Эксперимент «Дым без огня. Большая энциклопедия нефти и газа

Определение молекулярной массы по уравнению Клапейрона-Менделеева.

Для n молей любого газа: pV = nRT или pV= m/M RT,

где R=0,082 л. атм / К. моль =8,31 Дж/моль. К =1,99 кал/моль. К.

Если известны масса, объём, давление и температура газа, то из последнего уравнения может быть определена молярная масса газа по формуле: M = mRT/pV.

Следует учесть, что для получения правильных численных результатов, необходимо пользоваться единицами измерения одной системы единиц, например, СИ.

Работа № 10. Определение относительной молекулярной массы

диоксида углерода .

Выполнение работы. Диоксид углерода может быть получен в аппарате Киппа или взят из баллона, в котором он находится под давлением. В случае использования аппарата Киппа собирают прибор, изображенный на рис. 21.

через редуктор или из аппарата Киппа, которым пользуются для получения непрерывного тока газа в химических лабораториях (рис.12). Наполнение считать законченным, если горящая лучинка, поднесённая к горлышку колбы, снаружи (не внутри!), гаснет. Чтобы зарядить аппарат для получения диоксида углерода, в верхний резервуар насыпают через тубус куски мрамора. Размер кусочков должен быть таким, чтобы они не попадали в нижний резервуар через щель между воронкой и перетяжкой. Для надежности в месте перетяжки помещают круглую резиновую прокладку с отверстием для воронки и несколькими небольшими отверстиями для свободного движения жидкости. Затем тубус закрывают пробкой с газоотводной трубкой. Кран открывают и в прибор через воронку сверху наливают соляную кислоту (d=1,19г/см 3) в таком количестве, чтобы куски мрамора в резервуаре были ею покрыто. При этом начинается реакция: CaCO 3 +2HCl = CaCl 2 +H 2 O+CO 2 ­. Кран газоотводной трубки закрывают, и если прибор герметичен, кислота вытесняется из среднего шара под давлением выделяющегося в процессе реакции газа. Как только вся жидкость будет вытеснена из среднего шара, реакция прекращается, и газ перестаёт выделяться (почему?).

Для возобновления выделения газа вновь открывают кран газоотводной трубки, раствор при этом поднимается в среднем резервуаре и приходит в соприкосновение с мрамором, и аппарат начинает снова работать. После окончания работы кран газоотводной трубки снова закрывают. В данной работе необходимо пропустить газ через две промывные склянки. В качестве промывных склянок удобно пользоваться склянками Тищенко (см рис.21). В склянке (2) с водой углекислый газ освобождается от примесей хлороводорода, в склянке (3) с концентрированной серной кислотой он высушивается. Для повышения точности определения необходим очищенный и сухой газ. Скорость пропускания газа должна быть такой, чтобы можно было считать пузырьки в склянках. Следует иметь в виду, что при большой скорости газ не успевает очищаться от примесей. Через 15 - 20 минут, не закрывая крана у аппарата Киппа, медленно вынуть газоотводную трубку из колбы и тот час закрыть колбу пробкой. Взвесить колбу с диоксидом углерода на тех же весах и с той же точностью, что и колбу с воздухом (m 2).

Следует иметь в ввиду, что в сосуде мог остаться воздух и полученный результат взвешивания может не соответствовать заполнению сосуда с чистым диоксидом углерода. Поэтому следует произвести контрольный опыт, для чего в ту же колбу снова пропустить газ в течении 5 минут и снова взвесить колбу. Если результаты первого и второго взвешивания совпадают, то опыт заканчивают, если не совпадают, сосуд снова наполняют газом и взвешивают. Эти операции повторяют до тех пор, пока результаты повторного взвешивания не будут такими же, как предыдущий или расходится не более чем на 0,02 г.

Измерить рабочий объём колбы V 1 , для чего наполнить колбу дистиллированной водой до метки на шейке колбы и замерить объём воды, вылить её в мерный цилиндр.

Записать атмосферное давление по барометру (брать у лаборанта) и температуру в лаборатории, при которых производились опыты (t о С и P).

Расчёты : Вычислить объём газа V 0 при нормальных условиях по уравнению: V o P o /T o = VP/T

Вычислить массу воздуха m 3 или массу водорода m 4 в объёме колбы, учитывая, что при 0 o С и при 101,3 кПа масса 1л воздуха равна 1,293г, а 1л водорода - 0,089г.

Найти массу пустой (без воздуха) колбы с пробкой: m 5 =m 1 -m 3

Найти массу диоксида углерода в объёме колбы: m 6 =m 2 -m 5.

Определить относительную плотность диоксида углерода по воздуху Dвоздух (CO 2) или по водороду D(H 2) (CO 2). Вычислить относительную молекулярную массу диоксида углерода по уравнениям:

M(CO 2)=29 Dвоздух (CO 2). M(CO 2) =2 D(H 2) (CO 2)

M(CO 2)= m 6 . 22,4/V 0 . M(CO 2)= m 6 . T/pV.

Записи удобно располагать в следующем порядке:

1. Масса колбы с пробкой и воздухом. 2. Масса колбы с пробкой и СО 2 . 3. Объем колбы (до метки). 4. Абсолютная температура во время опыта (273+t). 5. Атмосферное давление (барометр - у лаборанта). 6. Объем воздуха, приведенный к нормальным условиям. 7. Масса воздуха в объеме колбы. 8. Масса СО 2 в объеме колбы. 9. Плотность СО 2 по воздуху. 10. Молярная масса (относительная молекулярная масса) СО 2 . Определить абсолютную и относительную погрешности опыта.

ДЫМ БЕЗ ОГНЯ

Описано много различных вариантов занимательных опытов, основанных на реакциях взаимодействия газообразных аммиака и хлороводорода с образованием аэрозоля хлорида аммония. Приводим один из них. В чистую сухую широкогорлую колбу объемом 200 мл наливают 3-5 мл концентрированного раствора соляной кислоты. Вращательным движением колбы смачивают кислотой стенки сосуда, выливают избыток раствора и плотно закрывают пробкой. В другую, точно такую же, колбу аналогичным способом набирают раствор аммиака (25%).

Во время опыта колбы открывают и соединяют горлышками одна к другой, поворачивая их в таком положении на 180°. Колбы заполняются густым белым дымом.

РАЗНОЦВЕТНОЕ ПЛАМЯ

Готовят насыщенные растворы бертолетовой соли в воде (около 8 г соли на 100 мл воды), с добавлением различных других солей.

Из фильтровальной бумаги вырезают различные фигуры (круги, треугольники, квадраты и т.д.) небольшого размера, опускают в соответствующий раствор и высушивают, повторяя эту операцию несколько раз, чтобы в порах бумаги появились кристаллики бертолетовой соли. Хорошо высушенные бумажные фигурки при поджигании быстро сгорают, образуя разное по цвету пламя.

В качестве добавок к раствору бертолетовой соли берут по 2-3 г хлорида натрия (желтое пламя), нитрата стронция, хлорида лития (красное пламя), хлорида меди (изумрудное пламя), нитрата бария (зеленоватое пламя). Часть бумажных фигурок пропитывают раствором бертолетовой соли без добавок, пламя приобретает фиолетовый оттенок.

"ВОДА" ЗАЖИГАЕТ КОСТЕР

На асбестовую сетку ставится небольшая фарфоровая чашечка (можно часовое стекло) с небольшим количеством смеси перманганата калия с серной кислотой. На фарфоровую чашечку и вокруг нее накладывают сухие лучинки, имитирующие костер.

Для зажигания полученного костра, смачивают ватку "водой" (этиловым спиртом) и выжимают над ним так, чтобы капли попали в чашечку. Спирт (можно брать денатурат) воспламеняется, поджигая затем и лучинки.

ЗОЛА - КАТАЛИЗАТОР

Если кусочек сахара внести с помощью пинцета в пламя горелки, то он начнет плавиться и обугливаться, но не загорается.

Если же на сахар насыпать немного пепла от сожженного лаврового листа и внести в пламя, то сахар загорится и будет гореть даже вне пламени горелки.

ЗАЖИГАНИЕ СПИРТОВКИ

Спиртовку можно зажечь с помощью сильных окислителей. Одним из таких является оксид марганца (VII). Для его получения насыпают кучкой в фарфоровую чашечку 0,5 г марганцовокислого калия и подливают сбоку к кучке соли 2-3 капли концентрированной серной кислоты. Образовавшуюся кашицу набирают на кончик стеклянной палочки, которой касаются фитиля спиртовки (фитиль должен быть хорошо смочен спиртом). Спиртовка тут же загорается. Примечание. Следует избегать больших количеств перманганата и кислоты для приготовления смеси.

ИСЧЕЗНОВЕНИЕ ОКРАСКИ

В трех стаканах налиты окрашенные водные растворы, в первом - фиолетовыми чернилами, во втором - синим лакмусом, в третьем - красным лакмусом (лакмоидом).

Из колбы, в которую налита бесцветная жидкость (раствор отбеливателя "Белизна" с несколькими каплями соляной кислоты), приливают раствор в стаканы. Окрашенные растворы обесцвечиваются. Опыт можно разнообразить, применяя другие органические красители для приготовления окрашенных растворов, обесцвечивающиеся под действием хлора.

ПОЛУЧЕНИЕ "МОЛОКА"

Смеси, имитирующие молоко, можно получать, смешивая 10%-ные растворы нитрата бария и сульфата натрия; хлорида кальция и гидрокарбоната натрия.

"Молоко", полученное вторым способом, можно превратить в газированную "воду", добавив в него небольшими порциями концентрированную соляную кислоту до полного растворения карбоната кальция.

ВОПРОСЫ И ЗАДАНИЯ

    Какие варианты из приведенных игр, вербальных форм занимательности и занимательных опытов, на ваш взгляд, наиболее эффективны?

    Составьте варианты дидактических игр, вербальных форм занимательности и занимательных опытов к Вашей теме.

8. Унификация химического эксперимента. Под унификацией химического эксперимента в обучении мы подразумеваем рациональное сокращение видов приборов и установок, с помощью которых осуществляется проведение опытов. В предлагаемом приборе (иногда с дополнениями или изменениями) можно с успехом проводить различные химические реакции, как во время демонстрационных опытов, так и в ходе ученического эксперимента.

Основу прибора составляют колба или склянка вместимостью 50-200 мл, пробка с делительной воронкой (соответственно колбе) на 25-100 мл, у прибора должна быть газоотводная трубка. Возможны самые разные модификации унифицированного прибора (с использованием колб Вюрца, Бунзена и т. д.) (рис. 1).

Применение данной установки обеспечивает безопасность проведения химических опытов, так как выделение газообразных и летучих ядовитых веществ можно количественно регулировать и направлять их либо непосредственно для проведения реакций с участием этих газов, либо для улавливания поглотительными приборами.

Другое преимущество данного прибора - возможность быстрой и точной дозировки исходных веществ, используемых для эксперимента. Вещества и растворы помещают в колбы и делительные воронки заранее, до начала занятий, в необходимом количестве, а не на глазок, как это обычно бывает при демонстрации опытов в пробирках или стаканах, когда вещества и растворы набирают непосредственно на уроке во время показа опытов.

При использовании прибора достигается восприятие опыта всеми учащимися, а не только теми, кто сидит на первых партах, как это бывает при проведении опытов в пробирках. Рекомендуемый прибор позволяет осуществлять качественные и количественные эксперименты по химии в школе, а также в средних специальных и высших учебных заведениях. Проиллюстрируем принципиальное применение прибора на примере некоторых опытов, сгруппировав их по сходным признакам.

Получение газов . В основе получения большинства газов, изучаемых в школе, лежат гетерогенные реакции между твердыми и жидкими фазами. Твердую фазу помещают в колбу, которую закрывают пробкой с воронкой и газоотводной трубкой. В воронку наливают соответствующий раствор или жидкий реагент реакции, прибавление которого в колбу дозируется с помощью крана делительной воронки. При необходимости колбу с реакционной смесью нагревают, регулируя объем выделяющегося газа и скорость реакции.

Используя прибор и соответствующие реактивы, можно получать кислород, озон, хлор, водород, углекислый, угарный и сернистый газы, галогеноводороды, азот и его оксиды, азотную кислоту из нитратов, этилен, ацетилен, бромэтан, уксусную кислоту из ацетатов, уксусный ангидрид, сложные эфиры и многие другие газообразные и летучие вещества.

Естественно, что одновременно при получении газов с помощью прибора можно демонстрировать их физические и химические свойства.

Реакции между растворами. В данном приборе удобно проводить эксперименты, в которых добавление жидкого реактива необходимо осуществлять небольшими порциями или по каплям, когда на ход реакции влияет избыток или недостаток одного из исходных веществ и т. д., например:

Растворение серной кислоты в воде и соблюдение правил безопасности при этой операции;

Опыты, иллюстрирующие диффузию веществ в жидкостях или газах;

Определение относительной плотности взаимно нерастворимых жидкостей и образование эмульсий;

Растворение твердых веществ, явление флотации и образование суспензий;

Реакции гидролиза солей, если важно показать изменение степени гидролиза в зависимости от объема воды, прибавляемой к раствору соли;

Опыты, иллюстрирующие окраску индикаторов в различных средах и реакции нейтрализации;

Реакции между растворами электролитов;

Реакции, продолжительные по времени;

Реакции органических веществ (бромирование и нитрование бензола, окисление толуола, получение мыла и анилина, гидролиз углеводов).

Демонстрация характерных свойств изучаемого вещества. С помощью прибора можно последовательно и наглядно, с минимальной затратой времени демонстрировать характерные физические и химические свойства изучаемого вещества. При этом экономятся реактивы, достигается необходимая безопасность эксперимента (выделяющиеся вредные газы и летучие вещества улавливаются соответствующими поглотительными растворами), обеспечивается лучшее восприятие эксперимента всеми учащимися класса.

Рассмотрим подготовку и проведение эксперимента при демонстрации свойств соляной кислоты. Учитель до урока готовит необходимое число колб (по числу изучаемых реакций) и одну пробку с делительной воронкой и газоотводной трубкой в ней. В колбы заранее помещают вещества или растворы (цинк, медь, оксид меди (П), гидроксид меди (П), раствор гидроксида натрия с фенолфталеином, карбонат натрия, раствор нитрата серебра и т. д.). В делительную воронку наливают около 30 мл раствора 10-20 %-ной соляной кислоты. Во время урока учителю надо лишь переставлять пробку с делительной воронкой, наполненной кислотой, из одной колбы в другую, расходуя на каждую реакцию 3-5 мл раствора.

Если в ходе реакций образуются ядовитые летучие соединения, то газоотводную трубку прибора опускают в соответствующие растворы для поглощения этих веществ, а реакционную смесь в колбе после окончания опыта обезвреживают.

Растворимость газов в воде. Демонстрационный опыт растворимости газов в воде рассмотрим на примере оксида серы (IV). Для опыта потребуются два прибора. В первом приборе (в колбе - сульфит натрия, в делительной воронке - концентрированная серная кислота) получают оксид серы (IV), который способом вытеснения воздуха собирают в колбу второго прибора. После заполнения этой колбы газом в воронку наливают воду, газоотводную трубку опускают в стакан с водой, подкрашенной фиолетовым лакмусом или другим индикатором (рис. 2).

Если теперь открыть зажим или кран газоотводной трубки, то вследствие небольшой поверхности контакта (через внутреннее отверстие трубки) оксида серы (IV) и воды, заметное растворение газа с последующим фонтанированием жидкости в колбу происходит не сразу, а через довольно долгий промежуток времени, пока в колбе не создастся достаточное разрежение.

Чтобы ускорить этот процесс, из воронки в колбу наливают (при закрытом зажиме на газоотводной трубке) 1-2 мл воды и слегка встряхивают.

Этого объема воды вполне достаточно, чтобы давление в колбе понизилось, а подкрашенная индикатором вода при снятии зажима с газоотводной трубки фонтаном устремилась в колбу, меняя при этом цвет индикатора. Для усиления эффекта колбу можно перевернуть вверх дном, закрыв предварительно делительную воронку пробкой и не вынимая газоотводную трубку из стакана с водой.

Обесцвечивание красителей. В колбу прибора помещают около 0,5 г перманганата калия. В нижнюю часть пробки вкалывают две иголки, на которые накалывают по лоскутку окрашенной ткани или полоски лакмусовой бумаги. Один из образцов смачивают водой, второй оставляют сухим. Колбу закрывают пробкой, в делительную воронку наливают несколько миллилитров концентрированной соляной кислоты, газоотводную трубку опускают в раствор тиосульфата натрия для поглощения избытка выделяющегося хлора (рис. 3).


Во время демонстрации опыта кран делительной воронки приоткрывают и выливают кислоту по каплям в колбу, затем вновь закрывают кран. В колбе идет реакция между веществами с выделением хлора, влажная ткань или полоска лакмусовой бумаги обесцвечивается быстро, а сухой образец - позже, по мере его увлажнения.

Примечание. Многие ткани окрашены устойчивыми к хлору и другим отбеливателям красителями, поэтому необходимо провести предварительные испытания и заранее выбрать соответствующие образцы тканей. Таким же образом можно показать обесцвечивание красителей сернистым газом.

Адсорбционные свойства угля или силикагеля. В колбу помещают около 0,5 г порошка или стружки меди. В нижнюю часть пробки вкалывают кусочек металлического провода с загнутым концом, к которому прикрепляют небольшую сеточку, предназначенную для удержания активированного сорбента массой 5-15 г (рис. 4).


Колбу прибора закрывают подготовленной таким образом пробкой, а в воронку наливают азотную кислоту. Газоотводную трубку, снабженную зажимом (зажим до начала опыта открыт), опускают в стакан с подкрашенной водой. После сборки прибор проверяют на герметичность. В момент демонстрации опыта кран делительной воронки приоткрывают и выливают несколько капель кислоты в колбу, в которой происходит реакция с выделением оксида азота (IV). Не следует добавлять избыток кислоты, необходимо чтобы объем выделившегося газа соответствовал объему колбы.

После окончания реакции, что определяют по прекращению выделения пузырьков вытесняемого из колбы воздуха через газоотводную трубку, зажим на ней закрывают. Прибор устанавливают перед белым экраном. Об адсорбции оксида азота (IV) в колбе судят по исчезновению окраски газа. Кроме того, вследствие образования в колбе некоторого разрежения в нее засасывается жидкость из стакана, если на газоотводной трубке открыть зажим.

Опыты по изучению электропроводности веществ и растворов . Если через пробку прибора пропустить дополнительно два металлических или лучше два графитовых стержня (электрода), нижние концы которых почти касаются дна колбы, и присоединить их через лампочку или гальванометр к источнику тока, то получим установку для определения электрической проводимости растворов веществ и изучения положений теории электролитической диссоциации (рис. 5).

Количественные опыты на основе реакций, протекающих с выделением газов. Если подвести газоотводную трубку прибора под градуированный цилиндр с водой, установленный в кристаллизатор с водой, и собирать выделяющийся в ходе реакции газ методом вытеснения воды, то по объему полученного газа можно провести количественные расчеты по установлению молярных масс веществ, подтверждению закономерностей химической кинетики и термохимии, определению формулы этанола и других

веществ и т. д. (рис. 6). Если выделяющийся в ходе реакции газ растворяется или реагирует с водой, то необходимо использовать в опытах другие жидкости и растворы.

Рис. 6. Установка для проведения количественных опытов.

Приведенные примеры не исчерпывают все возможности предлагаемого унифицированного прибора в учебном химическом эксперименте. Если иметь в запасе пробки с двумя газоотводными трубками или с двумя делительными воронками, а также другие варианты установки, то число опытов с использованием унифицированного прибора можно значительно увеличить, что будет способствовать научной организации труда учителя химии.

Составные детали прибора: колбы, градуированные делительные воронки, пробки, зажимы и т.д. - следовало бы включить в типовые наборы посуды и оборудования для школьных кабинетов химии и учебных химических лабораторий педагогических высших учебных заведений.

9. Домашний эксперимент. Не отрицая возможного использования в домашних условиях использования различных компьютерных программ "Виртуальных лабораторий", все же реальный домашний эксперимент дает учащимся больше пользы. Представить себе химию без химических опытов невозможно. Поэтому изучить эту науку, понять ее законы и, конечно, полюбить ее можно только через эксперимент. Естественно, химические реакции лучше всего поводить в специально оборудованных химических кабинетах и лабораториях под руководством учителя, на уроках или на занятиях химического кружка и факультатива.

К сожалению, не во всех школах работают химические кружки, не у всех учащихся, интересующихся химией, есть возможность посещать дополнительные занятия в школе. Поэтому только домашний химический эксперимент может восполнить тот пробел в обучении химии в современных условиях, когда программы перенасыщены теоретическим материалом, учителя отказываются от проведения практических работ, а лабораторные опыты вообще стали редкостью в школьной практике. Следует приветствовать и поддерживать тех авторов учебников и рабочих тетрадей, которые включают в тексты параграфов те или иные опыты и наблюдения, которые учащиеся должны выполнить вне урока, в домашних условиях.

Трудно переоценить значение такого эксперимента на формирование интереса к химии и мотивации к изучению этого предмета. Домашний эксперимент имеет огромное значение в углублении и расширении знаний, совершенствовании специальных умений и навыков, в общем развитии учащихся.

В связи с этим, учителю химии следует помочь школьникам в организации проведения домашнего химического эксперимента. При этом следует учесть несколько факторов. Во-первых, учитель должен побеседовать с родителями по всем вопросам организации домашнего эксперимента по химии, прежде всего по проблеме обустройства места для проведения опытов в домашних условиях. Во-вторых, учащиеся должны твердо знать и неукоснительно выполнять правила техники безопасности лабораторных работ. В-третьих, учителю химии необходимо методически и практически помочь школьнику в приобретении необходимого оборудования для проведения опытов, приготовлении растворов и получении некоторых веществ из пищевых продуктов, средств бытовой химии и т.д. В-четвертых, необходимо наметить программу проведения учебных опытов и план исследовательского эксперимента по определенной тематике. В-пятых, следует научить юных химиков проводить соответствующие наблюдения и оформлять результаты опытов в лабораторном журнале.

Приведем варианты некоторых опытов для домашнего эксперимента школьников.

Опыты с железом. 1. В две пробирки налейте по несколько капель раствора поваренной соли (5%), в одну добавьте несколько капель раствора щелочи. Подберите к пробиркам пробки. Зачистите до блеска железный гвоздь длиной 10-15 см и введите его через обе пробки так, чтобы часть гвоздя со шляпкой закрыть пробкой в одной пробирке, а острие гвоздя закрыть в другой пробирке. Часть гвоздя (середина) должна оставаться между сосудами и контактировать с окружающим воздухом. Пробирки с гвоздем поместите в положении лежа. Таким образом, вы проведете одновременно три варианта опыта коррозии железа: во-первых, - обычные условия; во-вторых, - влажная соленая атмосфера; в-третьих, - влажная щелочная атмосфера. Наблюдайте состояние поверхности трех участков гвоздя в течение нескольких дней и сделайте выводы. (Нарисовать)

2. В три пробирки налейте раствор поваренной соли, подкисленный уксусной кислотой. В первую пробирку добавьте таблетку уротропина (лекарственный препарат) и растворите ее; во вторую – добавьте несколько капель иодной настойки до появления желтой окраски. В каждую пробирку опустите зачищенный до блеска железный гвоздь, чтобы один конец его выступал из раствора. Проследите, как влияют добавки на коррозию железа в условиях опыта, и сделайте выводы.

3. Поместите несколько мелких гвоздей (кнопки, скрепки) в пробирку и добавьте 3-5 мл соляной кислоты (1:1). Что наблюдали? Запишите уравнение реакции. Добавьте в реагирующую смесь несколько кристалликов медного купороса. Что наблюдали? Дайте объяснение.

4. Налейте в пробирку 4-6 мл раствора медного купороса, добавьте в раствор порошок железа.Что наблюдали? Запишите уравнение реакции.После окончания реакции слейте раствор сульфата железа (II) в другую пробирку и сохраните для следующего опыта. Железный порошок, покрытый рыхлым слоем меди, промойте 2 раза чистой водой, высушите на листе бумаги и отделите порошок меди.

5. К раствору сульфата железа (II) (опыт 4) добавьте несколько капель раствора щелочи. Взболтайте полученную смесь. Что наблюдали? Запишите уравнения реакций.

6. Небольшую порцию осадка из опыта 5 нагрейте на жестяном совочке. Что наблюдали? Запишите уравнение реакции.

Иод и его свойства. 1. Налейте в пробирку несколько капель иодной настойки и осторожно выпарите. Вставьте в пробирку стеклянную палочку и продолжай-те осторожно нагрев. Обратите внимание на цвет паров в пробирке и на крис-таллики, осаждающиеся на палочке. Опишите наблюдения.

2. Чем отличается возгонка иода от возгонки хлорида аммония?

3. Разбавьте 2-3 мл иодной настойки до 10-15 мл водой и разлейте полу-ченный раствор в несколько пенициллиновых пузырьков или пробирок по 3 мл. К каждой порции раствора добавьте какой-либо металл в виде порошка или мелких опилок (приготовьте с помощью напильника), например, железо, алюминий, медь, олово и т. д. Опишите наблюдаемые изменения и запишите соответствующие уравнения реакций.

4. Металлическую пластинку очистите от загрязнений и покройте тонким слоем лака для ногтей (попросите у мамы). Штопальной иглой, процарапывая лак, сделайте на пластинке надпись или рисунок. Смочите пластинку раство-ром иода и оставьте на некоторое время. После реакции промойте пластинку в воде, высушите тряпочкой и снимите лак специальной жидкостью. На плас-тинке останется вытравленный рисунок. Опишите, что у вас получилось. Запишите уравнение реакции.

5. Налейте в пробирку до 1/3 объема воды и добавьте несколько капель иод-ной настойки. Прилейте к раствору половинный объем бензина или раствори-теля для масляных красок и хорошо взболтайте смесь. Что вы видите после разделения жидкостей на два слоя? Можно ли на основании данного опы-та судить о различной растворимости иода в воде и в органическом ра-створителе?

Опыты с глицерином. 1. Растворы глицерина в воде замерзают при низких температурах. Налейте в четыре пенициллиновые скляночки по 0,5 мл глицерина, в первую – добавьте столько же воды, во вторую – 1 мл воды, в третью – 1,5 мл воды, а в четвертую – 2 мл воды. Выставите растворы на холод или в морозильную камеру, отметьте температуру и установите, какие растворы при этом не замерзли.

2. Смочите конец железной проволоки или стеклянной палочки в глицерине и внесите в пламя. Глицерин загорается. Обратите внимание на характер пламени и дайте объяснение. Запишите уравнение реакции.

3. Налейте в пробирку 2 мл раствора гидроксида натрия, 2-3 капли раствора медного купороса, затем по каплям добавляйте глицерин до растворения осадка. Запишите уравнения проведенных реакций и ваши наблюдения.

4. Немного (1-2 мл) глицерина, купленного в аптеке, нагрейте (осторожно!) в ложке для удаления из него воды. После охлаждения прибавьте к глицерину щепотку перманганата калия. Через 1-2 мин глицерин вспыхивает и сгорает ярким пламенем. (Если в вашем распоряжении будет безводный глицерин, то предварительный нагрев излишен). Опишите ваши наблюдения.

ВОПРОСЫ И ЗАДАНИЯ

    Каково Ваше мнение о методике унификации химического эксперимента?

    Разработайте вариант демонстрационного эксперимента с применением унифицированного прибора к Вашей теме.

    Разработайте варианты химического эксперимента для проведения в домашних условиях по Вашей теме.

10. Тестовые технологии в обучении химии. Процесс учета и контроля знаний учащихся - это один из наиболее ответственных и сложных видов деятельности в процессе обучения, как для учащихся, так и для учителя. Контроль усвоения знаний учащихся осуществляет целый ряд функций в процессе обучения: оценочную, диагностическую, стимулирующую, развивающую, обучающую, воспитательную и др.

Для определения качества знаний, умений и навыков применяются различные приемы, средства и методы, среди которых в последние годы в школьной практике существенное значение приобрело тестирование.

Cтраница 1


Газоотводная стеклянная трубка с помощью резиновой трубки с винтовым зажимом соединяется со стеклянным тройником, наиболее длинный конец которого согнут под прямым углом и вставлен в пробку, закрывающую верхнее отверстие-горло газометра, представляющего собой склянку на 3 - 4 л с тубусом. Третий конец тройника соединен с одним концом U-образной трубки, наполовину заполненной подкрашенной водой и служащей в качестве манометра. Сзади трубки укрепляется миллиметровая бумага для наблюдения и отсчета разности положения мениска воды в обоих коленах трубки.  

Через некоторое время после начала нагревания реторты периодически подносят пламя к выходному отверстию газоотводной стеклянной трубки и пробуют зажечь газ. Как только он загорится, нагревание реторты регулируют таким образом, чтобы высота пламени горящего газа была не менее 1 и не более 1 5 см. К концу опыта пламя становится все меньше и меньше, несмотря на усиление нагревания, и, наконец, гаснет. После этого нагрев реторты продолжают еще в течение получаса, после чего опыт считается за-кон четным; общая его продолжительность - от 4 до 6 час. Во избежание растрескивания реторты нагрев ее уменьшают постепенно, вновь переводя пламя на коптящее и понемногу уменьшая его. Затем отнимают приемную колбу, снимают пробку с горла реторты, и осторожно нагревая последнее, дают стечь в приемную колбу остаткам застывшей в горле смолы.  


Бунзена для закрепления ее; 3 - пробка резиновая с отвер стием; 4 - Г - образная газоотводная стеклянная трубка; 5 - пробирка с известковой водой для обнаружения выходящего углекислого газа; 6 - горелка.  

Хлорная вода получается пропусканием хлора через воду. Газоотводную стеклянную трубку опускают до дна пробирки или стакана с водой и пробулькивают некоторое время хлор через воду.  


Определение выходов продуктов полукоксования в алюминиевой реторте иногда производят и без сбора газа. В этом случае газоотводная стеклянная трубка, выводящая газ из приемной колбы, не соединяется с тройником и через него с газометром, а служит для выпуска газа, для чего конец ее оттягивается. Выходящий газ зажигается, как это описано выше, в первом методе.  

Пробирка с пробкой, снабженной газоотводной стеклянной трубкой (рис. 41), прибор для получения сернистого газа (рис. 42), стакан емкостью 100 мл, колбочка емкостью 50 мл, фарфоровая - крышка, ложечка или шпатель.  

В колбу, укрепленную на штативе, налить до половины 3 % - ный раствор пероксида водорода. К боковой трубке колбы присоединить газоотводную стеклянную трубку, опущенную в кристаллизатор с водой, куда помещен наполненный водой и опрокинутый небольшой цилиндр.  

Верхний открытый конец левой бюретки с помощью газоотводной стеклянной трубки и двух пробок соединяют с пробиркой. Чтобы испытать прибор на герметичность, соединяют верхний конец левой бюретки с пробиркой, опускают правую бюретку на 15 - 20 см, закрепляют ее в держателе штатива и наблюдают 3 - 5 мин за положением в ней уровня воды. Если прибор герметичен, то уровень воды в бюретке за это время не изменяется.  

Трубку, горизонтально положенную в печь, с обоих концов плотно закрывают корковыми пробками, через которые проходят стеклянные трубки. Одну из них соединяют резиновой трубкой с колбой-парообразователем, к другой присоединяют газоотводную стеклянную трубку, опущенную в кристаллизатор с водой. В последний помещают также стеклянный цилиндр, наполненный водой, опрокинутый вверх дном и укрепленный в лапке штатива.  

Последнее весьма важно, так как пробка, закрывающая колбу, должна быть достаточно широкой, чтобы в ней можно было просверлить два отверстия: одно для отводной трубки реторты, другое для стеклянной трубки, отводящей неконденсирующиеся в колбе газы. Отводная трубка реторты должна входить в приемную колбу возможно глубже (не касаясь, однако, конденсата), чтобы пары не уходили в газоотводную стеклянную трубку, не успев охладиться и сконденсироваться в колбе.  

Страницы:      1

Собирание газов

Способы собирания газов определяются их свойствами: раст­воримостью и взаимодействием с водой, с воздухом, ядовитостью газа. Различают два основных способа собирания газа: вытеснением воздуха и вытеснением воды. Вытеснением воздуха собирают газы, которые не взаимодействуют с воздухом.

По относительной плотности газа по воздуху делают заключе­ние, как расположить сосуд для собирания газа (рис. 3, а и б).

На рис. 3, а показано собирание газа с плотностью по воздуху более единицы, например оксида азота(IV), плотность которого по воздуху равна 1,58. На рис. 3, б показано собирание газа с плотностью по воздуху менее единицы, например водорода, аммиа­ка и др.

Вытеснением воды собирают газы, которые не взаимодействуют с водой и плохо в ней растворяются. Этот способ называется соби­ранием газа над водой , которое осуществляют следующим образом (рис. 3, в). Цилиндр или банку заполняют водой и закрывают стек­лянной пластинкой так, чтобы в цилиндре не оставалось пузырьков воздуха. Пластинку придерживают рукой, цилиндр переворачивают и опускают в стеклянную ванну с водой. Под водой пластинку удаляют, в открытое отверстие цилиндра подводят газоотводную трубку. Газ постепенно вытесняет воду из цилиндра и заполняет его, после чего отверстие цилиндра под водой закрывают стеклянной пластинкой и цилиндр, заполненный газом, вынимают. Если газ тяжелее воздуха, то цилиндр ставят дном на стол, а если легче, то дном вверх на пластинку. Газы над водой можно собирать в про­бирки, которые, так же как и цилиндр, заполняют водой, закрывают пальцем и опрокидывают в стакан или в стеклянную ванну с водой.

Ядовитые газы собирают обычно вытеснением воды, так как при этом легко отметить момент, когда газ целиком заполнит сосуд. Если есть необходимость собрать газ способом вытеснения воздуха, то для этого поступают следующим образом (рис. 3, г).

В колбу (банку или цилиндр) вставляют пробку с двумя газо­отводными трубками. Через одну, которая доходит почти до дна, впускают газ, конец другой опускают в стакан (банку) с раствором, поглощающим газ. Так, например, для поглощения оксида серы(IV) в стакан наливают раствор щелочи, а для поглощения хлороводорода - воду. После заполнения колбы (банки) газом вынимают из нее пробку с газоотводными трубками и сосуд быстро закрывают пробкой или стеклянной пластинкой, а пробку с газоотводными трубками помещают в газопоглощающий раствор.

Опыт 1. Получение и собирание кислорода

Соберите установку по рис. 4. В большую сухую пробирку поместите 3-4 г перманганата калия, закройте пробкой с газоотводной трубкой. Укрепите пробирку в штативе наклонно отверстием чуть вверх. Рядом со штативом, на котором укреплена пробирка, поставьте кристаллизатор с водой. Пустую пробирку заполните водой, закройте отверстие стеклянной пластиной и быстро переверните в кристаллизатор вверх дном. Затем в воде выньте стеклянную пластину. В пробирке не должно быть воздуха. Нагрейте в пламени горелки перманганат калия. Опустите конец газоотводной трубки в воду. Наблюдайте появление пузырьков газа.

Через несколько секунд после начала выделения пузырьков подведите конец газоотводной трубки в отверстие пробирки, заполненной водой. Кислород вытесняет воду из пробирки. После заполнения пробирки кислородом закройте ее отверстие стеклянной пластиной и переверните.

Рис. 4. Прибор для получения кислорода В пробирку с кислородом опустите тлеющую

1. Какие лабораторные способы получения кислорода вам известны? Напишите соответствующие уравнения реакций.

2. Опишите наблюдения. Объясните расположение пробирки в ходе опыта.

3. Составьте уравнение химической реакции разложения перманганата калия при нагревании.

4. Почему в пробирке с кислородом тлеющая лучинка вспыхивает?

Опыт 2. Получение водорода действие металла на кислоту

Соберите прибор, состоящий из про­бирки с пробкой, через которую прохо­дит стеклянная трубка с оттянутым кон­цом (рис. 5). Положите в пробирку не­сколько кусочков цинка и прилейте разбавленный раствор серной кислоты. Плотно вставьте пробку с оттянутой трубкой, укрепите пробирку вертикально в зажи­ме штатива. Наблюдайте выделение газа.

Рис. 5. Прибор для получения водорода Выходящий через труб­ку водород не должен содержать примеси воздуха. На газоотводную трубку наденьте перевернутую вверх дном пробир­ку, через полминуты снимите и, не перево­рачивая, поднесите к пламени горелки. Если в пробирку поступил чистый водород, он загорается спо­койно (при загорании слышен слабый звук).

При наличии в пробирке с водородом примеси воздуха про­исходит небольшой взрыв, сопровождающийся резким звуком. В этом случае испытание газа на чистоту следует повторить. Убедившись, что из прибора идет чистый водород, зажечь его у отверстия оттянутой трубки.

Контрольные вопросы и задания:

1. Укажите способы получения и собирания водорода в лаборатории. Напишите соответствующие уравнения реакций.

2. Составьте уравнение химической реакции получения водорода в условиях опыта.

3. Подержите над пламенем водорода сухую пробирку. Какое вещество образуется в результате горения водорода? Напишите уравнение реакции горения водорода.

4. Как проверить полученный в ходе эксперимента водород на чистоту?

Опыт 3. Получение аммиака

Рис. 6. Прибор для получения аммиака В пробирку с газоотводной трубкой поместите предварительно растертую в ступке смесь хлорида аммония и гидроксида кальция (рис. 6). Отметьте запах смеси. Пробирку со смесью закрепите в штативе, чтобы дно ее было чуть выше, чем отверстие. Закройте пробирку пробкой с газоотводной трубкой, на изогнутый конец которой наденьте пробирку вверх дном. Слабо нагрейте пробирку со смесью. К отверстию перевернутой пробирки поднесите лакмусовую бумажку, смоченную водой. Отметить изменение цвета лакмусовой бумажки.

Контрольные вопросы и задания:

1. Какие водородные соединения азота Вам известны? Напишите их формулы и названия.

2. Опишите происходящие явления. бъясните расположение пробирки в ходе опыта.

3. Составьте уравнение реакции взаимодействия хлорида аммония и гидроксида кальция.

Опыт 4. Получение оксида азота(IV)

Соберите прибор по рис. 7. В колбу положите немного медных стружек, в воронку налейте 5-10 мл концентрированной азотной кислоты. Кислоту вливать в колбу небольшими порциями. Соберите выделяющийся газ в про­бирку.

Рис. 7. Прибор для получения оксида азота(IV)

Контрольные вопросы и задания:

1. Опишите происходящие явления. Каков цвет выделяющегося газа?

2. Составьте уравнение реакции взаимодействия меди с концентрированной азотной кислотой.

3. Какими свойствами обладает азотная кислота? От каких факторов зависит состав веществ, до которых она восстанавливается? Приведите примеры реакций между металлами и азотной кислотой, в результате которых продуктами восстановления HNO 3 являются NO 2 , NO, N 2 O, NH 3 .

Опыт 5. Получение хлороводорода

В колбу Вюрца поместите 15-20 г хлорида натрия; в капельную воронку - концент­рированный раствор серной кислоты (рис. 8). Конец газоотводной трубки введите в сухой сосуд для собирания хлороводорода так, чтобы трубка дохо­дила почти до дна. Закройте отверстие сосуда рыхлым комоч­ком ваты.

Рядом с прибором поставьте кристаллизатор с во­дой. Из капельной воронки наливайте раствор серной кислоты.

Для ускоре­ния реакции колбу слегка подогреть. Когда над

ватой, кото­рой закрыто отверстие сосуда, появится туман,

Рис. 8. Прибор для получения хлороводорода нагревание колбы прекратите, а конец газоотводной трубки опустите в колбу с водой (держать трубку близко над водой, не опуская ее в воду). Вынув вату, тотчас закройте отверстие сосуда с хлороводородом стеклянной пла­стинкой. Перевернув сосуд отверстием вниз, погрузите его в кристаллизатор с водой и выньте пластинку.

Контрольные вопросы и задания:

1. Объясните наблю­даемые явления. Какова причина образования тумана?

2. Какова растворимость хлороводорода в воде?

3. Испытайте полученный раствор лакмусовой бумажкой. Чему равно значение рН?

4. Напишите уравнение химической реакции взаимодействия твердого хлорида натрия с концентрированной серной кислотой.

Опыт 6. Получение и собирание оксида углерода(IV)

Установка состоит из аппарата Киппа 1 , заряжен­ного кусками мрамора и соляной кислотой, двух последовательно соединенных склянок Тищенко 2 и 3 (склянка 2 заполнена водой для очистки проходящего оксида углерода(IV) от хлороводорода и от механических примесей, склянка 3 - серной кислотой для осушки газа) и колбы 4 емкостью 250 мл для собирания оксида углерода(IV) (рис. 9).

Рис. 9. Прибор для получения оксида углерода(IV)

Контрольные вопросы и задания:

1. Зажженную лучину опустить в колбу с оксидом углерода(IV) и объяснить, почему гаснет пламя.

2. Составить уравнение реакции образования оксида углерода (IV).

3. Можно ли для получения оксида углерода(IV) использовать концентрированный раствор серной кислоты?

4. Выделяющийся из аппарат Киппа газ пропустить в пробирку с водой, подкрашенной нейтральным раствором лакмуса. Что наблюдается? Напишите уравнения реакции, протекающей при растворении газа в воде.

Контрольные вопросы:

1. Перечислите основные характеристики газообразного состояния вещества.

2. Предложите классификацию газов по 4-5 существенным признакам.

3. Как читается закон Авогадро? Каково его математическое выражение?

4. Объясните физический смысл средней молярной массы смеси.

5. Рассчитайте среднюю молярную массу условного воздуха, в котором массовая доля кислорода составляет 23 %, а азота - 77 %.

6. Какие из перечисленных газов легче воздуха: оксид углерода(II), оксид углерода(IV), фтор, неон, ацетилен С 2 Н 2 , фосфин РН 3 ?

7. Определите плотность по водороду газовой смеси, состоящей из аргона объемом 56 л и азота объемом 28 л. Объемы газов приведены к н.у.

8. Открытый сосуд нагревается при постоянном давлении от 17 о С до 307 о С. какая част воздуха (по массе), находящегося в сосуде, при этом вытесняется?

9. Определите массу 3 л азота при 15 о С и давлении 90 кПа.

10. Масса 982,2 мл газа при 100 о С и давлении 986 Па равна 10 г. Определите молярную массу газа.

Катион.

Воздействие или реактив

Наблюдаемая реакция

Li +

Na +

К +

Са 2+

Sr 2+

Ва 2+

Сu 2+

РЬ 2+

Fe 2+

Fe 3+

Al 3+

NH 4 +

Н + (кислая среда)

Анион

Воздействие или реактив

Наблюдаемая реакция

4 2-

3 -

РО 4 3-

СrO 4 2-

S 2- ,

СО 3 2-

CO 2

SO 3 2-

F -

Cl -

Br -

I -

ОН - (щелочная среда)

Лабораторная работа № 5 общие приемы работы с газами

Цель работы: научиться получать и собирать простые и сложные газообразные вещества в зависимости от свойств этих веществ.

Реактивы и материалы: цинк, алюминий, медь, хлорид натрия, перманганат калия, хлорид аммония, гидроксид кальция, концентрированные растворы гидроксида натрия, соляной, серной и азотной кислот, лучинка.

Оборудование: пробирки, воронки, кристаллизатор, аппарат Киппа, пробирка с газоотводной трубкой, колба Вюрца, капельная воронка, газометр, промывные склянки, ступка с пестиком.

Техника безопасности: соблюдать основные правила работы в химической лаборатории и при работе с аппаратом Киппа.

Получение газов

Вещества в газообразном состоянии в лабораторных условиях получают:

а) взаимодействием смеси нескольких твердых веществ при нагревании;

б) прокаливанием одного твердого вещества;

в) взаимодействием твердого вещества с жидкостью при на­гревании и без нагревания (хлор, хлороводород и др.).

Для получения газов применяют различные приборы (рис. 1-2). Простейшим из них является прибор, изображенный на рис. 2, а, представляющий пробирку с газоотводной трубкой. При пользовании этим прибором надо учитывать условия протекания реакции. Так, если реакция идет только при нагревании, то остановить ее можно прекращением нагревания. Если же нагревание для реакции не тре­буется, то она идет до тех пор, пока не израсходуются исходные вещества (или одно из них). Преимущество такого прибора в его простоте. Недостаток - в необходимости разбирать прибор после каждого опыта по получению газа.

На рис. 2, б, изображен прибор, состоящий из колбы Вюрца и капельной воронки. Он удобен для получения газов, когда хотя бы одно из реагирующих веществ является жидким или содержится в растворе. Выделение газа в таком приборе можно регулировать приливанием жидкого реагента. Такой прибор для получения газа можно использовать неоднократно и, следовательно, нет необходи­мости разбирать его после каждого опыта.

Приборы для получения газов (рис. 2) необходимо перед употреблением проверять на герметичность. Для этого опускают конец газоотводной трубки от прибора в сосуд с водой и слегка обогревают реакционный сосуд. Если прибор герметичен, то в воду пойдут пузырьки воздуха, а при прекращении нагревания вода из сосуда начнет засасываться в прибор.

В практике часто используют приборы автоматического действия.

Одним из таких приборов является аппарат Киппа (рис. 1). Это стеклянный прибор, состоящий из двух частей: сосуда 1 с суже­нием в средней части и шарообразной воронки 2 , конец которой на 1-2 см не доходит до дна сосуда. Воронка вставляется в сосуд на шлифе, обеспечивающем герметичность прибора. Средний шар имеет тубус, закрытый пробкой с газоотводной трубкой и краном 3 . В нижней части аппарата имеется тубус 4 , через который выливают отработанную жидкость. Аппарат Киппа для большей прочности изготовляют из толстостенного стекла, так как он должен выдерживать большое давление находящегося в нем газа. С помощью аппара­та Киппа можно получать оксид углерода(IV), водород, сероводород и некоторые другие газы.

При зарядке аппарата Киппа в среднюю часть прибора (находя­щегося в собранном виде) через тубус помещают твердое вещество (мрамор для получения СО 2 , цинк для получения Н 2). Затем тубус закрывают пробкой с газоотводной трубкой и при открытом кране вливают раствор кислоты в воронку. Кислота поступает в нижнюю часть прибора. Затем поднимается в средний шар и приходит в соприкосновение с твердым веществом - начинается химическая реак­ция, выделяется газ. Как только кислота покроет твердое вещество, вливание кислоты прекращают и кран закрывают. После закрытия крана кислота под давлением образовавшегося газа вытесняется в нижнюю часть прибора и в воронку. Реакция прекращается.

Приведение аппарата в действие осуществляется открытием крана. При этом образовавшийся газ выходит через газоотводную трубку. Кислота приходит во взаимодействие с твердым веществом, начинается реакция. При разрядке аппарата Киппа кислоту выли­вают через нижний тубус, твердое вещество извлекают через верхний тубус. Во избежание нарушения герметичности прибора разъедине­ние воронки и сосуда производят только при острой необходимости.

Собирание газов

Способы собирания газов определяются их свойствами: раст­воримостью и взаимодействием с водой, с воздухом, ядовитостью газа. Различают два основных способа собирания газа: вытеснением воздуха и вытеснением воды. Вытеснением воздуха собирают газы, которые не взаимодействуют с воздухом.

По относительной плотности газа по воздуху делают заключе­ние, как расположить сосуд для собирания газа (рис. 3, а и б).

На рис. 3, а показано собирание газа с плотностью по воздуху более единицы, например оксида азота(IV), плотность которого по воздуху равна 1,58. На рис. 3, б показано собирание газа с плотностью по воздуху менее единицы, например водорода, аммиа­ка и др.

Вытеснением воды собирают газы, которые не взаимодействуют с водой и плохо в ней растворяются. Этот способ называется соби­ранием газа над водой , которое осуществляют следующим образом (рис. 3, в). Цилиндр или банку заполняют водой и закрывают стек­лянной пластинкой так, чтобы в цилиндре не оставалось пузырьков воздуха. Пластинку придерживают рукой, цилиндр переворачивают и опускают в стеклянную ванну с водой. Под водой пластинку удаляют, в открытое отверстие цилиндра подводят газоотводную трубку. Газ постепенно вытесняет воду из цилиндра и заполняет его, после чего отверстие цилиндра под водой закрывают стеклянной пластинкой и цилиндр, заполненный газом, вынимают. Если газ тяжелее воздуха, то цилиндр ставят дном на стол, а если легче, то дном вверх на пластинку. Газы над водой можно собирать в про­бирки, которые, так же как и цилиндр, заполняют водой, закрывают пальцем и опрокидывают в стакан или в стеклянную ванну с водой.

Я
довитые газы собирают обычно вытеснением воды, так как при этом легко отметить момент, когда газ целиком заполнит сосуд. Если есть необходимость собрать газ способом вытеснения воздуха, то для этого поступают следующим образом (рис. 3, г).

В колбу (банку или цилиндр) вставляют пробку с двумя газо­отводными трубками. Через одну, которая доходит почти до дна, впускают газ, конец другой опускают в стакан (банку) с раствором, поглощающим газ. Так, например, для поглощения оксида серы(IV) в стакан наливают раствор щелочи, а для поглощения хлороводорода - воду. После заполнения колбы (банки) газом вынимают из нее пробку с газоотводными трубками и сосуд быстро закрывают пробкой или стеклянной пластинкой, а пробку с газоотводными трубками помещают в газопоглощающий раствор.

Опыт 1. Получение и собирание кислорода

Соберите установку по рис. 4. В большую сухую пробирку поместите 3-4 г перманганата калия, закройте пробкой с газоотводной трубкой. Укрепите пробирку в штативе наклонно отверстием чуть вверх. Рядом со штативом, на котором укреплена пробирка, поставьте кристаллизатор с водой. Пустую пробирку заполните водой, закройте отверстие стеклянной пластиной и быстро переверните в кристаллизатор вверх дном. Затем в воде выньте стеклянную пластину. В пробирке не должно быть воздуха. Нагрейте в пламени горелки перманганат калия. Опустите конец газоотводной трубки в воду. Наблюдайте появление пузырьков газа.

Через несколько секунд после начала выделения пузырьков подведите конец газоотводной трубки в отверстие пробирки, заполненной водой. Кислород вытесняет воду из пробирки. После заполнения пробирки кислородом закройте ее отверстие стеклянной пластиной и переверните.

В

Рис. 4. Прибор для получения кислорода

пробирку с кислородом опустите тлеющую

    Какие лабораторные способы получения кислорода вам известны? Напишите соответствующие уравнения реакций.

2. Опишите наблюдения. Объясните расположение пробирки в ходе опыта.

3. Составьте уравнение химической реакции разложения перманганата калия при нагревании.

4. Почему в пробирке с кислородом тлеющая лучинка вспыхивает?

Опыт 2. Получение водорода действие металла на кислоту

Соберите прибор, состоящий из про­бирки с пробкой, через которую прохо­дит стеклянная трубка с оттянутым кон­цом (рис. 5). Положите в пробирку не­сколько кусочков цинка и прилейте разбавленный раствор серной кислоты. Плотно вставьте пробку с оттянутой трубкой, укрепите пробирку вертикально в зажи­ме штатива. Наблюдайте выделение газа.

В

Рис. 5. Прибор для получения водорода

ыходящий через труб­ку водород не должен содержать примеси воздуха. На газоотводную трубку наденьте перевернутую вверх дном пробир­ку, через полминуты снимите и, не перево­рачивая, поднесите к пламени горелки. Если в пробирку поступил чистый водород, он загорается спо­койно (при загорании слышен слабый звук).

При наличии в пробирке с водородом примеси воздуха про­исходит небольшой взрыв, сопровождающийся резким звуком. В этом случае испытание газа на чистоту следует повторить. Убедившись, что из прибора идет чистый водород, зажечь его у отверстия оттянутой трубки.

Контрольные вопросы и задания:

1. Укажите способы получения и собирания водорода в лаборатории. Напишите соответствующие уравнения реакций.

2. Составьте уравнение химической реакции получения водорода в условиях опыта.

3. Подержите над пламенем водорода сухую пробирку. Какое вещество образуется в результате горения водорода? Напишите уравнение реакции горения водорода.

4. Как проверить полученный в ходе эксперимента водород на чистоту?

Опыт 3. Получение аммиака

В

Рис. 6 . Прибор для получения аммиака

пробирку с газоотводной трубкой поместите предварительно растертую в ступке смесь хлорида аммония и гидроксида кальция (рис. 6). Отметьте запах смеси. Пробирку со смесью закрепите в штативе, чтобы дно ее было чуть выше, чем отверстие. Закройте пробирку пробкой с газоотводной трубкой, на изогнутый конец которой наденьте пробирку вверх дном. Слабо нагрейте пробирку со смесью. К отверстию перевернутой пробирки поднесите лакмусовую бумажку, смоченную водой. Отметить изменение цвета лакмусовой бумажки.

Контрольные вопросы и задания:

    Какие водородные соединения азота Вам известны? Напишите их формулы и названия.

    Опишите происходящие явления. бъясните расположение пробирки в ходе опыта.

    Составьте уравнение реакции взаимодействия хлорида аммония и гидроксида кальция.

Опыт 4. Получение оксида азота(IV )

Соберите прибор по рис. 7. В колбу положите немного медных стружек, в воронку налейте 5-10 мл концентрированной азотной кислоты. Кислоту вливать в колбу небольшими порциями. Соберите выделяющийся газ в про­бирку.

Рис. 7. Прибор для получения

оксида азота(IV )

Контрольные вопросы и задания:

1. Опишите происходящие явления. Каков цвет выделяющегося газа?

2. Составьте уравнение реакции взаимодействия меди с концентрированной азотной кислотой.

3. Какими свойствами обладает азотная кислота? От каких факторов зависит состав веществ, до которых она восстанавливается? Приведите примеры реакций между металлами и азотной кислотой, в результате которых продуктами восстановления HNO 3 являются NO 2 , NO , N 2 O , NH 3 .

Опыт 5. Получение хлороводорода

В колбу Вюрца поместите 15-20 г хлорида натрия; в капельную воронку - концент­рированный раствор серной кислоты (рис. 8). Конец газоотводной трубки введите в сухой сосуд для собирания хлороводорода так, чтобы трубка дохо­дила почти до дна. Закройте отверстие сосуда рыхлым комоч­ком ваты.

Рядом с прибором поставьте кристаллизатор с во­дой. Из капельной воронки наливайте раствор серной кислоты.

Для ускоре­ния реакции колбу слегка подогреть. Когда над

ватой, кото­рой закрыто отверстие сосуда, появится туман,

н

Рис. 8. Прибор для получения хлороводорода

агревание колбы прекратите, а конец газоотводной трубки опустите в колбу с водой (держать трубку близко над водой, не опуская ее в воду). Вынув вату, тотчас закройте отверстие сосуда с хлороводородом стеклянной пла­стинкой. Перевернув сосуд отверстием вниз, погрузите его в кристаллизатор с водой и выньте пластинку.

Контрольные вопросы и задания:

    Объясните наблю­даемые явления. Какова причина образования тумана ?

    Какова растворимость хлороводорода в воде?

    Испытайте полученный раствор лакмусовой бумажкой. Чему равно значение рН ?

    Напишите уравнение химической реакции взаимодействия твердого хлорида натрия с концентрированной серной кислотой.

Опыт 6. Получение и собирание оксида углерода(IV )

Установка состоит из аппарата Киппа 1 , заряжен­ного кусками мрамора и соляной кислотой, двух последовательно соединенных склянок Тищенко 2 и 3 (склянка 2 заполнена водой для очистки проходящего оксида углерода(IV) от хлороводорода и от механических примесей, склянка 3 - серной кислотой для осушки газа) и колбы 4 емкостью 250 мл для собирания оксида углерода(IV) (рис. 9).

Рис. 9. Прибор для получения оксида углерода(IV )

Контрольные вопросы и задания:

    Зажженную лучину опустить в колбу с оксидом углерода(IV) и объяснить, почему гаснет пламя.

    Составить уравнение реакции образования оксида углерода (IV).

    Можно ли для получения оксида углерода(IV ) использовать концентрированный раствор серной кислоты?

    Выделяющийся из аппарат Киппа газ пропустить в пробирку с водой, подкрашенной нейтральным раствором лакмуса. Что наблюдается? Напишите уравнения реакции, протекающей при растворении газа в воде.

Контрольные вопросы:

    Перечислите основные характеристики газообразного состояния вещества.

    Предложите классификацию газов по 4-5 существенным признакам.

    Как читается закон Авогадро? Каково его математическое выражение ?

    Объясните физический смысл средней молярной массы смеси.

    Рассчитайте среднюю молярную массу условного воздуха, в котором массовая доля кислорода составляет 23 %, а азота - 77 %.

    Какие из перечисленных газов легче воздуха: оксид углерода(II), оксид углерода(IV), фтор, неон, ацетилен С 2 Н 2 , фосфин РН 3 ?

7. Определите плотность по водороду газовой смеси, состоящей из аргона объемом 56 л и азота объемом 28 л. Объемы газов приведены к н.у.

8. Открытый сосуд нагревается при постоянном давлении от 17 о С до 307 о С. какая част воздуха (по массе), находящегося в сосуде, при этом вытесняется?

9. Определите массу 3 л азота при 15 о С и давлении 90 кПа.

10. Масса 982,2 мл газа при 100 о С и давлении 986 Па равна 10 г. Определите молярную массу газа.