Для опытов по изучению закономерностей наследования признаков. Закономерности наследования, установленные Г. Менделем. Такое явление называют кодоминированием

Успех работы Грегора Менделя был связан с тем, что он правильно выбрал объект исследования и соблюдал принципы, лежащие в основе гибридологического метода:

1. в качестве объекта исследования были взяты растения гороха одного вида.

2. растения заметно отличались по сравниваемым признакам – высокие – низкие, с желтыми и зелеными семенами, с гладкими и морщинистыми семенами.

3. первое поколение от исходных родительских форм всегда было одинаковым: высокие родители давали высокое потомство, низкие родители давали растения маленького роста; во втором поколении происходило расщепление в признаках.

Первый закон Менделя (правило единообразия):

выведен на основе статистических данных, полученных Г. Менделем при скрещивании разных сортов гороха, имевших четкие альтернативные различия по следующим признакам:

– форма семени (круглая / некруглая);

– окраска семени (желтая / зеленая);

– кожура семени (гладкая / морщинистая) и т.д.

При скрещивании растений с желтыми и зелеными семенами Мендель обнаружил, что все гибриды первого поколения оказались с желтыми семенами (назвал этот признак доминантным ).

Признак, определяющий зеленую окраску семян, был назван рецессивным (отступающим, подавленным).

1. На основании полученных результатов и их анализа Мендель сформулировал свой первый закон : при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения оказываются по этим признакам единообразными и похожими на родителя с доминантным признаком.

В случае неполного доминирования только 25% особей фенотипически похожи на родителя с доминантным признаком и 25% особей будут похожи на рецессивного по фенотипу родителя. Остальные 50% гетерозигот будут от них фенотипически отличаться.

2. Для выявления гетерозиготности особи по определенному аллелю, т.е. наличию рецессивного гена в генотипе, используется анализирующее скрещивание . Для этого особь с доминантным признаком (АА? или Аа?) скрещивают с гомозиготной по рецессивному аллелю особью. В случае гетерозиготности особи с доминантным признаком расщепление в потомстве будет 1:1

АА × аа → 100% Аа

Аа × аа → 50% Аа и 50% аа

Второй закон Менделя (закон расщепления).

При скрещивании гетерозиготных гибридов первого поколения между собой, во втором поколении обнаруживается расщепление по данному признаку. Это расщепление носит закономерный статистический характер: 3: 1 по фенотипу и 1: 2:1 по генотипу. В случае скрещивания форм с желтыми и зелеными семенами в соответствии со вторым законом Менделя получают следующие результаты скрещивания.

Появляются семена как с желтой, так и с зеленой окраской.

Третий закон Менделя

(закон независимого наследования при дигибридном (полигибридном) скрещивании): выведен на основе анализа результатов, полученных при скрещивании особей, отличающихся по двум парам альтернативных признаков. Например: растение, дающее желтые, гладкие семена скрещивается с растением, дающим зеленые, морщинистые семена .

Для дальнейшей записи используется решетка Пеннета .

Во втором поколении возможно появление 4 фенотипов в отношении 9: 3: 3: 1 и 9 генотипов.

В результате анализа выяснилось, что гены разных аллельных пар и соответствующие им признаки передаются независимо друг от друга. Этот закон справедлив :

– для диплоидных организмов;

– для генов, расположенных в разных гомологичных хромосомах;

– при независимом расхождении гомологичных хромосом в мейозе и их случайном сочетании при оплодотворении.

Указанные условия являются цитологическими основами дигибридного (и полигибридного) скрещивания.

В экспериментах Менделя установлена дискретность (прерывистость ) наследственного материала, что позже привело к открытию генов, как элементарных материальных носителей наследственной информации.

В соответствии с гипотезой чистоты гамет в сперматозоиде или яйцеклетке в норме всегда находится только одна из гомологичных хромосом данной пары. Именно поэтому при оплодотворении восстанавливается диплоидный набор хромосом данного организма. Расщепление – это результат случайного сочетания гамет, несущих разные аллели.

Так как события случайны, то закономерность носит статистический характер , т.е. определяется большим числом равновероятных событий – встреч гамет, несущих разные (или одинаковые) альтернативные гены.

Тематические задания

А1. Доминантный аллель – это

1) пара одинаковых по проявлению генов

2) один из двух аллельных генов

3) ген, подавляющий действие другого гена

4) подавляемый ген

А2. Часть молекулы ДНК считается геном, если в ней закодирована информация о

1) нескольких признаках организма

2) одном признаке организма

3) нескольких белках

4) молекуле т-РНК

А3. Если признак не проявляется у гибридов первого поколения, то он называется

1) альтернативным

2) доминантным

3) не полностью доминирующим

4) рецессивным

А4. Аллельные гены расположены в

1) идентичных участках гомологичных хромосом

2) разных участках гомологичных хромосом

3) идентичных участках негомологичных хромосом

4) разных участках негомологичных хромосом

А5. Какая запись отражает дигетерозиготный организм:

А6. Определите фенотип тыквы с генотипом Сс ВВ, зная, что белая окраска доминирует над желтой, а дисковидная форма плодов – над шаровидной

1) белая, шаровидная

2) желтая, шаровидная

3) желтая дисковидная

4) белая, дисковидная

А7. Какое потомство получится при скрещивании комолой (безрогой) гомозиготной коровы (ген комолости В доминирует) с рогатым быком.

3) 50% ВВ и 50% Вв

4) 75% ВВ и 25% Вв

А8. У человека ген лопоухости (А) доминирует над геном нормально прижатых ушей, а ген нерыжих (В) волос над геном рыжих волос. Каков генотип лопоухого, рыжего отца, если в браке с нерыжей женщиной, имеющей нормально прижатые уши, у него были только лопоухие, нерыжие дети?

А9. Какова вероятность рождения голубоглазого (а), светловолосого (в) ребенка от брака голубоглазого темноволосого (В) отца и кареглазой (А), светловолосой матери, гетерозиготных по доминантным признакам?

А10. Второй закон Менделя – это закон, описывающий процесс

1) сцепления генов

2) взаимного влияния генов

3) расщепления признаков

4) независимого распределения гамет

А11. Сколько типов гамет образует организм с генотипом ААВвСс

Хромосомная теория наследственности.

Основоположник хромосомной теории Томас Гент Морган и его ученики установили, что:

– каждый ген имеет в хромосоме определенный локус (место);

– гены в хромосоме расположены в определенной последовательности;

– наиболее близко расположенные гены одной хромосомы сцеплены, поэтому наследуются преимущественно вместе;

– группы генов, расположенных в одной хромосоме, образуют группы сцепления;

– число групп сцепления равно гаплоидному набору хромосом у гомогаметных особей и n+1 у гетерогаметных особей;

– между гомологичными хромосомами может происходить обмен участками (кроссинговер ); в результате кроссинговера возникают гаметы, хромосомы которых содержат новые комбинации генов;

– частота (в %) кроссинговера между неаллельными генами пропорциональна расстоянию между ними;

– набор хромосом в клетках данного типа (кариотип ) является характерной особенностью вида;

– частота кроссинговера между гомологичными хромосомами зависит от расстояния между генами, локализованными в одной хромосоме. Чем это расстояние больше, тем выше частота кроссинговера. За единицу расстояния между генами принимается 1 морганида (1% кроссинговера) или процент появления кроссоверных особей. При значении этой величины в 10 морганид можно утверждать, что частота перекреста хромосом в точках расположения данных генов равна 10% и что в 10% потомства будут выявлены новые генетические комбинации.

Для выяснения характера расположения генов в хромосомах и определения частоты кроссинговера между ними строятся генетические карты . Карта отражает порядок расположения генов в хромосоме и расстояние между генами одной хромосомы.

Эти выводы Моргана и его сотрудников получили название хромосомной теории наследственности .

Важнейшее следствие этой теории:

современные представления о гене, как о функциональной единице наследственности, его делимости и способности к взаимодействию с другими генами.

Генетика пола. Наследование, сцепленное с полом.

У человека 46 хромосом; 2n – диплоидный набор хромосом.

Половые клетки – 23 хромосомы; n – гаплоидный набор хромосом.

Пол человека зависит от половых хромосом.

Хромосомные наборы разных полов отличаются по строению половых хромосом. У-хромосома мужчин не содержит многих аллелей, имеющихся в Х-хромосоме . Признаки, определяемые генами половых хромосом, называются сцепленными с полом . Характер наследования зависит от распределения хромосом в мейозе. У гетерогаметных полов признаки, сцепленные с Х-хромосомой и не имеющие аллеля в У-хромосоме, проявляются даже в том случае, когда ген, определяющий развитие этих признаков, рецессивен.

У человека У-хромосома передается от отца к сыновьям, а Х-хромосома к дочерям. Вторую хромосому дети получают от матери – это всегда Х-хромосома. Если мать несет патологический рецессивный ген в одной из Х-хромосом (например, ген дальтонизма или гемофилии), но при этом сама не больна, то она является носительницей. В случае передачи этого гена сыновьям они могут оказаться больными данным заболеванием, ибо в У-хромосоме нет аллеля, подавляющего патологический ген.

Пол организма человека определяется в момент оплодотворения и зависит от хромосомного набора образовавшейся зиготы.

Генотип как целостная, исторически сложившаяся система.

Термин генотип предложен в 1909 г. датским генетиком Вильгельмом Иогансеном.

Генотип – это совокупность генов данного организма. У человека по последним данным около 35 тыс. генов.

Генотип, как единая функциональная система организма, сложился в процессе эволюции. Признаком системности генотипа является взаимодействие генов .

Аллельные гены (точнее, их продукты – белки) могут взаимодействовать друг с другом:

в составе хромосом – примером является полное и неполное сцепление генов;

в паре гомологичных хромосом – примерами являются полное и неполное доминирование, независимое проявление аллельных генов.

Между собой могут взаимодействовать и неаллельные гены.

Тематические задания

А1. Сколько пар хромосом отвечает за наследование пола у собак, если диплоидный набор у них равен 78?

3) тридцать шесть

4) восемнадцать

А2. Закономерности сцепленного наследования относятся к генам, расположенным в

1) разных не гомологичных хромосомах

2) гомологичных хромосомах

3) в одной хромосоме

4) негомологичных хромосомах

А3. Мужчина дальтоник женился на женщине с нормальным зрением, носительнице гена дальтонизма. Ребенка с каким генотипом у них быть не может?

А4. Чему равно число групп сцепления генов, если известно, что диплоидный набор хромосом организма равен 36?

А5. Частота кроссинговера между генами К и С – 12%, между генами В и С – 18%, между генами К и В – 24%. Каков вероятный порядок расположения генов в хромосоме, если известно, что они сцеплены.

А6. Каким будет расщепление по фенотипу в потомстве, полученном от скрещивания черных (А) мохнатых (В) морских свинок, гетерозиготных по двум признакам, сцепленным в одной хромосоме?

А7. У супружеской пары родился сын гемофилик. Он вырос и решил жениться на здоровой по данному признаку женщине, не несущей гена гемофилии. Каковы возможные фенотипы будущих детей этой супружеской пары, если ген сцеплен с Х-хромосомой?

1) все девочки здоровы и не носительницы, а мальчики гемофилики

2) все мальчики здоровы, а девочки гемофилики

3) половина девочек больна, мальчики здоровы

4) все девочки носительницы, мальчики здоровы

В этой статье кратко и понятно описываются три закона Менделя. Эти законы - основа всей генетики, создав их, Мендель фактически создал эту науку.

Здесь Вы найдёте определение каждого закона и узнаете немного нового о генетике и биологии в целом.

Перед началом чтения статьи стоит понимать, что генотип - это совокупность генов организма, а фенотип - его внешних признаков.

Кто такой Мендель и чем он занимался

Грегор Иоганн Мендель - известный австрийский биолог, родившийся в 1822 году в деревне Гинчице. Хорошо учился, но у семьи его были материальные трудности. Чтобы разобраться с ними, Иоганн Мендель в 1943 году решил стать монахом чешского монастыря в городе Брно и получил там имя Грегор.

Грегор Иоганн Мендель (1822 — 1884)

Позже изучал биологию в Венском университете, а затем решил преподавать физику и природоведение в Брно. Тогда же учёный заинтересовался ботаникой. Он проводил опыты по скрещиванию гороха. На основе результатов этих опытов учёный вывел три закона наследственности, которым и посвящена эта статья.

Опубликованные в работе «Опыты с гибридами растений» в 1866 году, эти законы не получили широкой огласки, и вскоре работа была забыта. О ней вспомнили лишь после смерти Менделя в 1884 году. Вам уже известно, сколько законов он вывел. Теперь пора перейти к рассмотрению каждого.

Первый закон Менделя - закон единообразия гибридов первого поколения

Рассмотрим опыт, проведённый Менделем. Он взял два вида гороха. Эти виды различали цветом цветков. У одного они были пурпурные, а у другого - белые.

Скрестив их, учёный увидел, что у всего потомства цветки пурпурные. А горох жёлтого и зелёного цвета дал полностью жёлтое потомство. Биолог повторял эксперимент ещё много раз, проверяя наследование разных признаков, однако результат всегда был один.

На основе этих опытов учёный вывел свой первый закон, вот его формулировка: все гибриды в первом поколении всегда наследуют лишь один признак от родителей.

Обозначим ген, отвечающий за пурпурные цветки, как A, а за белые- a. Генотип одного родителя - AA (пурпурные), а второго - aa (белые). От первого родителя будет унаследован ген A, а от второго - a. Значит, генотип потомства всегда будет Aa. Ген, обозначенный заглавной буквой, называется доминантным, а строчной - рецессивным.

Если в генотипе организма содержатся два доминантных или два рецессивных гена, то его называют гомозиготным, а организм, содержащий разные гены - гетерозиготным. Если организм гетерозиготен, то рецессивный ген, обозначаемый прописной буквой, подавляется более сильным доминантным, в результате проявляется признак, за который отвечает доминантный. Значит, горох с генотипом Aa будет обладать пурпурными цветками.

Скрещивание двух гетерозиготных организмов с разными признаками - это моногибридное скрещивание.

Кодоминирование и неполное доминирование

Бывает такое, что доминантный ген не может подавить рецессивный. И тогда в организме проявляются оба родительских признака.

Такое явление можно наблюдать на примере камелии. Если в генотипе этого растения один ген отвечает за красные лепестки, а другой - за белые, то половина лепестков камелии станут красными, а остальные - белыми.

Такое явление называют кодоминированием.

Неполное доминирование - похожее явление, при котором появляется третий признак, нечто среднее между тем, что было у родителей. Например, цветок ночная красавица с генотипом, содержащим и белые, и красные лепестки, окрашивается в розовый.

Второй закон Менделя - закон расщепления

Итак, мы помним, что при скрещивании двух гомозиготных организмов всё потомство примет лишь один признак. Но что, если взять из этого потомства два гетерозиготных организма и скрестить их? Будет ли потомство единообразным?

Вернёмся к гороху. Каждый родитель с равной вероятностью передаст либо ген A, либо ген a. Тогда потомство разделится следующим образом:

  • AA - пурпурные цветки (25%);
  • aa - белые цветки (25%);
  • Aa - пурпурные цветки (50%).

Видно, что организмов с пурпурными цветками в три раза больше. Это явление расщепления. В этом и заключается второй закон Грегора Менделя: при скрещивании гетерозиготных организмов потомство расщепляется в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

Впрочем, существуют так называемые летальные гены. При их наличии происходит отклонение от второго закона. Например, потомство жёлтых мышей расщепляется в соотношении 2:1.

То же происходит и с лисицами платинового цвета. Дело в том, что если в генотипе этих (и некоторых других) организмов оба гена доминантные, то они просто погибают. В результате доминантный ген может проявляться только если организм гетерозиотен.

Закон чистоты гамет и его цитологическое обоснование

Возьмём жёлтый горох и зелёный горох, ген жёлтого цвета - доминантный, а зелёного - рецессивный. В гибриде будут содержаться оба этих гена (хотя мы увидим лишь проявление доминантного).

Известно, что от родителя к потомству гены переносятся с помощью гамет. Гамета - это половая клетка. В генотипе гибрида имеется два гена, выходит, в каждой гамете - а их две - находилось по одному гену. Слившись, они образовали генотип гибрида.

Если во втором поколении проявился рецессивный признак, характерный одному из родительских организмов, значит, выполнялись следующие условия:

  • наследственные факторы гибридов не изменялись;
  • каждая гамета содержала в себе один ген.

Второй пункт - закон чистоты гамет. Конечно, гена не два, их больше. Существует понятие аллельных генов. Они отвечают за один и тот же признак. Зная это понятие, можно сформулировать закон так: в гамету проникает по одному, случайно выбранному, гену из аллели.

Цитологическая основа данного правила: клетки, в которых находятся содержащие пары аллелей хромосомы со всей генетической информацией, делятся и образуют клетки, в которых есть лишь по одной аллели - гаплоидные клетки. В данном случае это гаметы.

Третий закон Менделя - закон независимого наследования

Выполнение третьего закона возможно при дигибридном скрещивании, когда исследуется не один признак, а несколько. В случае с горохом это, например, цвет и гладкость семян.

Гены, отвечающие за цвет семян, обозначим как A (жёлтый) и a (зелёный); за гладкость - B (гладкие) и b (морщинистые). Попробуем провести дигибридное скрещивание организмов с разными признаками.

Первый закон не нарушается при таком скрещивании, то есть гибриды будут одинаковы и по генотипу (AaBb), и по фенотипу (с жёлтыми гладкими семенами).

Каким же будет расщепление во втором поколении? Чтобы это узнать, необходимо выяснить, какие гаметы могут выделить родительские организмы. Очевидно, это AB, Ab, aB и ab. После этого строится схема, называемая решёткой Пиннета.

По горизонтали перечисляются все гаметы, которые может выделить один организм, а по вертикали - другой. Внутри решётки записывается генотип организма, который появился бы при данных гаметах.

AB Ab aB ab
AB AABB AABb AaBB AaBb
Ab AABb AAbb AaBb Aabb
aB AaBB AaBb aaBB aaBb
ab AaBb Aabb aaBb aabb

Если изучить таблицу, можно прийти к выводу, что расщепление гибридов второго поколения по фенотипу происходит в соотношении 9:3:3:1. Это понял и Мендель, проведя несколько экспериментов.

Помимо этого он также пришёл к выводу, что то, какой из генов одной аллели (Aa) попадёт в гамету, не зависит от другой аллели (Bb), то есть существует только независимое наследование признаков. Это и есть его третий закон, называемый законом независимого наследования.

Заключение

Три закона Менделя - основные генетические законы. Благодаря тому, что один человек решил поэкспериментировать с горохом, биология получила новый раздел - генетику.

С её помощью учёные со всего мира научились множеству вещей, начиная предотвращением болезней, заканчивая генной инженерией. Генетика - это один из самых интересных и перспективных разделов биологии.

Предмет и история развития генетики

Генетика (от греч. genesis- происхождение) - наука о наследственности и изменчивости организмов. Термин «генетика» предложил в 1906 г. У. Бэтсон. Наследственность - свойство живых существ обеспечивать материальную и функциональную преемственность между поколениями, а также обусловливать специфический характер индивидуального развития в определенных условиях внешней среды. Наследственность - это воспроизведение жизни (Н. П. Дубинин). Изменчивость - это возникновение различий между организмами по ряду признаков и свойств.

Наследственность, изменчивость и отбор -основа эволюции. Благодаря им возникло огромное разнообразие живых существ йа Земле. Мутации поставляют первичный материал для эволюции. В результате отбора сохраняются положительные признаки и свойства, которые благодаря наследственности передаются из поколения в поколение. Знание закономерностей наследственности и изменчивости способствует более быстрому созданию новых пород животных, сортов растений и штаммов микроорганизмов.

С. М. Гершензон выделяет четыре основные теоретические проблемы, изучаемые генетикой:

1)хранения генетической информации (где и каким образом закодирована генетическая информация);

2)передачи генетической информации от клетки к клетке, от поколения к поколению;

3)реализации генетической информации в процессе онтоге неза;

4)изменения генетической информации в процессе мутаций. Бурное развитие генетики связано с тем, что она откры

Законы наследования.Общая терминология.Моногибридное скрещивание.

Законы наследования

Диплоидный хромосомный набор состоит из пар гомологичных хромосом. Одна хромосома из каждой пары унаследована от материнского организма, другая - от отцовского. В результате каждый ген на гомологичной хромосоме имеет соответствующий ген, локализованный в том же месте на другой гомологичной хромосоме. Такие парные гены называются аллельными, или аллелями. Аллели могут быть абсолютно идентичными, но возможны и вариации в их строении Когда известно множество аллелей, представляющих собой альтернативные варианты гена, локализованного в определенном участке хромосомы, говорят о множественном аллелизме. В любом случае у нормального диплоидного организма могут присутствовать только два аллеля, поскольку имеются только пары гомологичных хромосом.


Первый закон Менделя
Рассмотрим ситуацию, при которой скрещиваются организмы, различающиеся по одной паре признаков (моногибридное скрещивание) Пусть таким признаком будет цвет глаз. У одного родителя это аллели А, соответственно его генотип для таких аллелей - АА. При данном генотипе цвет глаз - карий. У другого родителя на обеих хромосомах находится аллель а (генотип аа), цвет паз - голубой. При образовании половых клеток гомологичные хромосомы расходятся в разные клетки. Поскольку у родителей Оба аллеля одинаковы, то они образуют только один сорт половых клеток (гамет). У одного родителя гаметы содержат только аллель А, у другого только аллель а. Такие организмы называются гомозиготными по данной паре генов.

В первом поколении (F1) у потомства будет одинаковый генотип Аа и одинаковый фенотип - карие глаза. Явление, при котором в фенотипе проявляется только один признак из альтернативной пары называется доминированием, а ген, контролирующий данный признак-доминантным. Аллель а в фенотипе не проявляется, присутствуя в генотипе в «скрытом» виде. Такие аллели получили название рецессивных. В данном случае выполняется правило единообразия гибридов первого поколения: у всех гибридов одинаковые генотип и фенотип.

Второй закон Менделя.
Второй закон Менделя, или закон независимого распределения генов. Он установлен посредством анализа наследования при дигибридном и полигибридном скрещивании, когда скрещиваемые особи отличаются по двум парам аллелей и более. Независимое распределение генов происходит потому, что при образовании потовых клеток (гамет) гомологичные хромосомы из одной пары расходятся независимо от других пар. Поэтому второй закон Менделя в отличие от первого действует только в случаях, когда анализируемые пары генов расположены на разных хромосомах.

Закон независимого комбинирования, или третий закон Менделя . Изучение Менделем наследования од­ной пары аллелей дало возможность установить ряд важных генетических закономерностей: явление доми­нирования, неизменность рецессивных аллелей у гибри­дов, расщепление потомства гибридов в отношении 3:1, а также предположить, что гаметы генетически чисты, т. е. содержат только один ген из аллельнои пары. Одна­ко организмы различаются по многим генам. Устано­вить закономерности наследования двух пар альтерна­тивных признаков и более можно путем дигибридного или полигибридного скрещивания.

Моногибридное скрещивание

Фенотип и генотип.Моногибридным называется скрещивание, при котором родительские формы отличаются друг от друга по одной паре контрастных, альтернативных признаков.

Признак -любая особенность организма, т. е. любое отдельное его качество или свойство, по которому можно различить две особи. У растений это форма венчика (например, симметричный-асимметричный) или его окраска (пурпурный-белый), скорость созревания растений (скороспелость-позднеспелость), устойчивость или восприимчивость к заболеванию и т. д.

Совокупность всех признаков организма, начиная с внешних и кончая особенностями строения и функционирования клеток, тканей и органов, называется фенотипом. Этот термин может употребляться и по отношению к одному из альтернативных признаков.

Признаки и свойства организма проявляются под контролем наследственных факторов, т. е. генов. Совокупность всех генов организма называют генотипом.

Примерами моногибридного скрещивания, проведенного Г. Менделем, могут служить скрещивания гороха с такими хорошо заметными альтернативными признаками, как пурпурные и белые цветки, желтая и зеленая окраска незрелых плодов (бобов), гладкая и морщинистая поверхность семян, желтая и зеленая их окраска и др.

Единообразие гибридов первого поколения (первый закон Менделя). При скрещивании гороха с пурпурными и белыми цветками Мендель обнаружил, что у всех гибридных растений первого поколения (F 1) цветки оказались пурпурными. При этом белая окраска цветка не проявлялась (рис. 3.1).

Мендель установил также, что все гибриды F 1 оказались единообразными (однородными) по каждому из семи исследуемых им признаков. Следовательно, у гибридов первого поколения из пары родительских альтернативных признаков проявляется только один, а признак другого родителя как бы исчезает. Явление преобладания у гибридов F 1 признаков одного из родителей Мендель назвал доминированием, а соответствующий признак - доминантным. Признаки, не проявляющиеся у гибридов F 1 он назвал рецессивными.

Поскольку все гибриды первого поколения единообразны, это явление было названо К. Корренсом первым законам Менделя, или законом единообразия гибридов первого поколения, а также правилом доминирования.

Законы наследования.Полигибридное скрещивание.

Законы Менделя - это принципы передачи наследственных признаков от родительских организмов к их потомкам, вытекающие из экспериментов Грегора Менделя. Эти принципы послужили основой для классической генетики и впоследствии были объяснены как следствие молекулярных механизмов наследственности

План:

3. Взаимодействие генов.

Наследственность

Изменчивость

Наследование наследственной информации ) от поколения к поколению.

Ген

Аллельные гены

Локус

Гомологичные хромосомы

Альтернативные признаки ).

Гомозиготный организм АА или аа ).

Гетерозиготный организм

Гемизиготный организм

Доминантный признак в гетерозиготе ).

Доминантный ген – преобладающий ген (А или В ).

Рецессивный признак

Рецессивный ген аа или вв ).

Генотип

Фенотип

Генофонд



♀ женский пол;

♂ мужской пол.

Моногибридное скрещивание

АА и аа ).

Введем буквенные обозначения:

А - ген желтой окраски

а - ген зеленой окраски

Р: ♀ АА × ♂ аа

G: А а

Аа ).



Р:♀ А А ×♂ а а


G: А А а а

А

Аа

I Закон Менделя (закон единообразия):

Р: ♀ Аа ×♂ Аа

F: АА, Аа, Аа, аа

По фенотипу: 3: 1

По генотипу: 1: 2: 1

Аа А и гаметы с геном а.


2 Закон Менделя (закон расщепления):

Дигибридное скрещивание

Введем буквенные обозначения:

А - ген желтого цвета, а - зеленого

В - ген гладкой формы, в – морщинистой

Р: ♀ ААВВ × аавв


G: АВ ав

F 1: Аа Вв

Желтые гладкие

Желтые морщинистые

Зеленые гладкие

Зеленые морщинистые

Р: ♀ АаВв × АаВв

G: АВ Ав аВ ав АВ Ав аВ ав

♀♂ АВ Ав аВ ав
АВ ААВВ ААВв АаВВ АаВв
Ав ААВв ААвв АаВв Аавв
аВ АаВВ АаВв ааВВ ааВв
ав АаВв Аавв ааВв Аавв

9/16 А* В* - желтые гладкие

3/16 А* вв - желтые морщинистые

3/16 аа В* - зеленые гладкие

1/16 аавв - зеленые морщинистые

3 Закон Менделя

Анализирующее скрещивание

желтый горох аа – зеленый

аа) АА

Р 1: АА × аа Р 2 : Аа × аа


АЛЛЕЛЬНЫХНЕАЛЛЕЛЬНЫХ

5.Кодоминирование

Полное доминирование

Р: АА аа А – ген карих глаз

(карие) (голубые) а – ген голубых глаз

G: а А

100% - кареглазые

Неполное доминирование – когда один ген полностью подавляет другой и появляется промежуточный признак. Например, наследование формы волос у человека.

АА – курчавые волосы

Аа – волнистые волосы

аа – прямые волосы

Р: АА аа

(курчавые) (волнистые)

G: А а

100% - волнистые

Сверхдоминирование – более сильное проявление признака в гетерозиготе, а не в гомозиготе.

АА, Аа, аа – гибридная мощь (гетерозис).

Например, продолжительность жизни у мушки дрозофилы.

АА – нормальная продолжительность жизни

Аа – увеличенная продолжительность жизни

аа – летальный исход.

Множественный аллелизм – наличие гена в популяции более чем в двух формах.

Ген может находиться не в двух, а в нескольких аллельных состояниях и образовывать серию множественных аллелей. Примером может служить наследование окраски шерсти у кроликов. Окраска может быть черной, шиншилловой (смесь белых и черных волосков), гималайской (на фоне общей белой окраски черные кончики ушей, лап, хвоста и мордочки), и белой (альбинизм - полное отсутствие пигментации шерсти). Развитие всех этих четырех типов окраски обусловлено четырьмя аллелями, локализующимися в одном и том же локусе.

С – ген черной окраски, доминирует над остальными членами серии;

c ch – ген шиншилловой окраски, доминирует над генами гималайской и белой окраски, но рецессивен по отношению к гену черной окраски;

c h – ген гималайской окраски, доминантен по отношению к белой но рецессивен по отношению к черной и шиншилловой;

с – ген альбинизма, рецессивен по отношению всех членов серии.

С > c ch > c h > c ,

т. е. члены одной серии аллелей могут находиться в различных доминантно- рецессивных отношениях друг с другом.

У каждой конкретной особи может быть лишь по две аллели из серии:

с с ch , С с ch , С с h , с с h .

Какую окраску будут иметь кролики? (шиншилловую, черную, черную, гималайскую).

У человека примером множественных аллелей является наследование групп крови системы АВО.

Например: Наследование групп крови системы АВ0.

В зависимости от антигенов, которые находятся на поверхности эритроцитов, все люди делятся на четыре группы. У одних людей на поверхности эритроцитов нет антигенов А и В – это О(I) группа, у других есть антиген А – это А(II) группа, у третьих есть антиген В – это В(III) группа, у четвертых есть антигены А и В – это АВ(IV) группа.

Четыре группы крови детерминируются (определяются) тремя аллелями гена I: I A , I B , i. Аллель i рецессивен по отношению к аллелям I A и I B . Аллельные гены I A и I B у лиц IV группы ведут себя независимо друг от друга: ген I A детерминирует антиген А, а ген I B – антиген В. Такое взаимодействие аллельных генов называется кодоминирование – когда в организме присутствует два доминантных гена и они друг друга не подавляют, каждый аллель детерминирует свой признак.

Генотипы людей четырех групп будут:

O(I) - ii (рецессивная гомозигота по гену i)

A(II) - I A I A или I A i (гомо- или гетерозигота по гену I A)

B(III) - I B I B или I B i (гомо- или гетерозигота по гену I B)

АВ(IV) - I A I B (гетерозигота по обоим доминантным генам).

Группы крови А(II) и В(III) наследуются по аутосомно-доминантному типу, а О(I) – по аутосомно-рецессивному типу.

Пример наследования группы крови системы АВО:

Если гомозиготная женщина А(II) группы крови выйдет замуж за мужчину О(I) группой, то все дети будут а(II) группы крови:

100% A(II) группы.

Кроме антигенов А и В на поверхности эритроцитов расположены антигены групп системы резус.

Наследование групп системы(Rh) резус.

Если на поверхности эритроцитов находится антиген Rh, то такие люди относятся к группе (Rh +) резус-положительной (встречается в 85% людей), а если отсутствует данный антиген, то они относятся к группе (rh -) резус-отрицательной (15% людей).

Группа крови Rh + может быть гомо- и гетерозиготная: Rh + Rh + и Rh + rh - ; группа rh - - только гомозиготная: rh - rh - .

Rh + - ген резус- положительности;

rh - - ген резус- отрицательности.

Проследим, какие последствия могут быть для детей, если мать имеет резус-отрицательную группу крови. Если оба супруга имеют одинаковый резус-фактор (положительный или отрицательный) иммунологического конфликта между плодом и организмом матери не будет. Резус-конфликт может возникнуть только в том случае, если у женщины резус-фактор отрицательный, а у мужа Rh . Поскольку Rh признак обуславливается доминантным геном, а rh – рецессивным, то при образовании зиготы с Rh возникает иммунологический конфликт: организм матери ведет себя так, как будто это не ее родной ребенок, а инородное тело. Антигены плода вызывают появление в организме матери антител, способных при высоких концентрациях нарушать нормальное развитие плода, вплоть до выкидыша. Однако при первой беременности количество антител не столь велико чтобы повредить плод. Но при второй беременности концентрация антител возрастает. Но и второй ребенок может родиться нормальным если после первой беременности не было абортов. У второго ребенка может возникнуть эритробластоз (- разрушение эритроцитов). При рождении может быть желтуха, в целом прогноз благополучный, ребенок остается живым. Если желтуха ярко выраженная проводится переливание крови полностью.

Например: женщина с группой крови rh вышла замуж за мужчину у которого кровь Rh:

1). Р: rh rh Rh Rh 2). P: rh rh Rh rh

G: rh Rh G: rh Rh rh

F: Rh rh F: Rh rh ; rh rh

100% - все дети резус-положительные 50% - резус-положительные дети

50% - резус-отрицательные

Летальные гены – гены в гомозиготном состоянии вызывающие гибель организма из-за нарушения нормального хода развития.

На пушных аукционах в 30-х г. г. очень ценились лисы необычно светлого тона, называемого платиновым. Платиновые лисы, при скрещивании их друг с другом давали всегда не только платиновых, но еще и серебристых лис в потомстве. Найти среди платиновых лис гомозиготных особей оказалось невозможным. Было замечено, что лисят в потомстве при скрещивании платиновых лис между собой всегда меньше, чем в норме. И соотношение между платиновыми и серебристыми лисятами не 3: 1, а 2: 1.

Платиновость – доминантный признак, а летальность, обусловленная тем же геном Р – рецессивна, т. к. Рр – выживают, а рр (в гомозиготе) – погибают.

Тема. ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ ПРИЗНАКОВ

План:

1. Основные термины и понятия в современной генетике.

2. Открытие Г. Менделем законов независимого наследования и их сущность.

3. Взаимодействие генов.

4. Типы наследования менделирующих признаков человека.

5. Наследование признаков, сцепленных с полом.

6. Сущность хромосомной теории Т. Моргана.

1. Основные термины и понятия в современной генетике.

Наследственность – свойство организмов передавать следующему поколению свои признаки и особенности развития, т. е. воспроизводить себе подобных.

Изменчивость – способность организмов изменять свои признаки и свойства, что проявляется в разнообразии особей внутри вида.

Наследование – процесс передачи « наследственных зачатков» (наследственной информации ) от поколения к поколению.

Ген – участок молекулы ДНК, кодирующий первичную структуру полипептида.

Аллельные гены – гены, располагающиеся в одних и тех же локусах гомологичных хромосом и определяющие развитие альтернативных признаков.

Локус – участок хромосомы занятый геном.

Гомологичные хромосомы – одинаковые по размерам, по форме, по составу генов, но разные по происхождению: одна - от отца, другая – от матери.

Альтернативные признаки – взаимно-исключающие признаки (карие и голубые глаза; желтая и зеленая окраска семян ).

Гомозиготный организм – организм, в котором данная пара аллельных генов одинакова (АА или аа ).

Гетерозиготный организм – организм, в котором пара аллелей не одинакова.

Гемизиготный организм – когда в диплоидном организме присутствует один ген из пары аллелей и он всегда проявляется. Гены эти локализованы в половых хромосомах гетерогаметного пола (у человека мужского). Например, проявление у мужчин гемофилии или дальтонизма: в Х-хромосоме у мужчин в локусе, которого нет в У – хромосоме, находится один ген гемофилии, а в У – хромосоме такой ген отсутствует.

Доминантный признак – признак, проявляющийся у гибридов (в гетерозиготе ).

Доминантный ген – преобладающий ген (А или В ).

Рецессивный признак – признак не проявляющийся в гетерозиготе.

Рецессивный ген – проявляется только в гомозиготном состоянии(аа или вв ).

Генотип – совокупность всех генов организма.

Фенотип – совокупность всех внутренних и внешних признаков организма.

Генофонд – совокупность генов вида или популяции.

Для того чтобы записать скрещивание, необходимо знать символы:

Р - (лат. Рarents.- родители) - родители;

G - (лат. Gametos – гаметы) – гаметы;

F - (лат. Filii – дети) – потомство;

♀ женский пол;

♂ мужской пол.

Открытие Г. Менделем законов независимого наследования и их сущность.

Основные закономерности наследования признаков в поколениях были открыты чешским исследователем Г. Менделем, опубликовавшим в 1865 г. «опыты над растительными гибридами».

До Г. Менделя была общепринята теория так называемой «слитной» наследственности. Ее суть состояла в том, что при оплодотворении мужское и женское «начала» перемешивались «как краски в стакане воды», давая начало новому организму.

Г. Мендель заложил фундамент представлений о дискретном характере наследственного вещества и о его распределении при образовании половых клеток у гибридов.

Г. Мендель в каждом эксперименте концентрировал внимание на одном признаке, а не на растении в целом, отбирал те признаки, по которым растения четко отличались. Прежде, чем скрещивать растения между собой, он убеждался, что они принадлежат чистым линиям. Для этого Г. Мендель в течение двух лет разводил различные сорта гороха, чтобы отобрать те линии, где признак всегда воспроизводился в потомстве из поколения в поколение (окраска семядолей, длина растения и др.).

В первых опытах Г. Мендель принимал во внимание только одну пару признаков. Такое скрещивание носит название моногибридное.

Моногибридное скрещивание – скрещивание форм отличающихся друг от друга по одной паре альтернативных признаков, передающихся по наследству.

Рассмотрим опыт Менделя с горохом. Он скрещивал две формы различающихся лишь по одной паре альтернативных признаков: с желтыми и зелеными семенами (выбранные формы в течение двух лет испытывались на гомозиготность (АА и аа ).

Введем буквенные обозначения:

А - ген желтой окраски

а - ген зеленой окраски

Р: ♀ АА × ♂ аа

G: А а

По фенотипу и по генотипу все потомство в F единообразно. По фенотипу: все семена имеют желтую окраску; по генотипу: все потомство гетерозиготно (Аа ).

Каждая клетка гороха имеет четырнадцать хромосом, т. е. 7 пар гомологов. Мы будем наблюдать только за одной парой гомологичных хромосом, - тех, в которых расположены гены А и а. В редукционном делении (первое деление мейоза) при образовании гамет число хромосом уменьшается вдвое, т. к. из каждой пары гомологов в гамету попадает только одна хромосома. У родительской формы с желтыми семенами эта хромосома содержит ген А, а у родительской формы с зелеными семенами – ген а.

Р:♀ А А ×♂ а а


G: А А а а

При оплодотворении мужская и женская гаметы сливаются и восстанавливается диплоидное число хромосом. В результате такого скрещивания все гибридные семена будут одинаковы, т. е. наблюдается единообразие гибридов первого поколения. Этот гибрид имеет в одной из гомологичных хромосом ген желтой окраски А , а в другой ген зеленой окраски а.

Какова же будет окраска гибридных семян Аа ? Ответить на этот вопрос с помощью логических рассуждений нельзя, он решается только экспериментальным путем. В данном случае оказывается, что все гибридные семена имеют желтую окраску.

I Закон Менделя (закон единообразия): При скрещивании гомозиготных особей, различающихся по одной паре альтернативных признаков, все потомство оказывается единообразным как по фенотипу, так и по генотипу.

Гибридные (гетерозиготные) растения первого поколения размножаются путем самоопыления.

Р: ♀ Аа ×♂ Аа

F: АА, Аа, Аа, аа

По фенотипу: 3: 1

По генотипу: 1: 2: 1

При образовании гамет гибридным растениям (Аа ) во время мейоза гомологичные хромосомы делящихся клеток расходятся к разным полюсам и попадают в разные гаметы. Поэтому гибрид образует два типа гамет: гаметы с геном А и гаметы с геном а.


Т. к. в результате каждого деления клетки возникают две дочерние, то эти два типа гамет образуются в равных количествах. При оплодотворении гаметы свободно комбинируются друг с другом, в результате чего возможно образование четырех типов (два из них одинаковы) зигот.

В потомстве F ¾ семян будут желтыми, а ¼ - зелеными.

В опытах Менделя желтых семян было 6022, а зеленых 2001 - соотношение 3: 1. Точно установив численные соотношения, Мендель понял, что во всех дальнейших поколениях ничего принципиально нового наблюдаться не будет.

2 Закон Менделя (закон расщепления): При скрещивании двух гетерозиготных особей, анализируемых по одной паре альтернативных признаков, в потомстве наблюдается расщепление по фенотипу 3: 1, по генотипу 1: 2: 1.

Дигибридное скрещивание – скрещивание форм, отличающихся друг от друга по двум парам альтернативных признаков.

Предположим, что гены, определяющие интересующие нас признаки, расположены в разных гомологичных хромосомах. Такие пары признаков наследуются независимо друг от друга.

Мендель изучал независимое наследование признаков у гороха. Были взяты растения, имеющие гладкие желтые семена и морщинистые зеленые.

Введем буквенные обозначения:

А - ген желтого цвета, а - зеленого

В - ген гладкой формы, в – морщинистой

Р: ♀ ААВВ × аавв


G: АВ ав

F 1: Аа Вв

В первом поколении все растения имели гладкие желтые семена.

Во втором поколении произошло расщепление:

Желтые гладкие

Желтые морщинистые

Зеленые гладкие

Зеленые морщинистые

При скрещивании гибридов первого поколения каждая родительская особь образует по четыре типа гамет:

Р: ♀ АаВв × АаВв

G: АВ Ав аВ ав АВ Ав аВ ав

♀♂ АВ Ав аВ ав
АВ ААВВ ААВв АаВВ АаВв
Ав ААВв ААвв АаВв Аавв
аВ АаВВ АаВв ааВВ ааВв
ав АаВв Аавв ааВв Аавв

При оплодотворении в результате свободного комбинирования четырех типов отцовских гамет с четырьмя такими же типами материнских получается шестнадцать типов зигот. Чтобы проследить все возможные сочетания удобнее всего составить решетку Пеннета (названную так по имени ученого, который впервые ее применил). В этой решетке по горизонтали вписываются женскин гаметы, а по вертикали – мужские. В шестнадцати клетках полученной решетки записываются сочетания генов в зиготах. Если суммировать в этой решетке все зиготы с одинаковыми фенотипами, то окажется, что их будет четыре группы в следующих соотношениях: 9: 3: 3: 1

9/16 А* В* - желтые гладкие

3/16 А* вв - желтые морщинистые

3/16 аа В* - зеленые гладкие

1/16 аавв - зеленые морщинистые

Расщепление по генотипу сложнее, всего образуется девять генотипических групп: 1: 2: 2: 1: 4: 1: 2: 2: 1.

Однако если мы обратим внимание только на один признак, например, цвет семян, то получим то же соотношение, что и при моногибридном скрещивании:

12 желтых: 4 зеленых, т. е. 3: 1.

По второму признаку (форма семян) то же самое:

12 гладких: 4 морщинистых (3: 1).

Это говорит о том, что признаки наследуются независимо друг от друга.

3 Закон Менделя (закон независимого комбинирования генов): При скрещивании дигибридов (АаВв) расщепление по каждой паре генов идет независимо от других пар генов и дает расщепление 3:1, образуя при этом 4 фенотипические группы в соотношении 9:3:3:1.

Чтобы проводить скрещивание, Менделю нужно было знать, гомо- или гетерозиготное растение гороха по цвету или по форме семян. Для этого он проводил анализирующее скрещивание.

Анализирующее скрещивание – скрещивание, проводящееся для определения генотипа организма.

Если у особи фенотипически проявился доминантный признак, по генотипу она может быть гомо- и гетерозиготной:

желтый горох аа – зеленый

Чтобы определить генотип, у которой фенотипически проявился доминантный признак, нужно скрестить ее с особью, имеющей рецессивный признак (по генотипу она обязательно будет гомозиготной по рецессивному гену – аа) . Затем следует проанализировать потомство. Если все многочисленное потомство (5 и более) будет с доминантным признаком, то генотип исходной особи – АА (т. е. исследуемая особь гомозиготна):

Р 1: АА × аа Р 2 : Аа × аа


АЛЛЕЛЬНЫХНЕАЛЛЕЛЬНЫХ

1.Полное доминирование 1.Комплементарность

2.Неполное доминирование 2.Эпистаз

3.Сверхдоминирование 3.Полимерия

4.Множественный аллелизм 4.Плейтропия

5.Кодоминирование

Взаимодействие аллельных генов:

Полное доминирование – когда один ген полностью подавляет действие другого, например, наследование цвета глаз у человека.

Р: АА аа А – ген карих

Раздел ЕГЭ: 3.5. Закономерности наследственности, их цитологические основы. Закономерности наследования, установленные Г. Менделем, их цитологические основы (моно-и дигибридное скрещивание)…

Мендель , проводя опыты по скрещиванию различных сортов гороха, установил ряд законов наследования, положивших начало генетике. Он разработал гибридно-логический метод анализа наследования признаков организмами. Этот метод предусматривает скрещивание особей с альтернативными признаками; анализ исследованных признаков у гибридов без учета остальных; количественный учет гибридов.

Проводя моногибридное скрещивание (скрещивание по одной паре альтернативных признаков), Мендель установил закон единообразия первого поколения.

Основные положения гибридологического метода

  • Для скрещивания берутся организмы, предки которых в ряду поколений не давали расщепления по избранным признакам, то есть чистые линии.
  • Организмы отличаются по одной или двум парам альтернативных признаков.
  • Проводится индивидуальный анализ потомства каждого скрещивания.
  • Используется статистическая обработка результатов.

Первый закон Г. Менделя

При скрещивании двух гомозиготных особей, отличающихся друг от друга одной парой альтернативных признаков, всё потомство в первом поколении единообразно как по фенотипу, так и по генотипу.

Второй закон Г. Менделя

При скрещивании гибридов первого поколения (двух гетерозиготных особей) во втором происходит расщепление 3: 1. Наряду с доминантным появляется и рецессивный признак.

Анализирующее скрещивание — скрещивание, при котором особь с неизвестным генотипом, который нужно установить (АА или Аа), скрещивается с рецессивной гомозиготой (аа). Если всё потомство от итого скрещивания будет однообразным, исследуемый организм имеет генотип АА. Если в потомстве Судет наблюдаться расщепление по фенотипу 1: 1, исследуемый организм - гетерозиготный Аа.

Третий закон Г. Менделя

При скрещивании гомозиготных особей, отличающихся двумя парами альтернативных признаков или более, каждый признак наследуется независимо от других, комбинируясь во всех возможных сочетаниях.

В опытах Мендель использовал разные способы скрещивания : моногибридное, дигибридное и полигибридное . При последнем скрещивании особи отличаются более чем по двум парам признаков. Во всех случаях соблюдается закон единообразия первого поколения, закон расщепления признаков во втором поколении и закон независимого наследования.

Закон независимого наследования: каждая пара признаков наследуется независимо друг от друга. В потомстве идет расщепление по фенотипу 3:1 по каждой паре признаков. Закон независимого наследования справедлив лишь в том случае, если гены рассматриваемых пар признаков лежат в различных парах гомологичных хромосом. Гомологичные хромосомы сходны по форме, размерам и группам сцепления генов.

Поведение любых пар негомологичных хромосом в мейозе не зависит друг от друга. Расхождение: их к полюсам клетки носит случайный характер. Независимое наследование имеет, большое значение для эволюции; так как является источником комбинативной наследственности.

ТАБЛИЦА: все закономерности наследования

Это конспект по биологии для 10-11 классов по теме «Закономерности наследственности. Законы Моргана» . Выберите дальнейшее действие: