесса. При этом продукт одной реакции является катализатором последующей.

В отсутствие антигена компоненты комплемента находятся в неактивном состоянии. Существует два пути активации комплемента˸ без участия антител – альтернативный, и с участием антител – классический. Активацию комплемента по альтернативному пути вызывают компоненты микробных клеток, по классическому – комплексы антиген – антитело. Общим для обоих путей является образование фермента С3-конвертазы, который расщепляет компонент С3 на фрагменты С3а и С3b. Меньший фрагмент С3а принимает участие в развитии воспалительного процесса и хемотаксиса. Больший фрагмент С3b, связываясь с С3-конвертазой, образует С5-ковертазу – фермент, катализирующий расщепление С5 на фрагменты С5а и С5b. Высвобождающийся фрагмент С5b остается фиксированным на мембране и последовательно присоединяет С6, С7, С8 и С9, благодаря чему образуется мембраноатакующий комплекс (МАК), который лизирует клетку-мишень за счёт формирования трансмембранного канала. По этому каналу внутрь клетки поступают ионы Na + и вода, клетка набухает и лопается, т. е. лизирует. Среди других эффектов системы комплемента необходимо отметить следующие˸

- развитие воспалительной реакции и хемотаксис. Компоненты комплемента С3а и С5а могут привлекать к месту воспаления иммунокомпетентные клетки, например фагоциты, которые атакуют бактерии и пожирают их.

- Опсонизация (облегчение распознавания) микроорганизмов. Фрагменты С3b связываются с поверхностью бактерий, благодаря чему создается метка для узнавания фагоцитами, имеющими рецепторы к этому компоненту комплемента.

Рис. 13. Активация белков системы комплемента

Активность системы комплемента контролируется ингибиторами плазмы крови, блокирующими избыточную реакцию.

Фагоцитоз (ʼʼпоеданиеʼʼ клетками) – первая реакция иммунной системы на внедрение чужеродного антигена. Механизм фагоцитоза включает 8 последовательных стадий (рис. 14)˸

1. Хемотаксис – направленное перемещение фагоцитирующих клеток к объекту по градиенту концентрации хемотаксических соединений.

Рис. 14. Стадии фагоцитоза

2. Адгезия - распознавание и прикрепление чужеродного объекта к поверхности фагоцита. Процесс адгезии усиливают опсонины (комплемент С3b, антитела), обволакивающие объекты фагоцитоза. В этом случае связывание происходит с участием фагоцитарных рецепторов для С3b комлемента и /или Fc антитела.