Глобин формула. Гемоглобин. Нормальные формы гемоглобина

  • 11. Обезвреживание билирубина печенью. Формула конъюгированного (прямого) билирубина
  • 12. Нарушения обмена билирубина. Гипербилирубинемия и ее причины.
  • 13. Желтухи, причины. Типы желтух. Желтуха новорожденного
  • 2. Печёночно-клеточная (печёночная) желтуха
  • 14. Диагностическое значение определения концентрации билирубина в биологических жидкостях человека при различных типах желтух
  • 15. Белки сыворотки крови. Общее содержание, функции. Отклонение в содержании общего белка сыворотки крови, причины
  • Нормальные значения общего белка сыворотки крови
  • Клиническое значение определения общего белка сыворотки крови
  • Гиперпротеинемия
  • Гипопротеинемия
  • 19)Белки острой фазы, представители, диагностическое значение
  • 20)Ренин-ангиотензивная система, состав, физиологическая роль
  • Вопрос 26. Противосвертывающая система крови. Основные первичные и вторичные природные антикоагулянты крови.
  • Вопрос 27. Фибринолитическая система крови. Механизм действия.
  • Вопрос 28. Нарушения процессов свертывания крови. Тромботические и геморрагические состояния. Двс – синдром.
  • Вопрос 29. Остаточный азот крови. Понятие, компоненты, содержание в норме. Азотемия, типы, причины возникновения.
  • Вопрос 30. Обмен железа: всасывание, транспорт кровью, депонирование. Роль железа в процессах жизнедеятельности.
  • 31. Тетрагидрофолиевая кислота, роль в синтезе и использовании одно­углеродных радикалов. Метилирование гомоцистеина.
  • 32. Недостаточность фолиевой кислоты и витамина в12. Антивитамины фолиевой кислоты. Механизм действия сульфаниламидных препаратов.
  • 34. Фенилкетонурия, биохимический дефект, проявление болезни, диаг­ностика, лечение.
  • 35. Алкаптонурия, альбинизм. Биохимический дефект, проявление бо­лезней.
  • 36. Распределение воды в организме. Водно-электролитное пространства организма, их состав.
  • 37. Роль воды и минеральных веществ в процессах жизнедеятельности
  • 38. Регуляция водно-электролитного обмена. Строение и функции альдостерона, вазопрессина и ренин-ангиотензиновой системы, механизм регулирующего действия
  • 39. Механизмы поддержания объема, состава и pH жидкостей организма.
  • 40. Гипо- и гипергидратация водно-элетролитных пространств. Причины возникновения.
  • 45.Нарушения кислотно-основного состояния. Типы нарушений. Причины и механизмы¬возникновения ацидоза и алкалоза
  • 46.Роль печени в процессах жизнедеятельности.
  • 47. Метаболическая функция печени (роль в обмене углеводов, липидов, аминокислот).
  • 48. Метаболизм эндогенных и чужеродных токсических веществ в печени: микросомальное окисление, реакции конъюгации
  • 49. Обезвреживание шлаков, нормальных метаболитов и биологически активных веществ в печени. Обезвреживание продуктов гниения
  • 50. Механизм обезвреживания чужеродных веществ в печени.
  • 51. Металлотионеин, обезвреживание ионов тяжелых металлов в печени. Белки теплового шока.
  • 52.Токсичность кислорода. Образование активных форм кислорода.
  • 53. ПОнятие о перекисном окислении липидов, повреждение мембран в результате перекисного окисления липидов.
  • 54. . Механизмы защиты от токсического действия кислорода.Антиоксидатная система.
  • 55. Основы химического канцерогенеза. Понятие о химических канцерогенах.
  • 4.Гемоглобин, строение, свойства, биологическая роль

    Гемоглобин взрослого организма является тетрамером, состоящим из двух α- и двух β-субьединиц с молекулярными массами примерно 16 кДа. α- и β-цепи отличаются аминокислотной последовательностью, но имеют сходную конформацию. Каждая субъединица несет группу гема с ионом двухвалентного железа в центре. Содержание Hb в крови составляет 140-180 г/л у мужчин и 120-160 г/л у женщин, т. е. вдвое выше по сравнению с белками плазмы (50-80 г/л). Поэтому Hb вносит наибольший вклад в образование рН-буферной емкости крови.

    Гемоглобин в качестве белкового компонента содержит глобин, а небелкового – гем. Видовые различия гемоглобина обусловлены глобином, в то время как гем одинаков у всех видов гемоглобина. Основу структуры простетической группы большинства гемосодержащих белков составляет порфириновое кольцо, являющееся в свою очередь производным тетрапиррольного соединения – порфирина.

    Атом железа расположен в центре гема-пигмента, придающего крови характерный красный цвет. Каждая из 4 молекул гема «обернута» одной полипептидной цепью. В молекуле гемоглобина взрослого человека HbА содержатся четыре полипептидные цепи, которые вместе составляют белковую часть молекулы – глобин. Две из них, называемые α-цепями, имеют одинаковую первичную структуру и по 141 аминокислотному остатку. Две другие, обозначаемые β-цепями, также идентично построены и содержат по 146 аминокислотных остатков. Таким образом, вся молекула белковой части гемоглобина состоит из 574 аминокислот. Во многих положениях α- и β-цепи содержат разные аминокислотные последовательности, хотя и имеют почти одинаковые пространственные структуры. Получены доказательства, что в структуре гемоглобинов более 20 видов животных 9 аминокислот в последовательности оказались одинаковыми, консервативными (инвариантными), определяющими функции гемоглобинов; некоторые из них находятся вблизи гема, в составе участка связывания с кислородом, другие – в составе неполярной внутренней структуры глобулы.

    2α цепи и 2β цепи-96%

    3.Особенности строения, развития и метаболизма эритроцита.

    Эритроциты - высокоспециализированные клетки, которые переносят кислород от лёгких к тканям и диоксид углерода, образующийся при метаболизме, из тканей к альвеолам лёгких. Транспорт О2 и СО2 в этих клетках осуществляет гемоглобин, составляющий 95% их сухого остатка.

    Дифференцировка эритроцитов-эритроцит готовится стать собой 2 недели.

    Интерлейкин-3 синтезируется Т-лимфоцитами, а также клетками костного мозга. Это низкомолекулярный белок группы цитокинов - регуляторов роста и дифференцировки клеток.

    Дальнейшую пролиферацию и дифференцировку унипотентной клетки эритроидного ряда регулирует синтезирующийся в почках гормон эритропоэтин .

    В процессе дифференцировки на стадии эритробласта происходят интенсивный синтез гемоглобина, конденсация хроматина, уменьшение размера ядра и его удаление. Образующийся ретикулоцит ещё содержит глобиновую мРНК и активно синтезирует гемоглобин. Циркулирующие в крови ретикулоциты лишаются рибосом, ЭР, митохондрий и в течение двух суток превращаются в эритроциты.

    Строение. Строение спектрина (А), околомембранного белкового комплекса (Б) и цитоскелета эритроцитов (В). Каждый димер спектрина состоит из двух антипараллельных, нековалентносвязанных между собой α- и β-полипептидных цепей (А). Белок полосы 4.1 образует со спетрином и актином "узловой комплекс", который посредством белка полосы 4.1 связывается с цитоплазматическим доменом гликофорина. Анкирин соединяет спектрин с основным интегральным белком плазматической мембраны - белком полосы 3 (Б). На цитоплазматической поверхности мембраны эритроцита имеется гибкая сетеобразная структура, состоящая из белков и обеспечивающая пластичность эритроцита при прохождении им через мелкие капилляры (В).

    Важненько:Интегральный гликопротеин гликофорин присутствует только в плазматической мембране эритроцитов. К N-концевой части белка, расположенной на наружной поверхности мембраны, присоединено около 20 олигосахаридных цепей. Олигосахариды гликофорина - антигенные детерминанты системы групп крови АВО .

    Спектрин - периферический мембранный белок, нековалентно связанный с цитоплазматической поверхностью липидного бислоя мембраны,является основным белком цитоскелета эритроцитов . Спектрин состоит из α- и β-полипептидных цепей, имеющих доменное строение; α- и β-цепи димера расположены антипараллельно, перекручены друг с другом и нековалентно взаимодействуют во многих точках. Спектрин может прикрепляться к мембране и с помощью белка анкирина . Этот крупный белок соединяется с β-цепью спектрина и цитоплазматическим доменом интегрального белка мембраны - белка полосы 3(белок-переносчик ионов С1- и НСО3- через плазматическую мембрану эритроцитов по механизму пассивного антипорта ) . Анкирин не только фиксирует спектрин на мембране , но и уменьшает скорость диффузии белка полосы 3 в липидном слое.

    Метаболизм

    Метаболизм глюкозы

    Эритроциты лишены митохондрий, поэтому в качестве энергетического материала они могут использовать только глюкозу. Глюкоза поступает в эритроциты путём облегчённой диффузии с помощью ГЛЮТ-2. Около 90% поступающей глюкозы используется в анаэробном гликолизе, а остальные 10% - в пентозофосфатном пути.

    Важная особенность анаэробного гликолиза в эритроцитах по сравнению с другими клетками - присутствие в них фермента бисфосфоглицератмутазы. Бисфосфоглицератмутаза катализирует образование 2,3-бисфосфоглицерата(служит важным аллостерическим регулятором связывания кислорода гемоглобином) из 1,3-бисфосфоглицерата..

    Глюкоза в эритроцитах используется и в пентозофосфатном пути, окислительный этап которого обеспечивает образование кофермента NADPH, необходимого для восстановления глутатиона.

    Обезвреживание кислорода

    Большое содержание кислорода в эритроцитах определяет высокую скорость образования супероксидного анион-радикала (О2-), пероксида водорода (Н2О2) и гидроксил радикала (ОН.). Эритроциты содержат ферментативную систему, предотвращающую токсическое действие активных форм кислорода и разрушение мембран эритроцитов. Постоянный источник активных форм кислорода в эритроцитах - неферментативное окисление гемоглобина в метгемоглобин:

    Метгемоглобинредуктазная сисгема состоит из цитохрома B5 и флавопротеина цитохром B5 редуктазы , донором водорода для которой служит NADH, образующийся в глицеральдегиддегидрогеназной реакции гликолиза

    Цитохром B5 восстанавливает Fe3+ метгемог-лобина в Fe2+:

    Hb-Fe3+ + цит. b5 восст. → HbFe2+ + цит. b5 ок. .

    Цит. B5 ок + NADH → цит. B5 восст. + NAD+.

    Супероксидный анион с помощью фермента супероксидцисмутазы превращается в пероксид водорода:

    O2- + O2- + Н+ → H2О2 + O2 .

    Пероксид водорода разрушается каталазой и содержащим селен ферментом глутатионпероксидазой. Донором водорода в этой реакции служит глутатион - трипептид глутамилцистеинилглицин (GSH) (см. раздел 12).

    2Н2О → 2Н2О + О2; 2GSH + 2Н2О2 → GSSG + 2Н2О.

    Окисленный глутатион (GSSG) восстанавливается NADPH-зависимой глутатионредуктазой. Восстановление NADP для этой реакции обеспечивают окислительные реакции пентозофосфатного пути (см. раздел 7).

    Биологическая химия Лелевич Владимир Валерьянович

    Гемоглобин человека

    Гемоглобин человека

    Гемоглобин – сложный железосодержащий белок, относится к классу гемопротеинов. Выполняет две важные функции:

    1. перенос кислорода из легких к периферическим тканям;

    2. участие в переносе СО 2 и протонов из периферических тканей в легкие.

    Производные гемоглобина

    Молекула гемоглобина взаимодействует с различными лигандами, образуя производные гемоглобина.

    1. Дезоксигемоглобин – ННb – не связанный с кислородом и содержащий гем с двухвалетным железом Fe 2+ .

    2. Оксигемоглобин – ННbO 2 – полностью оксигенированный гемоглобин, связанный с четырьмя молекулами кислорода.

    3. Карбгемоглобин – ННbCO 2 – гемоглобин, связанный с СО 2 . Выполняет функцию выведения СО 2 из тканей к легким. Соединение нестойкое, легко диссоциирует в легочных капиллярах. Этим путем выводится до 10–15% СО2.

    4. Карбоксигемоглобин – ННbСО – образуется при отравлении оксидом углерода (II). Сродство гемоглобина к СО примерно в 300 раз выше, чем к кислороду, при этом гемоглобин теряет способность связывать кислород и наступает смерть от удушья.

    5. Метгемоглобин – MetHb – образуется при действии окислителей (нитрит натрия, нитробензол). Содержит железо в трехвалентной форме Fe 3+ и теряет способность к переносу кислорода. В норме образуется небольшое количество метгемоглобина – примерно 0,5 % в сутки.

    Варианты гемоглобина в онтогенезе

    Количество и состав фракций гемоглобина изменяется в процессе онтогенеза. Все гемоглобины представляют собой тетрамеры, построенные из разного набора субъединиц (?, ?, ?, ?) и преимущественно образуются на разных этапах развития организма человека – от эмбрионального до взрослого состояния. Различают следующие физиологические типы гемоглобинов: примитивный гемоглобин НbР, фетальный гемоглобин HbF (fetus – плод), гемоглобин взрослых HbA, HbA 2 , HbA 3 (adultus – взрослый).

    Примитивный гемоглобин – синтезируется в эмбриональном желточном мешке через несколько недель после оплодотворения. Состоит из двух?- и двух?-цепей (2?, 2?). Через две недели после формирования печени плода в ней начинает синтезироваться HbF, который к шести месяцам полностью замещает НbР.

    Фетальный гемоглобин – синтезируется в печени и костном мозге плода до периода его рождения. Состоит из двух?- и двух?-цепей (2?, 2?). Характеризуется более высоким сродством к кислороду и обеспечивает эффективную доставку кислорода к эмбриону из системы кровообращения матери. HbF является главным типом гемоглобина плода. Кровь новорожденного содержит до 80% HbF, но к концу 1-го года жизни он почти целиком заменяется на HbA. В крови взрослого человека присутствует в минимальном количестве – до 1,5% от общего количества гемоглобина.

    Гемоглобин А – основной гемоглобин взрослого человека (96 % от общего количества). Начинает синтезироваться в клетках костного мозга уже на 8-м месяце развития плода. HbA состоит из двух?- и двух?-цепей.

    Минорные гемоглобины:

    1. HbA2 - 2? 2?, в крови взрослого человека примерно 2,6 % HbA2. Обладает большим сродством к кислороду.

    2. HbA3 - 2? 2?, однако имеются изменения в строении?-цепей по сравнению с HbA. Появляется в крови в небольших количествах при старении.

    Гемоглобинопатии

    Все структурные аномалии белковой части гемоглобина называют гемоглобинозами.

    Различают:

    1. гемоглобинопатии;

    2. талассемии.

    Гемоглобинопатии – наследственные изменения структуры какой-либо цепи нормального гемоглобина вследствие точечных мутаций генов. Известно около 300 вариантов HbA, имеющих в первичной структуре?- или?-цепи незначительные изменения. Некоторые из них практически не влияют на функции белка и здоровье человека, другие – вызывают значительные нарушения функции HbA и развитие заболеваний различной степени тяжести.

    В аномальных гемоглобинах изменения могут затрагивать аминокислоты:

    1. находящиеся на поверхности белка;

    2. участвующие в формировании активного центра;

    3. аминокислоты, замена которых нарушает трехмерную конформацию молекулы;

    4. аминокислоты, замена которых изменяет четвертичную структуру белка и его регуляторные свойства.

    Аномальные гемоглобины отличаются от HbA по первичной структуре, форме, величине заряда. При этом изменяются такие свойства как сродство к кислороду, растворимость, устойчивость к денатурации и др.

    Примеры.

    1. Серповидноклеточная анемия. Наследственное заболевание, связанное с заменой глутаминовой кислоты в 6-м положении (с N-конца) на валин в?-цепях молекулы гемоглобина S. Растворимость дезоксигемоглобина S значительно снижена. Его молекулы начинают «слипаться», образуя волокнистый осадок, который деформирует эритроцит, придавая ему форму серпа (полумесяца). Такие эритроциты плохо проходят через капилляры тканей, закупоривают сосуды и создают локальную гипоксию. Они быстро разрушаются и возникает гемолитическая анемия. Дети, гомозиготные по мутантному гену, часто умирают в раннем возрасте. Болезнь распространена в странах Южной Америки, Африки и Юго-Восточной Азии.

    2. Гемоглобин М – в результате мутации в гене происходит замена в?- или?-цепи гистидина (в 7-м или 8-м положении) на тирозин. В результате этого Fe 2+ окисляется в Fe 3+ и образуется метгемоглобин, не способный связывать кислород. Развивается цианоз и гипоксия тканей.

    Талассемии

    Талассемии – наследственные заболевания, связанные с нарушением синтеза?- или?-цепей.

    Талассемии развиваются в результате снижения синтеза?-цепей. Проявляется после рождения, при этом в крови наряду с НbА появляется до 15 % НbА2 и 15–60 % HbF. Болезнь характеризуется гиперплазией и разрушением костного мозга, поражением печени, селезенки и сопровождается гемолитической анемией.

    Талассемии возникают при нарушении синтеза?-цепей. При полном отсутствии?-цепей наступает внутриутробная гибель плода, так как не образуется HbF, а тетрамеры? 4 обладают высоким сродством к кислороду и не способны выполнять транспортную функцию, что ведет к развитию тканевой гипоксии и к смерти вскоре после рождения.

    Из книги Удивительная биология автора Дроздова И В

    В чем же феномен человека? Рассмотрим, как на высшем этапе конкретно материализуется та многоуровневая информационная структура, к которой пришло все живое после миллионнолетней эволюции. Речь пойдет об асимметрии больших полушарий человеческого мозга, а также о

    Из книги Новая наука о жизни автора Шелдрейк Руперт

    11.4. Поведение человека Высшие животные часто ведут себя более гибко, чем низшие животные. Однако эта гибкость ограничена ранними стадиями поведенческого ряда, и особенно начальной фазой, обусловленной потребностью в пище; более поздние стадии, и в частности акт

    Из книги Наше постчеловеческое будущее [Последствия биотехнологической революции] автора Фукуяма Фрэнсис

    7 ПРАВА ЧЕЛОВЕКА Такие термины, как "святость [прав]", напоминают мне о правах животных. Кто дал право собаке? Само слово "право" становится очень опасным. У нас есть права женщин, права детей; и так далее до бесконечности. Потом есть права саламандры и права лягушки. Ситуация

    Из книги Путешествие в прошлое автора Голосницкий Лев Петрович

    Биотехнология человека Регламентация для биотехнологии человека разработана гораздо слабее, чем для сельскохозяйственной биотехнологии, в основном потому, что генетическая модификация людей еще не появилась в отличие от модификации растений и животных. Частично для

    Из книги Геном человека: Энциклопедия, написанная четырьмя буквами автора

    Развитие человека Зверям нужны сильные челюсти и крупные зубы, чтобы хватать пастью добычу, дробить кости, разжёвывать жёсткую пищу.Зубам же первобытного человека помогали руки. С помощью рук он охотился на животных, дробил кости, чтобы достать из них костный мозг,

    Из книги Геном человека [Энциклопедия, написанная четырьмя буквами] автора Тарантул Вячеслав Залманович

    Приложение 3. ВСЕОБЩАЯ ДЕКЛАРАЦИЯ О ГЕНОМЕ ЧЕЛОВЕКА И ПРАВАХ ЧЕЛОВЕКА 3 декабря 1997 г.ВСЕОБЩАЯ ДЕКЛАРАЦИЯ О ГЕНОМЕ ЧЕЛОВЕКА И ПРАВАХ ЧЕЛОВЕКА Генеральная конференция,напоминая, что в преамбуле Устава ЮНЕСКО провозглашаются «демократические принципы уважения достоинства

    Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

    Приложение 3. ВСЕОБЩАЯ ДЕКЛАРАЦИЯ О ГЕНОМЕ ЧЕЛОВЕКА И ПРАВАХ ЧЕЛОВЕКА 3 декабря 1997 г.ВСЕОБЩАЯ ДЕКЛАРАЦИЯ О ГЕНОМЕ ЧЕЛОВЕКА И ПРАВАХ ЧЕЛОВЕКАГенеральная конференция,напоминая, что в преамбуле Устава ЮНЕСКО провозглашаются «демократические принципы уважения достоинства

    Из книги Металлы, которые всегда с тобой автора Терлецкий Ефим Давидович

    Из книги Биология. Общая биология. 10 класс. Базовый уровень автора

    Из книги Биология. Общая биология. 11 класс. Базовый уровень автора Сивоглазов Владислав Иванович

    Гемоглобин и Шерлок Холмс Впервые гемоглобин был обнаружен в 1839 году немецким исследователем Р. Хюнефельдом в крови обыкновенного дождевого червя.Спустя 12 лет другой немецкий ученый О. Функ предложил метод получения устойчивых кристаллов гемоглобина, или, как их тогда

    Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

    И снова гемоглобин и Шерлок Холмс Мы говорим: кислород - окислитель. Но союз кислорода и двухвалентного железа в гемоглобине просто невероятное исключение. Здесь никакого окисления не происходит, так как железо сохраняет свою валентность. Недаром английский физиолог,

    Из книги Антропология [Учебное пособие] автора Хасанова Галия Булатовна

    Гемоглобин под рентгеном Окончательная разгадка строения молекул гемоглобина и миоглобина связана с именами известных учёных Макса Перутца и Джона Кендрю, начинавших свою деятельность в знаменитой Кавендишской лаборатории Кэмбриджского. университета в Англии. Именно

    Из книги автора

    Таблица 7. Гены, принимающие участие в образовании и функционировании ряда клеток, тканей и органов человека (по данным проекта «Геном человека» на

    Из книги автора

    19. Эволюция человека Вспомните!Перечислите основные факторы эволюции человека. Какие из них являются общими для эволюции всех живых организмов?Изучение эволюции человека главным образом основано на исследовании ископаемых остатков.Предшественники человека. В самом

    Из книги автора

    3.5. Этология человека Становление этологии человека проходило в русле идей общей этологии. Сразу отметим, что концепция инстинктивного поведения не встретила понимания общества первой половины XX в. Не только теоретические разногласия породили конфронтацию с этологией.

    Кровеносная система выполняет транспортную функцию в организме всех теплокровных животных, доставляя к тканям питательные вещества и кислород. Транспортировка кислорода и углекислого газа осуществляется благодаря красным тельцам крови, в состав которых входит важное вещество - гемоглобин. В этой статье мы рассмотрим виды и соединения гемоглобина.

    Что такое гемоглобин

    Гемоглобин - это компонент эритроцитов, относящийся к группе белков. Состоит из 96% белкового вещества глобина и 4% вещества с атомом - гем. В 1 клетке эритроцита его содержится порядка 280 млн молекул, что и формирует красный цвет крови.

    Главное свойство гемоглобина - это способность железа присоединять и отщеплять газы, формируя перемещение кислорода из лёгких к тканям и углекислого газа от тканей к лёгким. Таким образом, его роль в процессе газообмена в организме незаменима.

    Структура и виды гемоглобина крови человека

    На разных стадиях развития человеческого организма состав гемоглобина отличается по структуре полипептидных цепей. В зависимости от того, какие полипептидные цепи содержит гемоглобиновая структура, виды гемоглобина у человека следующие:

    Патологические виды гемоглобина

    В ряде случаев под влиянием генетических дефектов возникает аномальный синтез гемоглобиновых клеток. Патологические виды гемоглобина от физиологических отличаются составом полипептидных связей, а точнее, их мутацией.

    В результате мутации ДНК, синтез компонентов эритроцитов осуществляется не с глутаминовой, а валиновой аминокислотой. Эта «кадровая» замена приводит к образованию белковой структуры типа 2 с «липким» участком на поверхности, способным присваивать структуры себе подобные. Таким образом, происходит полимеризация HbS-молекул и, как следствие, оседание тяжёлых и плохо транспортируемых эритроцитов в кровеносных сосудах. Данное отклонение носит название

    Нормальные значения содержания гемоглобина в крови, не считающиеся патологическим отклонением:

    • У мужчин - 130-150 г/л.
    • У женщин - 120-140 г/л.
    • У детей до года 100-140 г/л, причём в первый месяц эти значения могут достигать до 220 г/л за счёт повышенной концентрации фетального гемоглобина. У детей с года до 6 лет - 110-145 г/л, а с 6 года жизни - 115-150 г/л вне зависимости от пола ребёнка.
    • При беременности наблюдается снижение концентрация HbA до 110 г/л, что однако не считается анемией.
    • У пожилых людей нормой считается тенденция понижения на 5 единиц от заявленной нормы в зависимости от пола пациента.

    По отличается и состав крови, содержащей одновременно разные виды гемоглобина. Так, например, у взрослого человека естественным соотношением является 99% HbA и до 1% HbF. У детей до года процент HbF значительно выше, чем у взрослых, что объясняется постепенным распадом изначально имеющейся формы фетального гемоглобина.

    Физиологические формы

    Поскольку дыхательный красный пигмент непрерывно участвует в газообменных процессах в организме, то его главным свойством является способность образовывать соединения с молекулами различных газов. В результате подобных реакций создаются физиологические виды гемоглобина, которые считаются нормальным явлением.


    Патологические соединения

    Эритроциты могут присоединять не только газы, участвующие в дыхательном процессе, но и другие, образуя патологические виды гемоглобина, представляющие опасность для человеческого здоровья и даже жизни. Эти соединения обладают низкой степенью распада, поэтому приводят к кислородному голоданию тканей и серьёзным нарушениям дыхательного процесса.

    Диагностика гемоглобина

    Для выявления концентрации глобиновых дыхательных структур в крови человека проводятся качественные и количественные виды анализов. Гемоглобин также исследуется на количество содержания в нём ионов железа.

    Основным количественным методом определения концентрации гемоглобина сегодня является колориметрический анализ. Он представляет собой исследование цветовой насыщенности биологического материала при добавлении к нему специального реактива.

    Качественные методы включают исследование крови на содержание в нём соотношения типов HbA и HbF. Также к относится определение количества содержания в крови молекул гликолизированного гемоглобина (соединения с углеродами) - метод используется для диагностики сахарного диабета.

    Отклонение концентрации гемоглобина от нормы

    Баланс HbA может варьировать как ниже, так и выше нормы. В любом случае это приводит к негативным последствиям. При понижении HbA ниже установленной нормы возникает патологический синдром, который носит название "железодефицитная анемия". Выражается вялостью, упадком сил, невнимательностью. Негативно влияет на нервную систему, особенно опасен в детском возрасте, так как часто является причиной отставания в психо-моторном развитии.

    Повышенный гемоглобин не является отдельным заболеванием, это, скорее, синдром, свидетельствующий о различных патологиях, таких как сахарный диабет, лёгочная недостаточность, порок сердца, заболевания почек, переизбыток фолиевой кислоты или витаминов группы В, онкология и др.

    Гемоглобин (НЬ) - сложный олигомерный белок, состоящий из 4 протомеров двух типов (2α и 2β), включающих 574 аминокислотных остатка. Содержится в эритроцитах, на его долю приходится до 90% массы белков клетки. Гемоглобин обеспечивает перенос кислорода из легких в ткани и удаление диоксида углерода из тканей.

    В мышцах внутриклеточный транспорт и кратковременное депонирование кислорода осуществляет другой белок - миоглобин (Mb). Он не является олигомером, так как состоит только из одной полипептидной цепи, конформация которой очень похожа на пространственную структуру β-цепи гемоглобина (рис. 1.20). Большую часть молекулы

    Рис. 1.20. Структура миоглобина и β-цепи гемоглобина

    А - миоглобин; Б - β-цепь гемоглобина

    Mb и протомеров Hb составляют 8 α-спиральных участков, образующих глобулу с гидрофобным углублением, в котором находится центр связывания с кислородом (активный центр). При этом полипептидные цепи миоглобина и протомеров гемоглобина идентичны всего на 20%.

    Оба белка являются холопротеинами, простетическая группа - гем, который находится в активном центре и участвует во взаимодействии с кислородом (рис. 1.21). Гем (ферропротопорфирин) представляет собой органическое соединение с плоской молекулой, включающей 4 пиррольных цикла и ион железа Fe 2 +. Он является окрашенным соединением и придает красный цвет гемоглобину, эритроцитам (красные кровяные тельца) и крови.

    Гем присоединяется к неполярным радикалам активного центра своими пиррольными циклами, а также к радикалу гистидина с помощью атома Fe. Пиррольные кольца гема расположены в одной плоскости, а ион Fe 2 + в неоксигенированом состоянии Hb выступает над плоскостью на 0,6 А. При присоединении кислорода ион железа погружается в плоскость колец гема (рис. 1.22). В результате сдвигается и участок полипептидной цепи, нарушаются слабые связи в молекуле Hb и изменяется конформация всей глобулы. Таким образом, присоединение кислорода вызывает изменение пространственной структуры молекулы миоглобина или протомеров гемоглобина.

    Рис. 1.21. Строение гемоглобина и гема

    А - гемоглобин - сложный белок, олигомер, состоит из 2 α- и 2 β-субъединиц глобина, каждая имеет центр связывания, где располагается небелковая часть молекулы - гем. Он участвует в присоединении молекулы кислорода. Между протомерами образуется аллостерический центр для присоединения регуляторного лиганда гемоглобина 2,3-бисфосфоглицерата;

    Б - гем - простетическая группа гемоглобина, миоглобина и других гемопротеинов. Связывается с глобином гидрофобными связями между пиррольными циклами и гидрофобными радикалами аминокислот. В центре молеку-


    лы расположен ион железа (Fe), который образует 6 координационных связей: 4 - с атомами азота пиррольных колец гема, 1 - с азотом радикала гистидина цепей глобина, 1 - с молекулой кислорода. В присоединении О 2 к гему участвует еще один радикал гистидина цепи глобина

    Рис. 1.22. Взаимодействие кислорода с гемом в миоглобине и гемоглобине

    Молекула миоглобина может присоединять только 1 молекулу кислорода в свой активный центр:

    Гемоглобин является олигомерным белком и имеет ряд особенностей функционирования, характерных для всех олигомерных белков. Молекула гемоглобина состоит из 4 протомеров и имеет 4 центра связывания О 2 (активные центры). Гемоглобин может существовать как в свободной (дезоксигемоглобин), так и в оксигенированной форме, присоединяя до 4 молекул кислорода. Взаимодействие с кислородом 1-го протомера вызывает изменение его конформации, а также кооперативные конформационные изменения остальных протомеров (рис. 1.23, А). Сродство к кислороду возрастает, и присоединение О 2 к активному центру 2-го протомера происходит легче, вызывая дальнейшую конформационную перестройку всей молекулы. В результате еще сильнее изменяется структура оставшихся протомеров и их активных центров, взаимодействие с О 2 еще больше облегчается. В итоге 4-я молекула кислорода присоединяется к Hb примерно в 300 раз легче, чем 1-я (рис. 1.23, Б). Так происходит в легких при высоком парциальном давлении кислорода. В тканях, где содержание кислорода

    ниже, наоборот, отщепление каждой молекулы О 2 облегчает освобождение последующих.

    Таким образом, взаимодействие олигомерного белка гемоглобина с лигандом (О 2) в одном центре связывания приводит к изменению конформации всей молекулы и других, пространственно удаленных центров, расположенных на других субъединицах (принцип «домино»). Подобные взаимосвязанные изменения структуры белка называют кооперативными конформационными изменениями. Они характерны для всех олигомерных белков и используются для регуляции их активности.

    Взаимодействие обоих белков (Mb и Hb) с кислородом зависит от его парциального давления в тканях. Эта зависимость имеет разный характер, что связано с их особенностями структуры и функционирования (рис. 1.24).

    Гемоглобин имеет S-образную кривую насыщения, которая показывает, что субъединицы белка работают кооперативно, и чем больше кислорода они отдают, тем легче идет освобождение остальных молекул О 2 . Этот процесс зависит от изменения парциального давления кислорода в тканях.

    График насыщения миоглобина кислородом имеет характер простой гиперболы, т.е. насыщение Mb кислородом происходит быстро и отражает его функцию - обратимое связывание с

    Рис. 1.23. Кооперативные изменения конформации молекулы гемоглобина при взаимодействии с кислородом

    А - при взаимодействии молекулы дезоксигемоглобина НЬ с О 2 происходят кооперативные конформационные изменения, которые сопровождают присоединение каждой последующей молекулы кислорода; Б - в результате изменения конформации активного центра возрастает сродство НЬ к кислороду, 4-я молекула кислорода присоединяется к оксигенированному гемоглобину [НЬ(О 2) 3 ] в 300 раз легче, чем 1-я

    Рис. 1.24. Кривые насыщения миоглобина и гемоглобина кислородом

    кислородом, высвобождаемым гемоглобином, и освобождение в случае интенсивной физической нагрузки.

    Изменение сродства гемоглобина к О 2 обеспечивает быстрое насыщение крови кислородом в легких, а также освобождение и передачу его в ткани. Миоглобин обладает более высоким сродством к О 2 , поэтому связывает и передает в митохондрии клеток кислород, транспортируемый НЬ в мышцы.

    Гемоглобин доставляет в сутки до 600 л (850 г) О 2 в ткани и способствует удалению из них ~ 500 л (1000 г) СО 2 . Движущей силой этих потоков является градиент концентраций О 2 между альвеолярным воздухом и межклеточной жидкостью. Парциальное давление О 2 в альвеолярном воздухе составляет 100 мм рт.ст. Парциальное давление О 2

    в тканях намного ниже (~ 40 мм рт.ст.), что обусловлено поступлением и использованием кислорода митохондриями клеток, где он превращается в Н 2 О. Таким образом О 2 поглощается клетками.

    Обмен О 2 и СО 2 происходит в капиллярах: в легких О 2 переходит из альвеолярного воздуха в эритроциты, а СО 2 - в обратном направлении; в капиллярах тканей О 2 из эритроцитов перемещается в клетки тканей, а СО 2 - в обратном направлении (рис. 1.25).

    Изменение функциональной активности белка при взаимодействии с другими лигандами вследствие конформационных изменений называется аллостерической регуляцией, а соединения-регуляторы -аллостерическими лигандами. Способность к аллостерической регуляции характерна, как правило, для олигомерных белков, т.е. для проявления аллостерического эффекта необходимо взаимодействие протомеров. При воздействии аллостерических лигандов белки меняют свою конформацию (в том числе и активного центра) и функцию.

    Молекула гемоглобина способна связываться с несколькими лигандами: О 2 , Н+, СО 2 , 2,3-бис- фосфоглицератом (БФГ). Н+, СО 2 и БФГ являются аллостерическими регуляторами активности гемоглобина и присоединяются к участкам (аллостерическим центрам), пространственно удаленным от активного центра.

    Концентрация аллостерических лигандов снижает сродство гемоглобина к кислороду, а миоглобин и отдельные субъединицы гемоглобина нечувствительны к изменениям концентрации Н+, СО 2 и БФГ, т.е. аллостерические свойства гемоглобина возникают только в результате взаимодействия субъединиц.

    Рис. 1.25. Перенос кислорода и диоксида углерода гемоглобином. Эффект Бора

    БФГ образуется из глюкозы в эритроцитах и является одним из регуляторов работы гемоглобина. Его молярная концентрация в крови близка к молярной концентрации НЬ. В центре молекулы гемоглобина полипептидные цепи 4 протомеров образуют полость (аллостерический центр), причем величина ее увеличивается в дезоксигемоглобине и уменьшается в оксигемоглобине. БФГ поступает в полость дезоксигемоглобина, связываясь с положительно заряженными группами на β-протомере (рис. 1.26). При этом его сродство к О 2 снижается в 26 раз. В результате происходит высвобождение кислорода в капиллярах ткани при низком парциальном давлении О 2 .

    Рис. 1.26. Связывание БФГ с дезоксигемоглобином

    Центр связывания БФГ находится в положительно заряженной полости между 4 протомерами гемоглобина. Взаимодействие БФГ с центром связывания изменяет конформацию α- и β-протомеров НЬ и их активных центров. Сродство НЬ к молекулам О 2 снижается и кислород высвобождается в ткани. В легких при высоком парциальном давлении О 2 активные центры гемоглобина насыщаются за счет изменения конформации и БФГ вытесняется из аллостерического центра

    В легких высокое парциальное давление О 2 , наоборот, приводит к оксигенированию НЬ и освобождению БФГ.

    Это важно учитывать при переливании крови и сохранять необходимую концентрацию БФГ при консервации. Переливание донорской крови с пониженным содержанием БФГ может привести к гипоксии и гибели больных.

    В регуляции работы гемоглобина основная роль принадлежит протонам Н + . В ткани НЬ поступает преимущественно в виде НЬ(О 2) 4 . Но при низком парциальном давлении О 2 происходит отщепление части кислорода. Увеличение содержания не полностью оксигенированных форм НЬ облегчает высвобождение О 2 .

    В мышцах образуется много СО 2 , который под действием карбоангидразы превращается в угольную кислоту Н 2 СО 3 , диссоциирующую на Н + и бикарбонат-ион:

    СО 2 + Н 2 О → Н 2 СО 3 → Н + + НСО 3 -

    Повышение концентрации Н + вызывает протонирование ионогенных групп НЬ, что приводит к снижению его сродства к О 2:

    В легкие поступает кровь с высоким содержанием дезоксигемоглобина, протонированного, связанного с БФГ или СО 2 . В такой форме гемоглобин имеет пониженное сродство к О 2 .

    Из капилляров диффундирует СО 2 , освобождающийся в результате реакции:

    Н + + НСО - 3 → Н 2 СО 3 → СО 2 + Н 2 О

    Это стимулирует депротонирование гемоглобина:

    Н + НЬ → Н + + НЬ

    Высокое парциальное давление О 2 приводит к оксигенированию НЬ, при этом вытесняется БФГ:

    НЬ БФГ → НЬ + БФГ

    Частичное оксигенирование гемоглобина повышает его сродство к кислороду, все реакции, приведенные выше, происходят в обратном порядке.

    Зависимость сродства гемоглобина к кислороду от концентрации ионов водорода (Н+) получила названиеэффекта Бора по имени датского физиолога, изучавшего функционирование гемоглобина (см. рис. 1.25).

    Таким образом, количество транспортируемого гемоглобином в ткани кислорода регулируется и повышается при увеличении содержания СО 2 и Н + в крови (например, при интенсивной физической работе); при сдвиге рН крови в щелочную сторону (алкалозе) доставка кислорода в ткани понижается.

    Гемоглобин входит в состав эритроцитов и заполняет большую часть их внутриклеточного пространства. Основная функция гемоглобина связана с транспортом газов (кислорода и углекислого газа) в крови человека. Кроме этого, гемогобин участвует в поддержании кислотно-основного равновесия в организме человека и животных, образуя самую мощную гемоглобиновую буферную систему крови.

    В настоящее время достаточно хорошо изучены структура и свойства гемоглобина. У взрослого человека в крови различают следующие физиологические типы гемоглобина:

    1. Гемоглобин A 1 (HbA 1 – от англ. adult – взрослый), содержание которого составляет 96 % от общего содержания гемоглобина (Hb).

    2. Гемоглобин A 2 (HbA 2) - содержание составляет до 2,5 %.

    3. Фетальный гемоглобин (HbF от англ. fеtus - плод) составляет 1,5 - 2 %.

    HbF явяляется главным гемоглобином у плода и у новорожденных, так как его содержание у новорожденных достигает до 80 %, но затем в первые три месяца после рождения он почти полностью заменяется на HbA.

    На рис. 1 схематично представлена структура молекулы гемоглобина.

    Рис. 1. Модель молекулы гемоглобина (HbA 1) (ланцюг с укр. - цепь).

    Молекула гемоглобина взрослого человека HbA 1 состоит из четырех полипептидных цепей, каждая из которых связана с одним гемом. Белковая часть молекулы гемоглобина имеет название "глобин".

    В состав HbA 1 входят 2a- и 2b-цепи, которые являются продуктами экспрессии двух разных генов, и потому они имеют разную первичную структуру. В состав a-цепи входит 141, а в состав b-цепи - 146 аминокислотных остатков. Субъединицы гемоглобина, каждая содержит одну полипептидную цепь и один гем, по своей конформации напоминают структуру молекулы миоглобина (рис. 7). Схематично гемоглобин А 1 записывают так: HbA 1 = α 2 β 2 . В гемоглобине А 2 вместо β субъединиц находятся δ-субъединицы: HbA 2 = α 2 δ 2 , а в фетальном гемоглобине - γ-субъединицы, то есть HbF = α 2 γ 2.

    При образовании четвертичной структуры гемоглобина возникают многочисленные нековалентные связи между отдельными полипептидными цепями глобина. Наибольшее их количество образуется между разными типами цепей (a - b, α – δ, α - γ). Это преимущественно гидрофобные взаимодействия, которые возникают между радикалами некоторых аминокислот (лейцин, валин, фенилаланин и др.). Исследование структурной организации субъединиц молекулы гемоглобина в олигомерный белок проводилось с использованием раствора 8М мочевины или при резких изменениях рН. При этом молекула гемоглобина обратимо диссоциирует на две α- и две β-цепи. Эта диссоциация обусловлена разрывом водородных связей. После удаления мочевины происходит автоматическая ассоциация исходной молекулы гемоглобина (рис.2)

    Рис. 2. Обратимая диссоциация молекулы гемоглобина при действии 8М раствора мочевины.

    Небелковый компонент гемоглобина – гем. Основой структуры гема является протопорфирин. Протопорфирин состоит из четырех пиррольных колец, соединенных между собой α-метиновыми мостиками (–СН=). В зависимости от природы групп, которые находятся в боковых радикалах, порфирины имеют большое количество изомеров. Из возможных 15 изомеров протопорфиринов наиболее широко распространенным в биологических объектах является протопорфирин IX. Он содержит в боковых положениях 4 метильные, 2 винильные и 2 пропионильные группы (рис. 3 А). Хелатный комплекс протопорфирина IX с Fe 2+ называется протогемом IX или гемом.

    Катион железа, входящий в структуру гема, образует две ковалентные связи и две координационные связи с атомами азота пиррольных колец в плоскости протопорфиринового комплекса. Кроме этого, он участвует в образовании ещё двух координационных связей, которые расположены перпендикулярно плоскости протопорфиринового комплекса (рис. 3 Б).