Давление в жидкости и газах. Давление. Для подготовки бакалавров по направлению

Рухленко А.П.

ГИДРАВЛИКА

Примеры решения задач

Учебно-методическое пособие

Для подготовки бакалавров по направлению

Агроинженерия

Тюмень – 2012

Рецензент:

кандидат технических наук, доцент А. Е. Королев.

Г 46 Рухленко А. П. Гидравлика. Примеры решения задач ТюмГСХА. - Тюмень, 2012.

Приведены примеры решения задач по всем основным разделам дисциплины. Пособие содержит 57 задач с подробным пояснением решения каждой.

Назначение данного пособия- помочь студентам в самостоятельном изучении и усвоении методики решения задач по всем темам курса.

Печатается по решению методической комиссии Механико-технологического института ТГСХА.

© Тюменская Государственная

Сельскохозяйственная академия.

© А. П. Рухленко, 2012.

Предисловие

Важным условием усвоения студентами теоретического курса является умение использовать знания теоретических основ при решении конкретных инженерных задач. Именно решение задач развивает у студентов навыки к творческому инженерному мышлению, способствует развитию самостоятельности при решении инженерных вопросов, связанных с изучением этой дисциплины.

Все задачи в данном пособии размещены в порядке изучения дисциплины по тематикам, согласно рабочим программам по подготовке бакалавров направления 110800- агроинженерия.

Пособие предназначено для студентов очной и заочной формы обучения. Цель его – помочь студентам освоить методику решения задач по темам курса «Гидравлика». Особенно полезно, по мнению автора, пособие будет для студентов, пропускающих занятия, ибо оно поможет им в освоении данной дисциплины.

В таблице, приведенной ниже, указываются номера задач по каждой теме и литература для изучения теоретического материала по каждой теме.

Тематика практических занятий

по решению задач

Тема занятия №№ задач по теме Литература, стр. №
Физичес-кие свойства жидкостей 1,2 8..13 8..14 7..12 3..4 3…4
Гидроста-тическое давление 3,4,5,6,7,8, 20..25 19..25 17..20 5..7 7..8
Сила гидростати-ческого давления на плоские и криволи-нейные поверх-ности 9,10,11,12,13,14, 15,16,17,19,21 25..31 28..34 21..27 7..9 15..16
Уравнение Бернулли. Гидравли-ческие сопротив-ления 22,23,24,25,26,27 28,29,30,31,32 42..45 55..64 46..52 52..78 44..59 13..16 19..24 30..36
Истечение жидкости через отверстия, насадки, дроссели и клапаны 34,35,36,37,38,39, 40,41 72..79 78..89 63..76 25..29 45..48
Гидравли-ческий расчет трубопро-водов 42,43,44 64..70 94..104 76..99 31..38 57..63
Лопастные насосы 45,46,47,48 89..108 131..134 139..158 163..173 146..161 41..59 78..83
Объемные гидрома-шины 50,51,52,53 141..169 177..204 223..235 59..76 88..91
Объемный гидропри-вод 54,55,56,57 192..200 204..224 271..279 77..84 95..98


Литература для изучения теоретической части дисциплины

1. Исаев А.П., Сергеев Б.И., Дидур В.А. Гидравлика и гидромеханизация сельскохозяйственных процессов М:Агропром издат, 1990 – 400с.

2. Н.А.Палишкин Гидравлика и сельскохозяйственное водоснабжение М: Агропром издат, 1990 - 351с.



3. Сабащвили Р.Г. Гидравлика, гидравлические машины, водоснабжение сельского хозяйства: Учеб. пособие для вузов М: Колос 1997-479с.

4. Рухленко А.П. Гидравлика и гидравлические машины. Учебное пособие ТГСХА-Тюмень 2006 г. 124с.

1. Определить объемный модуль упругости жидкости,

если под действием груза А массой 250 кг поршень прошел расстояние △h=5мм. Начальная высота положения поршня H=1.5м, диаметры поршня d=80мм и резервуара D=300мм, высота резервуара h=1,3 м. Весом поршня пренебречь. Резервуар считать абсолютно жестким.

Решение: Сжимаемость жидкости характеризуется модулем объемной упругости Е, входящим в обобщенный закон Гука: = ,

где = приращение (в данном случае уменьшение) объема жидкости V , обусловленное увеличением давления ∆р. Вышеприведенную зависимость запишем относительно искомой величины:

В правой части уравнения неизвестные величины необходимо выразить через исходные данные. Повышение давления ∆робусловленное внешней нагрузкой, а именно весом груза:

Начальный объем жидкости складывается из объемов жидкости в цилиндре и резервуаре:
= · .

Абсолютное изменение объема жидкости ∆V:

Подставив в правую часть уравнения полученные выражения для ∆р, ∆V и V получим

E = =

= = .

2. Высота цилиндрического вертикального резервуара h=10м, его диаметр D=3м. Определить массу мазута (ρ м =920кг/ ), которую можно налить в резервуар при 15 , если его температура может подняться до 40 0 С. Расширением стенок резервуара пренебречь, температурный коэффициент объемного расширения жидкости β t =0,0008 1/ 0 С.

Решение: Массу мазута можно выразить как произведение его плотности на объем, т. е.:

или ,

где h м - начальный уровень мазута в резервуаре при t=15 0 С. Из выражения для β t находим абсолютное изменение объема мазута при повышении температуры, т.е.:

.

С другой стороны, эту же величину можно представить как разность объемов резервуара и начального объема мазута:

Выразив эти объемы через геометрические параметры можно записать, что:

ΔV = ·

Приравняем правые части выражений для :

.

Сократив левую и правую части уравнения на , получим

Откуда = .

Полученное значение подставим в исходное уравнение

Здесь: △t = t k - t н = 40 – 15 = 25 0 С.

3. Определить абсолютное давление воздуха в баке , если при атмосферном давлении, соответствующем h a = =760 мм рт. ст. показание ртутного вакуумметра = 0,2 м, высота h = 1,5 м. Каково при этом показание пружинного вакуумметра? Плотность ртути ρ = 13600кг/ .

Решение: Для решения этой задачи используем основное уравнение гидростатики, позволяющее определить давление в любой точке жидкости и понятие «поверхность равного давления». Как известно, для неподвижной ньютоновской жидкости поверхности равного давления представляют совокупность горизонтальных плоскостей. В данном случае в качестве поверхностей равного давления возьмем две горизонтальные плоскости - поверхность раздела воды и воздуха в соединительной трубке и поверхность раздела воздуха и ртути в правом колене ртутного вакуумметра. Для первой поверхности давление в точках А и В одинаково и согласно основного уравнения гидростатики определяется следующим образом:

p А = p В = p 1 + ρ · g · h ,

где р 1 - абсолютное давление воздуха в баке. Из этого уравнения следует, что:

p 1 = p A - ρ · g · h.

Если не учитывать плотность воздуха, то можно записать что p А = p В = p Е, т.е. давления в точках А,В, и Е одинаковы.

Для второй поверхности давления в точках С и Д одинаковы и равны атмосферному,

р а = р С = р Д.

С другой стороны, давление в т. С можно представить как

откуда p е = p а – ρ рт ·g · h рт.

Подставив выражения для р А в уравнение для определения р 1 , получим

р 1 = p a - ρ рт · g · h рт – ρ · g · h = ρ рт · g · (h a - h рт) – ρ · g · h.

Численную величину р 1 найдем, подставив численные значения величин в правой части уравнения:

р 1 = 13600 · 9,81 · (0,76 – 0,2) – 1000 · 9,81 · 1,5=

74713 – 14715 = 59998Па = 60кПа.

Разрежение, которое будет показывать вакуумметр:

р вак = р а – р 1 = ρ рт · g · h а – р 1 =

13600 · 9,81 · 0,76 · 10 -3 - 60 = 101,4 – 60 = 41,4кПа.

4.Определить абсолютное давление в сосуде по показанию жидкостного манометра, если известно: h 1 =2м, h 2 =0,5м, h 3 =0,2м, м = = 880кг/м 3 .

Решение : Для решения этой задачи необходимо записать основное уравнение гидростатики для двух точек, распложенных на горизонтальной плоскости (поверхности равного давления), проходящей по линии раздела воды и ртути. Давление в т. А

р А = р абс + ρ · g · h 1 ;

Давление в т. В

Приравняв правые части этих выражений определим абсолютное давление

р абс + ρ · g · h 1 = р а + ρ м · g · h 3 + ρ рт · g · h 2 ,

100000+880·9,81·0,2+13600·9,81·0,5–1000·9,81·2 =

100000+1726,6+66708-19620=148815Па=148кПа.

5. Закрытый резервуар А, заполненный керосином на глубину Н=3м, снабжен вакуумметром и пьезометром. Определить абсолютное давление р 0 над свободной поверхностью в резервуаре и разность уровней ртути в вакуумметре h 1 если высота поднятия керосина в пьезометре h =1,5м.

Решение: Запишем основное уравнение гидростатики для т. А, расположенной на дне резервуара,

С другой стороны, это же давление в точке А можно выразить через показание открытого пьезометра

Полученное выражение для р А вставим в уравнение для определения р 0:

тогда численное значение р 0 будет равно:

Разность уровней ртути в вакууметре определим, записав основное уравнение гидростатики для двух точек В и С поверхности равного давления, совпадающей со свободной поверхностью ртути в правом колене вакуумметра

h 1 = = .

6. Определить избыточное давление воды в трубе В, если показание манометра =0,025МПа.

Соединительная трубка заполненная водой и

воздухом, как показано на схеме, причем Н 1 = 0,5м, Н 2 =3м. Как изменится показание манометра, если при том же давлении в трубе всю соединительную трубку заполнить водой (воздух выпустить через кран К). Высота

Решение: При решении этой задачи используется основное уравнение гидростатики, согласно которому, давление в трубе В, складывается из давления на свободной поверхности (в данном случае манометрического - р м) и весового давления воды. Воздух в расчет не принимается ввиду его малой, сравнительной с водой, плотности.

Итак давление в трубе В:

Здесь 1 взято со знаком минус, потому что этот столб воды способствует уменьшению давления в трубе.

Если из соединительной трубки полностью удалить воздух, то в этом случае основное уравнение гидростатики запишется так:

Точное значение ответов: и получается при g = 10 м/ .

7. При перекрытом кране трубопровода К определить абсолютное давление в резервуаре, зарытом на глубине Н=5м, если показание вакуумметра, установленного на высоте h=1.7м, . Атмосферное давление соответствует Плотность бензина .

Решение: Согласно основному уравнению гидростатики абсолютное давление в резервуаре будет складываться из абсолютного давления на свободной поверхности и весового, т. е.

Абсолютное давление на свободной поверхности :

или

С учетом полученного выражения для
исходное уравнение запишем следующим образом:

8. В цилиндрический бак диаметром D = 2м до уровня Н=1,5м налиты вода и бензин. Уровень воды в пьезометре ниже уровня бензина на h=300мм. Определить вес находящегося в баке

бензина, если .

Решение: Вес находящегося в баке бензина можно записать как

,

где - объем бензина в баке. Выразим его через геометрические параметры бака:

.

Чтобы определить неизвестную величину - уровень бензина в баке, нужно записать основное уравнение гидростатики для поверхности равного давления, в качестве которой наиболее целеобразно принять дно бака, так как относительно его мы располагаем информацией в виде Н- суммарного уровня бензина и воды в баке. Так как бак и пьезометр открыты (сообщаются с атмосферой), давление на дно будем учитывать только весовое.

Итак, давление на дно со стороны бака можно записать как

Это же давление со стороны пьезометра:

.

Приравняв правые части полученных выражений, выразим из них искомую величину :

Сократим полученное уравнение на g, убрав в обеих частях уравнения , запишем искомую величину

Из последнего уравнения

Полученные выражения для и подставим в исходное уравение и определим вес бензина

9. Гидравлический домкрат состоит из неподвижного поршня 1 и скользящего по нему цилиндра 2, на котором смонтирован корпус 3, образующий масляную ванну домкрата и плунжерный насос 4 ручного привода со всасывающими 5 и нагнетательным 6 клапанами. Определить давление рабочей жидкости в цилиндре и массу поднимаемого груза m, если усилие на рукоятке приводного рычага насоса R=150 Н, диаметр поршня домкрата D=180 мм, диаметр плунжера насоса d=18мм, КПД домкрата η = 0,68, плечи рычага а=60мм, b=600мм.

ЗАДАНИЯ

К выполнению расчетно – графической работы

По дисциплине «Гидравлика»

Тема: гидростатика

Северодвинск


ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

Гидравлика, или техническая механика жидкостей- это наука о законах равновесия и движения жидкостей, о способах применения этих законов к решению практических задач;

Жидкостью называют вещество, находящееся в таком агрегатном состоянии, которое сочетает в себе черты твердого состояния (весьма малая сжимаемость) и газообразного (текучесть). Законы равновесия и движения капельных жид­костей в известных пределах можно применять и к газам.

На жидкость могут действовать силы, распределенные по ее массе (объему), называемые массовыми , и по поверхности, называемые поверхностными . К первым относятся силы тя­жести и инерции, ко вторым - силы давления и трения.

Давлением называется отношение силы, нормальной к по­верхности, к площади. При равномерном распределении

Касательным напряжением называется отношение силы трения, касательной к поверхности, к площади:

Если давление р отсчитывают от абсолютного нуля, то его называют абсолютным (р абс), а если от условного нуля (т. е. сравнивают с атмосферным давлением р а, то избыточным (р изб):

Если Р абс < Р а, то имеется вакуум, величина которого:

Р вак = Р а - Р абс

Основной физической характеристикой жидкости является плотность ρ (кг/м 3), определяемая для однородной жидкости отношением ее массы m к объему V:

Плотность пресной воды при температуре Т = 4°С ρ = = 1000 кг/м 3 . В гидравлике часто пользуются также понятием удельного веса γ (Н/м 3), т.е весом G единицы объема жидкости:

Плотность и удельный вес связаны между собой соотношением:

где g - ускорение свободного падения.

Для пресной воды γ вод = 9810 Н/м 3

Важнейшие физические параметры жидкостей, которые используются в гидравлических расчетах,- сжимаемость, температурное расширение, вязкость и испаряемость.



Сжимаемость жидкостей характеризуется модулем объемной упругости К, входящим в обобщенный закон Гука:

где ΔV - приращение (в данном случае уменьшение) объема жидкости V, обусловленное увеличением давления на Δр. Например, для воды К вод ≈2 . 10 3 МПа.

Температурное расширение определяется соответствующим коэффициентом, равным относительному изменению объема, при изменении температуры на 1 °С:

Вязкость - это способность жидкости сопротивляться сдвигу. Различают динамическую (μ) и кинематическую (ν) вязкости. Первая входит в закон жидкостного трения Ньютона, выражающий касательное напряжение τ через поперечный градиент скорости dv/dt:

Кинематическая вязкость связана с динамической соотношением

Единицей кинематической вязкости является м 2 /с.

Испаряемость жидкостей характеризуется давлением насыщенных паров в функции температуры.

Давлением насыщенных паров можно считать то абсолютное давление, при котором жидкость закипает при данной температуре. Следовательно, минимальное абсолютное давление, при котором вещество находится в жидком состоянии, равно давлению насыщенных паров р н.п .

Основные параметры некоторых жидкостей, их единицы в СИ и внесистемные единицы, временно допускаемые к применению, приведены в Приложениях 1...3.


ГИДРОСТАТИКА

Давление в неподвижной жидкости называется гидростатическим и обладает следующими двумя свойствами:

На внешней поверхности жидкости оно всегда направлено во нормали внутрь объема жидкости;

В любой точке внутри жидкости оно по всем направлениям одинаково, т. е. не зависит от угла наклона площадки, по которой действует.

Уравнение, выражающее гидростатическое давление р в любой точке неподвижной жидкости в том случае, когда из числа массовых сил на нее действует лишь одна сила тяжести, называется основным уравнением гидростатики:

где p 0 - давление на какой-либо поверхности уровня жидкости, например на свободной поверхности; h - глубина расположения рассматриваемой точки, отсчитанная от поверхности с давлением р 0 .

В тех случаях, когда рассматриваемая точка расположена выше поверхности с давлением р 0 , второй член в формуле (1.1) отрицателен.

Другая форма записи того же уравнения (1.1) имеет вид

(1.2)

где z и z 0 - вертикальные координаты произвольной точки и свободной поверхности, отсчитываемые от горизонтальной плоскости вверх; p/(pg) - пьезометрическая высота.

Гидростатическое давление может быть условно выражено высотой столба жидкости p/ρg.

В гидротехнической практике внешнее давление часто равноатмосферному: P 0 =Р ат

Величина давления P ат = 1 кГ/см 2 = 9,81 . 10 4 н/м г называетсятехнической атмосферой .

Давление, равное одной технической атмосфере, эквивалентно давлению столба воды высотой 10 метров, т. е.

Гидростатическое давление, определяемое по уравнению (1.1), именуется полным или абсолютным давлением . В дальнейшем будем обозначать это давление р абс или p’. Обычно в гидротехнических расчетах интересуются не полным давлением, а разницей между полным давлением в атмосферным, т. е. так называемым манометрическим давлением

В дальнейшем изложении сохраним обозначение р за манометрическим давлением.

Рисунок 1.1

Сумма членов дает величину полного гидростатического напора

Сумма -- выражает гидростатический напор Н без учета атмосферного давления p ат /ρg, т. е.

На рис. 1.1 плоскость полного гидростатического напора и плоскость гидростатического напора показаны для случая, когда свободная поверхность находится под атмосферным давлением р 0 =p ат.

Графическое изображение величины и направления гидростатического давления, действующего на любую точку поверхности, носит название эпюры гидростатического давления. Для построения эпюры нужно отложить величину гидростатического давления для рассматриваемой точки нормально к поверхности, яа которую оно действует. Так, например, эпюра манометрического давления на плоский наклонный щит АВ (рис. 1.2,а) будет представлять треугольник ABC, а эпюра полного гидростатического давления - трапецию A"B"C"D" (рис. 1.2,б).

Рисунок 1.2

Каждый отрезок эпюры на рис. 1.2,а (например О К) будет изображать манометрическое давление в точке К, т. е. p K = ρgh K , а на рис. 1.2,б - полное гидростатическое давление

Сила давления жидкости на плоскую стенку равна произведению гидростатического давления ρ с в центре тяжести площади стенки на площадь стенки S, т. е.

Центр давления (точка приложения силы F) расположен ниже центра тяжести площади или совпадает с последним в случае горизонтальной стенки.

Расстояние между центром тяжести площади и центром давления в направлении нормали к линии пересечения плоскости стенки со свободной поверхностью жидкости равно

где J 0 - момент инерции площади стенки относительно оси, проходящей через центр тяжести площади и параллельной линии пересечения плоскости стенки со свободной поверхностью: у с - координата центра тяжести площади.

Сила давления жидкости на криволинейную стенку, симметричную относительно вертикальной плоскости, складывается из горизонтальной F Г и вертикальной F B составляющих:

Горизонтальная составляющая F Г равна силе давления жидкости на вертикальную проекцию данной стенки:

Вертикальная составляющая F B равна весу жидкости в объеме V, заключенном между данной стенкой, свободной поверхностью жидкости и вертикальной проекцирующей поверхностью, проведенной по контуру стенки.

Если избыточное давление р 0 на свободной поверхности жидкости отлично от нуля, то при расчете следует эту поверхность мысленно поднять (или опустить) на высоту (пьезометрическую высоту) p 0 /(ρg)

Плавание тел и их остойчивость. Условие плавания тела выражается равенством

G=P (1.6)

где G - вес тела;

Р - результирующая сила давления жидкости на погруженное в нее тело - архимедова сила .

Сила Р может быть найдена по формуле

P=ρgW (1.7)

где ρg - удельный вес жидкости;

W - объем жидкости, вытесненной телом, или водоизмещение.

Сила Р направлена вверх и проходит через центр тяжести водоизмещения.

Осадкой тела у называется глубина погружения наинизшей точки смоченной поверхности (рис. 1.3,а). Под осью плавания понимают линию, проходящую через центр тяжести С и центр водоизмещения D, соответствующий/ нормальному положению тела в состоянии равновесия (рис. 1.3, а)-

Ватерлинией называется линия пересечения поверхности плавающего тела со свободной поверхностью жидкости (рис. 1.3,б). Плоскостью плавания ABEF называется плоскость, полученная от пересечения тела свободной поверхностью жидкости, или, иначе плоскость, ограниченная ватерлинией.

Рисунок 1.3

Кроме выполнения условий плавания (1.5) тело (судно, баржа и т.д.) должно удовлетворять условиям остойчивости. Плавающее тело будет остойчивым в том случае, если при крене сила веса G и архимедова сила Р создают момент, стремящийся уничтожить крен и вернуть тело в исходное положение.

Рисунок 1.4

При надводном плавании тела (рис. 1.4) центр водоизмещения при малых углах крена (α<15°) перемещается по некоторой дуге, проведенной из точки пересечения линии действия силы Р с осью плавания. Эта точка называется метацентром (на рис. 1.4 точка М). Будем в дальнейшем рассматривать условия остойчивости лишь при надводном плавании тела при малых углах крена.

Если центр тяжести тела С лежит ниже центра водоизмещения, то плавание будет безусловно остойчивым (рис. 1.4,а).

Если центр тяжести тела С лежит выше центра водоизмещения D, то плавание будет остойчивым только при выполнении следующего условия (рис. 1-9,б):

где ρ - метацентрический радиус, т. е. расстояние между центром водоизмещения и метацентром

δ - расстояние между центром тяжести тела С и центром во­доизмещения D. Метацентрический радиус ρ находится по формуле:

где J 0 - момент инерции плоскости плавания или площади, ограниченной ватерлинией, относительно продольной оси (рис. 1-8,6);

W - водоизмещение.

Если центр тяжести тела С расположен выше центра водоизмещения и метацентра, то тело неостойчиво; возникающая пара сил G и Р стремится увеличить крен (рис. 1.4,в ).


УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ

При решении задач по гидростатике прежде всего нужно хорошо усвоить и не смешивать такие понятия, как давление р и сила F.

При решении задач на определение давления в той или иной точке неподвижной жидкости следует пользоваться основным уравнением гидростатики (1.1). Применяя это уравнение, нужно иметь в виду, что второй член в правой части этого уравнения может быть как положительным, так и отрицательным. Очевидно, что при увеличении глубины давление возрастает, а при подъеме - уменьшается.

Необходимо твердо различать давления абсолютное, избыточное и вакуум и обязательно знать связь между давлением, удельным весом и высотой, соответствующей этому давлению (пьезометрической высотой).

При решении задач, в которых даны поршни или системы поршней, следует писать уравнение равновесия, т. е. равенство нулю суммы всех сил, действующих на поршень (систему поршней).

Решение задач следует проводить в международной системе единиц измерения СИ.

Решение задачи должно сопровождаться необходимыми пояснениями, рисунками (принеобходимости), перечислением исходных величин (графа «дано»), переводом единиц в систему СИ.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО ГИДРОСТАТИКЕ

Задача 1. Определить полное гидростатическое давление на дно сосуда, наполненного водой. Сосуд сверху открыт, давление на свободной поверхности атмосферное. Глубина воды в сосуде h = 0,60 м.

Решение:

В данном случае имеем р 0 =р ат и потому применим формулу (1.1) в виде

р"=9,81.10 4 +9810 . 0,6 = 103986 Па

Ответ р’=103986 Па

Задача 2. Определить высоту столба воды в пьезометре над уровнем жидкости в закрытом сосуде. Вода в сосуде находитcя под абсолютным давлением p" 1 = 1,06ат (рисунок к задаче 2).

Решение .

Составим условия равновесия для общей точки А (см. рисунок). Давление в точке А слева:

Давление справа:

Приравнивая правые части уравнений, и сокращая на γg получаем:

Указанное уравнение можно также получить, составив условие равновесия для точек, расположенных в любой горизонтальной плоскости, например в плоскости ОО (см. рисунок). Примем за начало шкалы отсчета пьезометра плоскость ОО и из полученного уравнения найдем высоту столба воды в пьезометре h.

Высота h равна:

= 0,6 метра

Пьезометр измеряет величину манометрического давления, выраженного высотой столба жидкости.

Ответ: h = 0,6 метра

Задача 3. Определить высоту, на которую поднимается вода в вакуумметре, если абсолютное давление воздуха внутри баллона р’ в =0,95 ат (рис. 1-11). Сформулировать, какое давление измеряет вакуумметр.

Решение :

Составим условие равновесия относительно горизонтальной плоскости О-О:

гидростатическое давление, действующее изнутри:

Гидростатическое давление в плоскости О -О, действующее с внешней стороны,

Так как система находится в равновесии, то


Задача 4. Определить манометрическое давление в точке А трубопровода, если высота столба ртути по пьезометру h 2 =25 см. Центр трубопровода расположен на h 1 =40 см ниже линии раздела между водой и ртутью (рисунок к задаче).

Решение: Находим давление в точке В: р" В =р" А h 1 , так как точка В расположена выше точки А на величину h 1 . В точке С давление будет такое же, как в точке В, так как давление столба воды h взаимно уравновешивается, т. е.



отсюда манометрическое давление:



Подставляя числовые значения, получаем:

р" А -р атм =37278 Па

Ответ: р" А -р атм =37278 Па


ЗАДАЧИ

Задача 1.1. Канистра, заполненная бензином и не содержащая воздуха, нагрелась на солнце до температуры 50 °С. На сколько повысилось бы давление бензина внутри канистры, если бы она была абсолютно жесткой? Начальная температура бензина 20 0 С. Модуль объемной упругости бензина принять равным K=1300 МПа, коэффициент температурного расширения β = 8 . 10 -4 1/град.

Задача 1.2. Определить избыточное давление на дне океана, глубина которого h=10 км, приняв плотность морской воды ρ=1030 кг/м 3 и считая ее несжимаемой. Определить плотность воды на той же глубине с учетом сжимаемости и приняв модуль объемной упругости K = 2 . 10 3 МПа.

Задача 1.3. Найти закон изменения давления р атмосферного воздуха по высоте z, считая зависимость его плотности от давления изотермической. В действительности до высоты z=11 км температура воздуха падает по линейному закону, т. е. T=T 0 -β z , где β = 6,5 град/км. Определить зависимость p = f(z) с учетом действительного изменения температуры воздуха с высотой.

Задача 1.4. Определить избыточное давление воды в трубе В, если показание манометра р м = 0,025 МПа. Соединительная трубка заполнена водой и воздухом, как показано на схеме, причем Н 1 = 0,5 м; Н 2 =3 м.

Как изменится показание манометра, если при том же давлении в трубе всю соединительную трубку заполнить водой (воздух выпустить через кран К)? Высота Н 3 = 5 м.


Задача 1.5. В U-образную трубку налиты вода и бензин. Определить плотность бензина, если h б = 500 мм; h в = = 350 мм. Капиллярный эффект не учитывать.

Задача 1.6. В цилиндрический бак диаметром D = 2 м до уровня Н=1,5 м налиты вода и бензин. Уровень воды в пьезометре ниже уровня бензина на h = 300 мм. Определить веснаходящегося в баке бензина, если ρ б = 700 кг/м 3 .


Задача 1.7. Определить абсолютное давление воздуха всосуде, если показание ртутного прибора h = 368 мм, высота H=1 м. Плотность ртути ρ= 13600 кг/м 3 . Атмосферное давление 736 мм рт. ст.

Задача 1.8. Определить избыточное давление p 0 воздуха в напорном баке по показанию манометра, составленного из двух U-образных трубок с ртутью. Соединительные трубки заполнены водой. Отметки уровней даны в метрах. Какой высоты Н должен быть пьезометр для измерения того же давления p 0 Плотность ртути ρ = 13600 кг/м 3 .


Задача 1.9. Определить силу давления жидкости (воды) на крышку люка диаметром D=l м в следующих двух случаях:

1) показание манометра р м = 0,08 МПа; H 0 =1,5 м;

2) показание ртутного вакуумметра h = 73,5 мм при а= 1м ; ρ рт = 13600 кг/м 3 ; Н 0 =1,5 м.


Задача 1.10. Определить объемный модуль упругости жидкости, если под действием груза А массой 250 кг поршень прошел расстояние Δh = 5 мм. Начальная высота положения поршня (без груза) H =1,5 м, диаметры поршня d = 80 мм н резервуара D = 300 мм, высота резервуара h = 1,3 м. Весом поршня пренебречь. Резервуар считать абсолютно жестким.

Задача 1.11. Для опрессовки водой подземного трубопровода (проверки герметичности) применяется ручной поршневой насос. Определить объем воды (модуль упругости К = 2000 МПа), который нужно накачать в трубопровод для повышения избыточного давления в нем от 0 до 1,0 МПа. Считать трубопровод абсолютно жестким. Размеры трубопровода: длина L = 500 м, диаметр d=100 мм. Чему равно усилие на рукоятке насоса в последний момент опрессовки, если диаметр поршня насоса d n = 40 мм, а соотношение плеч рычажного механизма а/в = 5?


Задача 1.12 . Определить абсолютное давление воздуха в баке р 1 , еcли при атмосферном давлении, соответствующем h а = 760 мм рт. ст., показание ртутного вакуумметра h рт = = 0,2 м, высота h =1,5 м. Каково при этом показание пружинного вакуумметра? Плотность ртути ρ=13600 кг/м 3 .

Задача 1.13 . При перекрытом кране трубопровода К определить абсолютное давление в резервуаре, зарытом на глубине Н=5 м, если показание вакуумметра, установленного на высоте h=1,7 м, равно р вак = 0,02 МПа. Атмосферное давление соответствует р а = 740 мм рт. ст. Плотность бензина ρ б = 700 кг/м 3 .


Задача 1.14. Определить давление р’ 1 , если показание пьезометра h =0,4 м. Чему равно манометрическое давление?

Задача 1.15. Определить вакуум р вак и абсолютное давление внутри баллона р" в (рис. 1-11), если показание вакуумметра h =0,7 м вод. ст.

1) в баллоне и в левой трубке - вода, а в правой трубке - ртуть (ρ=13600 кг/м 3 );

2) в баллоне и левой трубке - воздух , а в правой трубке - вода.

Определить, какой процент составляет давление столба воздуха в трубке от вычисленного во втором случае манометрического давления?

При решении задачи принять h 1 = 70 см,h 2 = = 50 см.

Задача 1.17. Чему будет равна высота ртутного столба h 2 (рис. к задаче 1.16), если манометрическое давление нефти в баллоне А p а = 0,5 ат, а высота столба нефти (ρ=800 кг/м 3) h 1 =55 см?

Задача 1.18. Определить высоту столба ртути h 2 , (рисунок), если расположение центра трубопровода А повысится по сравнению с указанным на рисунке и станет на h 1 = 40 см выше линии раздела между водой и ртутью. Манометрическое давление в трубе принять 37 278 Па.

Задача 1.19. Определить, на какой высоте z установится уровень ртути в пьезометре, если при манометрическом давлении в трубе Р А =39240 Па и показании h=24 см система находится в равновесии (см. рисунок).

Задача 1.20. Определить удельный вес бруса, имеющего сле­дующие размеры: ширину b=30 см , высоту h=20 см и длину l = 100 см , если его осадка y=16 см

Задача 1.21. Кусок гранита весит в воздухе 14,72 Н и 10,01 Н в жидкости, имеющей относительный удельный вес 0,8. Определить объем куска гранита, его плотность и удельный вес.

Задача 1.22 Деревянный брус размером 5,0 х 0,30 м и высотой 0,30м спущен в воду. На какую глубину он погрузится, если от­носительный вес бруса 0,7? Определить, сколько человек могут встать на брус, чтобы верхняя поверхность бруса оказалась бы заподлицо со свободной поверхностью воды, считая, что каждый человек в среднем имеет массу 67,5 кг.

Задача 1.23 Прямоугольная металлическая баржа длиной 60 м, шириной 8 м, высотой 3,5 м, загруженная песком, весит 14126 кН. Определить осадку баржи. Какой объем песка V п нужно выгрузить, чтобы глубина погружения баржи была 1,2 м, если относительный удельный вес влажного песка равен 2,0?

Задача 1.24. Объемное водоизмещение подводной лодки 600 м 3 . С целью погружения лодки отсеки были заполнены морской водой в количестве 80 м 3 . Относительный удельный вес морской воды 1,025. Определить: какая часть объема лодки (в процентах) будет погружена в воду, если из подводной лодки удалить всю воду и она всплывет; чему равен вес подводной лодки без воды?

Ткань можно проткнуть иголкой, но не карандашом (если приложить такое же усилие). Карандаш и игла имеют разную форму и поэтому оказывают на ткань неодинаковое давление. Давление вездесуще. Оно приводит в действие механизмы (см. статью « «). Оно влияет на . оказывают давление на поверхности, с которыми соприкасаются. Атмосферное давление влияет на погоду прибор для измерения атмосферного давления – .

Что такое давление

Когда на тело перпендикулярно к его поверхности действует , то тело оказывается под давлением. Давление зависит от того, насколько велика сила, и от площади поверхности, на которую сила действует. Например, если выйти на снег в обычной обуви, можно провалиться; по этого не произойдет, если мы наденем лыжи. Вес тела один и тот же, но во втором случае давление распределится по большей поверхности. Чем больше поверхность, тем меньше давление. У северного оленя широкие копыта - ведь он ходит на снегу, и давление копыта на снег должно быть как можно меньше. Если нож острый, сила прикладывается к поверхности небольшой площади. Тупой нож распределяет силу по большей поверхности, поэтому и режет хуже. Единица давления - паскаль (Па) - названа в честь французского ученого Блеза Паскаля (1623 - 1662), сделавшего немало открытий в области атмосферного давления.

Давление жидкостей и газов

Жидкости и газы принимают форму сосуда, в котором они содержатся. В отличие от твердых тел, жидкости и газы давят на все стенки со­суда. Давление жидкостей и газов направлено во все сто­роны. давит не только на дно, но и на стенки аквариума. Сам аквариум давит только вниз. давит изнутри на футбольный мяч во всех направлениях, и поэтому мяч круглый.

Гидравлические механизмы

Действие гидравлических механизмов основано на давлении жидкости. Жид­кость не сжимается, поэтому если к ней приложить силу, она будет вынуждена сдвинуться с места. И тормоза работают на гидравлическом принципе. Уменьшение оборотов колее достигается с помощью давления тормозной жидкости. Водитель нажимает на педаль, поршень прокачивает тормозную жидкость через цилиндр, дальше она по трубке поступает в два других цилиндра и давит на поршни. Поршни прижимают тормозные колодки к диску колеса. Возникающее замедляет вращение колеса.

Пневматические механизмы

Пневматические механизмы действуют благодаря давлению газов - как правило, воздуха. В отличие от жид­костей, воздух может сжиматься, и тогда давление его возрастает. Действие отбойного молотка основано на том, что поршень сжимает воздух внутри его до очень большого давления. В отбойном молотке сжатый воздух давит на резец с такой силой, что можно бурить даже камень.

Пеногонный огнетушитель - это пневматическое устройство, работающее на сжатом углекислом газе. Сжав рукоятку, вы высвобождаете находящийся в канистре сжатый углекислый газ. Газ с огромной силой давит вниз, на специальный раствор, вытесняет его в трубку и шланг. Из шланга вырывается струя воды и пены.

Атмосферное давление

Атмосферное давление создастся весом воздуха над поверхностью . На каждый квадратный метр воздух давит с силой большей, чем вес слона. Вблизи поверхности Земли давление выше, чем высоко в небе. На высоте 10 000 метров там, где летают реактивные самолеты, давление невелико, так как сверху давит незначительная воздушная масса. В салоне самолёта поддерживается нормальное атмосферное давление, чтобы люди могли свободно дышать на большой высоте. Но даже в герметичном салоне самолёта у людей закладывает уши, когда давление становится ниже, чем давление внутри ушной раковины.

Атмосферное давление измеряется в миллиметрах ртутного столба. Когда меняется давление, меняется и . Низкое давление означает, что предсто­ит ухудшение погоды. Высокое давле­ние приносит ясную погоду. Нормальное давление на уровне моря – 760 мм (101 300 Па). В дни ураганов оно может упасть до 683 мм (910 Па).

КРАТКАЯ ТЕОРИЯ. Важнейший признак жидкости - существование свободной поверхности . Молекулы поверхностного слоя жидкости, имеющего толщину порядка 10 -9 м, находятся в ином состоянии, чем молекулы в толще жидкости. Поверхностный слой оказывает на жидкость давление, называемое молекулярным , что приводит к появлению сил, которые называются силами поверхностного натяжения .

Силы поверхностного натяжения в любой точке поверхности направлены по касательной к ней и по нормали к любому элементу линии, мысленно проведенной на поверхности жидкости. Коэффициент поверхностного натяжения -физическая величина, показывающая силу поверхностного натяжения, действующей на единицу длины линии, разделяющей поверхность жидкости на части:

С другой стороны, поверхностное натяжение можно определить как величину, численно равную свободной энергии единицы поверхностного слоя жидкости. Под свободной энергией понимают ту часть энергии системы, за счет которой может быть совершена работа при изотермическом процессе.

Коэффициент поверхностного натяжения зависит от природы жидкости. Для каждой жидкости он является функцией температуры и зависит от того, какая среда находится над свободной поверхностью жидкости.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА. Экспериментальная установка изображена на рис. 1. Она состоит из аспиратора А, соединенного с микроманометром М и сосудом В, в котором находится исследуемая жидкость. В аспиратор наливается вода. С помощью крана К аспиратор А может отсоединяться от сосуда В и присоединяться к такому же сосуду С с другой исследуемой жидкостью. Сосуды В и С плотно закрываются резиновыми пробками, имеющими по отверстию. В каждое отверстие вставляется стеклянная трубочка, конец которой представляет собой капилляр. Капилляр погружается на очень малую глубину в жидкость (так, чтобы он только касался поверхности жидкости). Микроманометр измеряет разность давления воздуха в атмосфере и аспираторе, или, что то же самое, в капилляре и сосуде В или С.



Микроманометр состоит из двух сообщающихся сосудов, один из которых представляет собой чашку большого диаметра, а другой наклонную стеклянную трубку малого диаметра (2 - 3 мм) (рис. 2). При достаточно большом отношении площадей сечений чашки и трубки можно пренебречь изменением уровня в чашке. Тогда по уровню жидкости в трубке малого диаметра можно определить измеряемую величину разности давлений:

где - плотность манометрической жидкости; - расстояние принимаемого неизменным уровня жидкости в чашке до уровня в трубке по наклону трубки; - угол, образованный наклонной трубкой с плоскостью горизонта.

В начальный момент времени, когда давление воздуха над поверхностью жидкости в капилляре и сосуде В одинаково и равно атмосферному. Уровень смачивающей жидкости в капилляре выше, чем в сосуде В, а уровень несмачивающей – ниже, так как смачивающая жидкость в капилляре образует вогнутый мениск, а несмачивающая - выпуклый.

Молекулярное давление под выпуклой поверхностью жидкости больше, а под вогнутым - меньше относительно давления под плоской поверхностью. Молекулярное давление, обусловленное кривизной поверхности, принято называть избыточным капиллярным давлением (давление Лапласа) . Избыточное давление под выпуклой поверхностью считается положительным, под вогнутой - отрицательным. Оно всегда направлено к центру кривизны сечения поверхности, т.е. в сторону ее вогнутости. В случае сферической поверхности избыточное давление можно вычислить по формуле:

где - коэффициент поверхностного натяжения, - радиус сферической поверхности.

Смачивающая капилляр жидкость поднимается до тех пор, пока гидростатическое давление столбика жидкости высотой (рис. 3а) не уравновесит избыточного давления, направленного в этом случае вверх. Высота 0 определяется из условия равновесия:

где - ускорение свободного падения, т.е.

Если, повернув кран аспиратора А, медленно выпускать из него воду, то давление воздуха в аспираторе, в соединенных с ним сосуде В и наклонном колене микроманометра начнет уменьшаться. В капилляре же над поверхностью жидкости давление равно атмосферному. В результате увеличивающейся разности давлений мениск жидкости в капилляре будет опускаться, сохраняя кривизну, пока не опустится до нижнего конца капилляра (рис. 3б). В этот момент давление воздуха в капилляре будет равно:

где - давление воздуха в сосуде В, - глубина погружения капилляра в жидкость, - давление Лапласа. Разность давлений воздуха в капилляре и сосуде В равна:

+ р = р изб + ρ g h = 2σ / r + ρ g h

С этого момента начинает меняться кривизна мениска. Давление воздуха в аспираторе и сосуде В продолжает уменьшаться. Так как разность давлений увеличивается, радиус кривизны мениска убывает, а кривизна возрастает. Наступает момент, когда радиус кривизны становится равным внутреннему радиусу капилляра (рис. 3в), а разность давлений становится максимальной. Затем радиус кривизны мениска снова увеличивается, и равновесие будет неустойчивым. Обязуется пузырек воздуха, который отрывается от капилляра и поднимается на поверхность. Жидкость затягивает отверстие. Далее все повторяется. На рис. 4 показано, как меняется радиус кривизны мениска жидкости, начиная с момента, когда он дошел до нижнего конца капилляра.

Из сказанного выше следует, что:

, (1)

где - внутренний радиус капилляра. Эту разность можно определить с помощью микроманометра, так как

где - плотность манометрической жидкости, - максимальное смещение уровня жидкости в наклонной трубке микроманометра, - угол между наклонным коленом микроманометра и горизонталью (см. рис. 2).

Из формул (1) и (2) получим:

. (3)

Так как глубина погружения капилляра в жидкость ничтожна , то ею можно пренебречь, тогда:

или , (4)

где - внутренний диаметр капилляра.

В том случае, когда жидкость не смачивает стенки капилляра, за в формуле (4) принимают внешний диаметр капилляра. В качестве манометрической жидкости в микроманометре используется вода ( = 1×10 3 кг/м 3).

ИЗМЕРЕНИЯ.

1. Налить в аспиратор воду до метки и закрыть его. Добиться равенства давлений в обоих коленах микроманометра, для чего на короткое время извлечь кран К. Установить его в такое положение, в котором он соединяет сосуд с аспиратором.

2. Открыть кран аспиратора настолько, чтобы изменение давления происходило достаточно медленно. Пузырьки воздуха должны отрываться примерно через каждые 10 - 15 с. После установления указанной частоты образования пузырьков можно проводить измерения.

ЗАДАНИЕ. 1. С помощью термометра определить и записать комнатную температуру t .

2. Девять раз определить максимальное смещение уровня жидкости в наклонном колене микроманометра. Для расчета коэффициента поверхностного натяжения взять среднее значение Н ср .

3. Аналогично определить коэффициент поверхностное натяжение этилового спирта.

4. Найти предельные абсолютную и относительную погрешности при определении поверхностного натяжения каждой жидкости. Записать для каждой жидкости окончательные результаты измерений с учетом их точности по формуле.

Лабораторная работа № 11

КРАТКАЯ ТЕОРИЯ. Важнейший признак жидкости - существование свободной поверхности . Молекулы поверхностного слоя жидкости, имеющего толщину порядка 10 -9 м, находятся в ином состоянии, чем молекулы в толще жидкости. Поверхностный слой оказывает на жидкость давление, называемое молекулярным , что приводит к появлению сил, которые называются силами поверхностного натяжения .

Силы поверхностного натяжения в любой точке поверхности направлены по касательной к ней и по нормали к любому элементу линии, мысленно проведенной на поверхности жидкости. Коэффициент поверхностного натяжения -физическая величина, показывающая силу поверхностного натяжения, действующую на единицу длины линии, разделяющей поверхность жидкости на части:

С другой стороны, поверхностное натяжение можно определить как величину, численно равную свободной энергии единицы поверхностного слоя жидкости. Под свободной энергией понимают ту часть энергии системы, за счет которой может быть совершена работа при изотермическом процессе.

Коэффициент поверхностного натяжения зависит от природы жидкости. Для каждой жидкости он является функцией температуры и зависит от того, какая среда находится над свободной поверхностью жидкости.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА. Экспериментальная установка изображена на рис. 1. Она состоит из аспиратора А, соединенного с микроманометром М и сосудом В, в котором находится исследуемая жидкость. В аспиратор наливается вода. С помощью крана К аспиратор А может отсоединяться от сосуда В и присоединяться к такому же сосуду С с другой исследуемой жидкостью. Сосуды В и С плотно закрываются резиновыми пробками, имеющими по отверстию. В каждое отверстие вставляется стеклянная трубочка, конец которой представляет собой капилляр. Капилляр погружается на очень малую глубину в жидкость (так, чтобы он только касался поверхности жидкости). Микроманометр измеряет разность давления воздуха в атмосфере и аспираторе, или, что то же самое, в капилляре и сосуде В или С.

Микроманометр состоит из двух сообщающихся сосудов, один из которых представляет собой чашку большого диаметра, а другой наклонную стеклянную трубку малого диаметра (2 - 3 мм) (рис. 2). При достаточно большом отношении площадей сечений чашки и трубки можно пренебречь изменением уровня в чашке. Тогда по уровню жидкости в трубке малого диаметра можно определить измеряемую величину разности давлений:

где - плотность манометрической жидкости; - расстояние вдоль трубки принимаемого неизменным уровня жидкости в чашке; - угол, образованный наклонной трубкой с плоскостью горизонта.

В начальный момент времени, когда давление воздуха над поверхностью жидкости в капилляре и сосуде В одинаково и равно атмосферному, уровень смачивающей жидкости в капилляре выше, чем в сосуде В, а уровень несмачивающей – ниже, так как смачивающая жидкость в капилляре образует вогнутый мениск, а несмачивающая - выпуклый.

Молекулярное давление под выпуклой поверхностью жидкости больше, а под вогнутым - меньше относительно давления под плоской поверхностью. Молекулярное давление, обусловленное кривизной поверхности, принято называть избыточным капиллярным давлением (давлением Лапласа) . Избыточное давление под выпуклой поверхностью считается положительным, под вогнутой - отрицательным. Сила этого давления всегда направлена к центру кривизны сечения поверхности. В случае сферической поверхности избыточное давление можно вычислить по формуле:

где - поверхностное натяжение, - радиус сферической поверхности.

Смачивающая капилляр жидкость поднимается до тех пор, пока гидростатическое давление столбика жидкости высотой (рис. 3) не уравновесит избыточного давления, направленного в этом случае вверх. Высота определяется из условия равновесия:

где - ускорение свободного падения, т.е.

Если, повернув кран аспиратора А, медленно выпускать из него воду, то давление воздуха в аспираторе, в соединенных с ним сосуде В и наклонном колене микроманометра, начнет уменьшаться. В капилляре же над поверхностью жидкости давление равно атмосферному. В результате увеличивающейся разности давлений мениск жидкости в капилляре будет опускаться, сохраняя кривизну, пока не опустится до нижнего конца капилляра (рис. 3в). В этот момент давление воздуха в капилляре будет равно:

где - давление воздуха в сосуде В, - глубина погружения капилляра в жидкость, - давление Лапласа. Разность давлений воздуха в капилляре и сосуде В равна:

С этого момента начинает меняться кривизна мениска. Давление воздуха в аспираторе и сосуде В продолжает уменьшаться. Так как разность давлений увеличивается, радиус кривизны мениска убывает, а кривизна возрастает. Наступает момент, когда радиус кривизны становится равным внутреннему радиусу капилляра (рис. 3в), а разность давлений становится максимальной. Затем радиус кривизны мениска снова увеличивается, и равновесие будет неустойчивым. Образуется пузырек воздуха, который отрывается от капилляра и поднимается на поверхность. Жидкость затягивает отверстие. Далее все повторяется. На рис. 4 показано, как меняется радиус кривизны мениска жидкости, начиная с момента, когда он дошел до нижнего конца капилляра.

Из сказанного выше следует, что:

, (1)

где - внутренний радиус капилляра. Эту разность можно определить с помощью микроманометра, так как

где - плотность манометрической жидкости, - максимальное смещение уровня жидкости в наклонной трубке микроманометра, - угол между наклонным коленом микроманометра и горизонталью (см. рис. 2).

Из формул (1) и (2) получим:

. (3)

Так как глубина погружения капилляра в жидкость ничтожна , то ею можно пренебречь, тогда:

или , (4)

где - внутренний диаметр капилляра.

В том случае, когда жидкость не смачивает стенки капилляра, за в формуле (4) принимают внешний диаметр капилляра. В качестве манометрической жидкости в микроманометре используется вода ( = 1×10 3 кг/м 3).

ИЗМЕРЕНИЯ. 1. Плотно закрыть резиновой пробкой капилляр, предварительно измерив его внутренний диаметр с помощью микроскопа. Капилляр вставить в отверстие пробки. Конец трубки привести в соприкосновение с жидкостью.

2. Налить в аспиратор воду до метки и закрыть его. Добиться равенства давлений в обоих коленах микроманометра, для чего на короткое время извлечь кран К. Установить его в такое положение, в котором он соединяет сосуд с аспиратором.

3. Открыть кран аспиратора настолько, чтобы изменение давления происходило достаточно медленно. Пузырьки воздуха должны отрываться примерно через каждые 10-15 с. После установления указанной частоты образования пузырьков можно проводить измерения.

ЗАДАНИЕ.

1. С помощью термометра определить и записать комнатную температуру T .

2. Девять раз определить максимальное смещение уровня жидкости в наклонном колене микроманометра. Для расчета коэффициента поверхностного натяжения взять среднее значение Н ср .