Числовой последовательностью называется. Числовая последовательность. Арифметические действия с последовательностями

Если функция определена на множестве натуральных чисел N, то такая функция называется бесконечной числовой последовательностью. Обычно числовые последовательность обозначают как(Xn), где n принадлежит множеству натуральных чисел N.

Числовая последовательность может быть задана формулой. Например, Xn=1/(2*n). Таким образом мы ставим в соответствие каждому натуральному числу n некоторый определенный элемент последовательности (Xn).

Если теперь последовательно брать n равными 1,2,3, …., мы получим последовательность (Xn): ½, ¼, 1/6, …, 1/(2*n), …

Виды последовательности

Последовательность может быть ограниченной или неограниченной, возрастающей или убывающей.

Последовательность (Xn) называет ограниченной, если существуют два числа m и M такие, что для любого n принадлежащего множеству натуральных чисел, будет выполняться равенство m<=Xn

Последовательность (Xn), не являющаяся ограниченной, называется неограниченной последовательностью.

возрастающей, если для всех натуральных n выполняется следующее равенство X(n+1) > Xn. Другими словами, каждый член последовательности, начиная со второго, должен быть больше предыдущего члена.

Последовательность (Xn) называется убывающей, если для всех натуральных n выполняется следующее равенство X(n+1) < Xn. Иначе говоря, каждый член последовательности, начиная со второго, должен быть меньше предыдущего члена.

Пример последовательности

Проверим, являются ли последовательности 1/n и (n-1)/n убывающими.

Если последовательность убывающая, то X(n+1) < Xn. Следовательно X(n+1) - Xn < 0.

X(n+1) - Xn = 1/(n+1) - 1/n = -1/(n*(n+1)) < 0. Значит последовательность 1/n убывающая.

(n-1)/n:

X(n+1) - Xn =n/(n+1) - (n-1)/n = 1/(n*(n+1)) > 0. Значит последовательность (n-1)/n возрастающая.

Введение………………………………………………………………………………3

1.Теоретическая часть……………………………………………………………….4

Основные понятия и термины…………………………………………………....4

1.1 Виды последовательностей…………………………………………………...6

1.1.1.Ограниченные и неограниченные числовые последовательности…..6

1.1.2.Монотонность последовательностей…………………………………6

1.1.3.Бесконечно большие и бесконечно малые последовательности…….7

1.1.4.Свойства бесконечно малых последовательностей…………………8

1.1.5.Сходящиеся и расходящиеся последовательности и их свойства..…9

1.2Предел последовательности………………………………………………….11

1.2.1.Теоремы о пределах последовательностей……………………………15

1.3.Арифметическая прогрессия…………………………………………………17

1.3.1. Свойства арифметической прогрессии…………………………………..17

1.4Геометрическая прогрессия…………………………………………………..19

1.4.1. Свойства геометрической прогрессии…………………………………….19

1.5. Числа Фибоначчи……………………………………………………………..21

1.5.1 Связь чисел Фибоначчи с другими областями знаний…………………….22

1.5.2. Использование ряда чисел Фибоначчи для описания живой и неживой природы…………………………………………………………………………….23

2. Собственные исследования…………………………………………………….28

Заключение……………………………………………………………………….30

Список использованной литературы…………………………………………....31

Введение.

Числовые последовательности это очень интересная и познавательная тема. Эта тема встречается в заданиях повышенной сложности, которые предлагают учащимся авторы дидактических материалов, в задачах математических олимпиад, вступительных экзаменов в Высшие Учебные Заведения и на ЕГЭ. Мне интересно узнать связь математических последовательностей с другими областями знаний.

Цель исследовательской работы: Расширить знания о числовой последовательности.

1. Рассмотреть последовательность;

2. Рассмотреть ее свойства;

3. Рассмотреть аналитическое задание последовательности;

4. Продемонстрировать ее роль в развитии других областей знаний.

5. Продемонстрировать использование ряда чисел Фибоначчи для описания живой и неживой природы.

1. Теоретическая часть.

Основные понятия и термины.

Определение. Числовая последовательность– функция вида y = f(x), x О N, где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f(n) или y1, y2,…, yn,…. Значения y1, y2, y3,… называют соответственно первым, вторым, третьим, … членами последовательности.

Число a называется пределом последовательности x = {x n }, если для произвольного заранее заданного сколь угодно малого положительного числа ε найдется такое натуральное число N, что при всех n>N выполняется неравенство |x n - a| < ε.

Если число a есть предел последовательности x = {x n }, то говорят, что x n стремится к a, и пишут

.

Последовательность {yn} называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y1 < y2 < y3 < … < yn < yn+1 < ….

Последовательность {yn} называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y1 > y2 > y3 > … > yn > yn+1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Последовательность называется периодической, если существует такое натуральное число T, что начиная с некоторого n, выполняется равенство yn = yn+T . Число T называется длиной периода.

Арифметическая прогрессия- это последовательность {an}, каждый член которой, начиная со второго, равен сумме предыдущего члена и одного и того же числа d, называют арифметической прогрессией, а число d – разностью арифметической прогрессии.

Таким образом, арифметическая прогрессия – это числовая последовательность {an}, заданная рекуррентно соотношениями

a1 = a, an = an–1 + d (n = 2, 3, 4, …)

Геометрическая прогрессия- это последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q.

Таким образом, геометрическая прогрессия – это числовая последовательность {bn}, заданная рекуррентно соотношениями

b1 = b, bn = bn–1 q (n = 2, 3, 4…).

1.1 Виды последовательностей.

1.1.1 Ограниченные и неограниченные последовательности.

Последовательность {bn} называют ограниченной сверху, если существует такое число М, что для любого номера n выполняется неравенство bn≤ M;

Последовательность {bn} называют ограниченной снизу, если существует такое число М, что для любого номера n выполняется неравенство bn≥ М;

Например:

1.1.2 Монотонность последовательностей.

Последовательность {bn} называют невозрастающие (неубывающей), если для любого номера n справедливо неравенство bn≥ bn+1 (bn ≤bn+1);

Последовательность {bn} называют убывающей (возрастающей), если для любого номера n справедливо неравенство bn> bn+1 (bn

Убывающие и возрастающие последовательности называют строго монотонными, невозрастающие- монотонными в широком смысле.

Последовательности, ограниченные одновременно сверху и снизу, называются ограниченными.

Последовательность всех этих типов носят общее название- монотонные.

1.1.3 Бесконечно большие и малые последовательности.

Бесконечно малая последовательность- это числовая функция или последовательность, которая стремится к нулю.

Последовательность an называется бесконечно малой, если

Функция называется бесконечно малой в окрестности точки x0, если ℓimx→x0 f(x)=0.

Функция называется бесконечно малой на бесконечности, если ℓimx→.+∞ f(x)=0 либо ℓimx→-∞ f(x)=0

Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если ℓimx→.+∞ f(x)=а, то f(x) − a = α(x), ℓimx→.+∞ f((x)-a)=0.

Бесконечно большая последовательность- числовая функция или последовательность, которая стремится к бесконечности.

Последовательность an называется бесконечно большой, если

ℓimn→0 an=∞.

Функция называется бесконечно большой в окрестности точки x0, если ℓimx→x0 f(x)= ∞.

Функция называется бесконечно большой на бесконечности, если

ℓimx→.+∞ f(x)= ∞ либо ℓimx→-∞ f(x)= ∞ .

1.1.4 Свойства бесконечно малых последовательностей.

Сумма двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Разность двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Алгебраическая сумма любого конечного числа бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Произведение ограниченной последовательности на бесконечно малую последовательность есть бесконечно малая последовательность.

Произведение любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Любая бесконечно малая последовательность ограничена.

Если стационарная последовательность является бесконечно малой, то все её элементы, начиная с некоторого, равны нулю.

Если вся бесконечно малая последовательность состоит из одинаковых элементов, то эти элементы - нули.

Если {xn} - бесконечно большая последовательность, не содержащая нулевых членов, то существует последовательность {1/xn} , которая является бесконечно малой. Если же всё же {xn} содержит нулевые элементы, то последовательность {1/xn} всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно малой.

Если {an} - бесконечно малая последовательность, не содержащая нулевых членов, то существует последовательность {1/an}, которая является бесконечно большой. Если же всё же {an}содержит нулевые элементы, то последовательность {1/an} всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно большой.

1.1.5 Сходящиеся и расходящиеся последовательности и их свойства.

Сходящаяся последовательность- это последовательность элементов множества Х, имеющая предел в этом множестве.

Расходящаяся последовательность- это последовательность, не являющаяся сходящейся.

Всякая бесконечно малая последовательность является сходящейся. Её предел равен нулю.

Удаление любого конечного числа элементов из бесконечной последовательности не влияет ни на сходимость, ни на предел этой последовательности.

Любая сходящаяся последовательность ограничена. Однако не любая ограниченная последовательность сходится.

Если последовательность {xn} сходится, но не является бесконечно малой, то, начиная с некоторого номера, определена последовательность {1/xn}, которая является ограниченной.

Сумма сходящихся последовательностей также является сходящейся последовательностью.

Разность сходящихся последовательностей также является сходящейся последовательностью.

Произведение сходящихся последовательностей также является сходящейся последовательностью.

Частное двух сходящихся последовательностей определено, начиная с некоторого элемента, если только вторая последовательность не является бесконечно малой. Если частное двух сходящихся последовательностей определено, то оно представляет собой сходящуюся последовательность.

Если сходящаяся последовательность ограничена снизу, то никакая из её нижних граней не превышает её предела.

Если сходящаяся последовательность ограничена сверху, то её предел не превышает ни одной из её верхних граней.

Если для любого номера члены одной сходящейся последовательности не превышают членов другой сходящейся последовательности, то и предел первой последовательности также не превышает предела второй.

Лекция 8. Числовые последовательности.

Определение 8.1. Если каждому значению ставится в соответствие по определённому закону некоторое вещественное число x n , то множество занумерованных вещественных чисел

сокращённая запись
,
(8.1)

будем называть числовой последовательностью или просто последовательностью.

Отдельные числа x n элементы или члены последовательности (8.1).

Последовательность может быть задана формулой общего члена, например так:
или
. Последовательность может задаваться неоднозначно, например последовательность –1, 1, –1, 1, … можно задать формулой
или
. Иногда используют рекуррентный способ задания последовательности: задаются первые несколько членов последовательности и формула для вычисления следующих элементов. Например, последовательность, определяемая первым элементом и рекуррентным соотношением
(арифметическая прогрессия). Рассмотрим последовательность, называемую рядом Фибоначчи : задаются первые два элемента x 1 =1, x 2 =1 и рекуррентное соотношение
при любом
. Получаем последовательность чисел 1, 1, 2, 3, 5, 8, 13, 21, 34, …. Для такого ряда найти формулу общего члена довольно трудно.

8.1. Арифметические действия с последовательностями.

Рассмотрим две последовательности:

(8.1)

Определение 8.2. Назовём произведением последовательности
на число m последовательность
. Запишем так:
.

Назовём последовательность суммой последовательностей (8.1) и (8.2), запишем так: ; аналогично
назовем разностью последовательностей (8.1) и (8.2);
произведением последовательностей (8.1) и (8.2); частным последовательностей (8.1) и (8.2) (все элементы
).

8.2. Ограниченные и неограниченные последовательности.

Совокупность всех элементов произвольной последовательности
образует некоторое числовое множество, которое может быть ограничено сверху (снизу) и для которого справедливы определения, аналогичные введённым для вещественных чисел.

Определение 8.3. Последовательность
называется
ограниченной сверху , если ; М верхняя грань.

Определение 8.4. Последовательность
называется
ограниченной снизу , если ; m нижняя грань.

Определение 8.5. Последовательность
называется
ограниченной , если она ограничена и сверху, и снизу, то есть если существуют два вещественных числа М и m такие, что каждый элемент последовательности
удовлетворяет неравенствам:

, (8.3)

m и M – нижняя и верхняя грани
.

Неравенства (8.3) называют условием ограниченности последовательности
.

Например, последовательность
ограниченная, а
неограниченная.

Утверждение 8.1.
является ограниченной
.

Доказательство. Выберем
. Согласно определению 8.5 последовательность
будет ограниченной. ■

Определение 8.6 . Последовательность
называется
неограниченной , если для любого положительного (сколь угодно большого) вещественного числа А найдётся хотя бы один элемент последовательности x n , удовлетворяющий неравенству:
.

Например, последовательность 1, 2, 1, 4, …, 1, 2n , … неограниченная, т.к. ограничена только снизу.

8.3. Бесконечно большие и бесконечно малые последовательности.

Определение 8.7. Последовательность
называется
бесконечно большой , если для любого (сколь угодно большого) вещественного числа А найдётся номер
такой, что при всех
элементы
x n
.

Замечание 8.1. Если последовательность бесконечно большая, то она неограниченная. Но не следует думать, что любая неограниченная последовательность является бесконечно большой. Например, последовательность
не ограничена, но не является бесконечно большой, т.к. условие
не выполняется при всех чётных n .

Пример 8.1.
является бесконечно большой. Возьмем любое число А >0. Из неравенства
получаем n >A . Если взять
, то для всех n >N будет выполняться неравенство
, то есть согласно определению 8.7, последовательность
бесконечно большая.

Определение 8.8. Последовательность
называется
бесконечно малой , если для
(сколь угодно малого ) найдётся номер

такой, что при всех
элементы этой последовательности удовлетворяют неравенству
.

Пример 8.2. Докажем, что последовательность бесконечно малая.

Возьмём любое число
. Из неравенства
получаем . Если взять
, то для всех n >N будет выполняться неравенство
.

Утверждение 8.2. Последовательность
является бесконечно большой при
и бесконечно малой при

.

Доказательство.

1) Пусть сначала
:
, где
. По формуле Бернулли (пример 6.3, п. 6.1.)
. Фиксируем произвольное положительное число А и выберем по нему номер N такой, чтобы было справедливо неравенство:

,
,
,
.

Так как
, то по свойству произведения вещественных чисел при всех

.

Таким образом, для
найдется такой номер
, что при всех


– бесконечно большая при
.

2) Рассмотрим случай
,
(при q =0 имеем тривиальный случай).

Пусть
, где
, по формуле Бернулли
или
.

Фиксируем
,
и выберем
такой, чтобы

,
,
.

Для

. Укажем такой номер N , что при всех

, то есть при
последовательность
бесконечно малая. ■

8.4. Основные свойства бесконечно малых последовательностей.

Теорема 8.1. Сумма

и

Доказательство. Фиксируем ;
– бесконечно малая

,

– бесконечно малая

. Выберем
. Тогда при

,
,
. ■

Теорема 8.2 . Разность
двух бесконечно малых последовательностей
и
есть бесконечно малая последовательность.

Для доказательства теоремы достаточно использовать неравенство . ■

Следствие. Алгебраическая сумма любого конечного числа бесконечно малых последовательностей представляет собой бесконечно малую последовательность.

Теорема 8.3. Произведение ограниченной последовательности на бесконечно малую последовательность есть бесконечно малая последовательность.

Доказательство.
– ограниченная,
– бесконечно малая последовательность. Фиксируем ;
,
;
: при
справедливо
. Тогда
. ■

Теорема 8.4. Всякая бесконечно малая последовательность является ограниченной.

Доказательство. Фиксируем Пусть некоторое число . Тогда
для всех номеров n , что и означает ограниченность последовательности. ■

Следствие. Произведение двух (и любого конечного числа) бесконечно малых последовательностей есть бесконечно малая последовательность.

Теорема 8.5.

Если все элементы бесконечно малой последовательности
равны одному и тому же числу
c , то с= 0.

Доказательство теоремы проводится методом от противного, если обозначить
. ■

Теорема 8.6. 1) Если
– бесконечно большая последовательность, то, начиная с некоторого номера
n , определено частное двух последовательностей
и
, которое представляет собой бесконечно малую последовательность.

2) Если все элементы бесконечно малой последовательности
отличны от нуля, то частное двух последовательностей
и
представляет собой бесконечно большую последовательность.

Доказательство.

1) Пусть
– бесконечно большая последовательность. Фиксируем ;
или
при
. Таким образом, по определению 8.8 последовательность – бесконечно малая.

2) Пусть
– бесконечно малая последовательность. Предположим, что все элементы
отличны от нуля. Фиксируем А ;
или
при
. По определению 8.7 последовательность бесконечно большая. ■

Приводится определение числовой последовательности. Рассмотрены примеры неограниченно возрастающих, сходящихся и расходящихся последовательностей. Рассмотрена последовательность, содержащая все рациональные числа.

Содержание

См. также:

Определение

Числовая последовательность { x n } - это закон (правило), согласно которому, каждому натуральному числу n = 1, 2, 3, . . . ставится в соответствие некоторое число x n .
Элемент x n называют n-м членом или элементом последовательности.

Последовательность обозначается в виде n -го члена, заключенного в фигурные скобки: . Также возможны следующие обозначения: . В них явно указывается, что индекс n принадлежит множеству натуральных чисел и сама последовательность имеет бесконечное число членов. Вот несколько примеров последовательностей:
, , .

Другими словами числовая последовательность - это функция, областью определения которой является множество натуральных чисел. Число элементов последовательности бесконечно. Среди элементов могут встречаться и члены, имеющие одинаковые значения. Также последовательность можно рассматривать как нумерованное множество чисел, состоящее из бесконечного числа членов.

Главным образом нас будет интересовать вопрос - как ведут себя последовательности, при n стремящемся к бесконечности: . Этот материал излагается в разделе Предел последовательности – основные теоремы и свойства . А здесь мы рассмотрим несколько примеров последовательностей.

Примеры последовательностей

Примеры неограниченно возрастающих последовательностей

Рассмотрим последовательность . Общий член этой последовательности . Выпишем несколько первых членов:
.
Видно, что с ростом номера n , элементы неограниченно возрастают в сторону положительных значений. Можно сказать, что эта последовательность стремится к : при .

Теперь рассмотрим последовательность с общим членом . Вот ее несколько первых членов:
.
С ростом номера n , элементы этой последовательности неограниченно возрастают по абсолютной величине, но не имеют постоянного знака. То есть эта последовательность стремится к : при .

Примеры последовательностей, сходящихся к конечному числу

Рассмотрим последовательность . Ее общий член . Первые члены имеют следующий вид:
.
Видно, что с ростом номера n , элементы этой последовательности приближаются к своему предельному значению a = 0 : при . Так что каждый последующий член ближе к нулю, чем предыдущий. В каком-то смысле можно считать, что есть приближенное значение для числа a = 0 с погрешностью . Ясно, что с ростом n эта погрешность стремится к нулю, то есть выбором n , погрешность можно сделать сколь угодно малой. Причем для любой заданной погрешности ε > 0 можно указать такой номер N , что для всех элементов с номерами большими чем N : , отклонение числа от предельного значения a не превзойдет погрешности ε : .

Далее рассмотрим последовательность . Ее общий член . Вот несколько ее первых членов:
.
В этой последовательности члены с четными номерами равны нулю. Члены с нечетными n равны . Поэтому, с ростом n , их величины приближаются к предельному значению a = 0 . Это следует также из того, что
.
Также как и в предыдущем примере, мы можем указать сколь угодно малую погрешность ε > 0 , для которой можно найти такой номер N , что элементы, с номерами большими чем N , будут отклоняться от предельного значения a = 0 на величину, не превышающую заданной погрешности. Поэтому эта последовательность сходится к значению a = 0 : при .

Примеры расходящихся последовательностей

Рассмотрим последовательность со следующим общим членом:

Вот ее первые члены:


.
Видно, что члены с четными номерами:
,
сходятся к значению a 1 = 0 . Члены с нечетными номерами:
,
сходятся к значению a 2 = 2 . Сама же последовательность, с ростом n , не сходится ни к какому значению.

Последовательность с членами, распределенными в интервале (0;1)

Теперь рассмотрим более интересную последовательность. На числовой прямой возьмем отрезок . Поделим его пополам. Получим два отрезка. Пусть
.
Каждый из отрезков снова поделим пополам. Получим четыре отрезка. Пусть
.
Каждый отрезок снова поделим пополам. Возьмем


.
И так далее.

В результате получим последовательность, элементы которой распределены в открытом интервале (0; 1) . Какую бы мы ни взяли точку из закрытого интервала , мы всегда можем найти члены последовательности, которые окажутся сколь угодно близко к этой точке, или совпадают с ней.

Тогда из исходной последовательности можно выделить такую подпоследовательность, которая будет сходиться к произвольной точке из интервала . То есть с ростом номера n , члены подпоследовательности будут все ближе подходить к наперед выбранной точке.

Например, для точки a = 0 можно выбрать следующую подпоследовательность:
.
= 0 .

Для точки a = 1 выберем такую подпоследовательность:
.
Члены этой подпоследовательности сходятся к значению a = 1 .

Поскольку существуют подпоследовательности, сходящиеся к различным значениям, то сама исходная последовательность не сходится ни к какому числу.

Последовательность, содержащая все рациональные числа

Теперь построим последовательность, которая содержит все рациональные числа. Причем каждое рациональное число будет входить в такую последовательность бесконечное число раз.

Рациональное число r можно представить в следующем виде:
,
где - целое; - натуральное.
Нам нужно каждому натуральному числу n поставить в соответствие пару чисел p и q так, чтобы любая пара p и q входила в нашу последовательность.

Для этого на плоскости проводим оси p и q . Проводим линии сетки через целые значения p и q . Тогда каждый узел этой сетки с будет соответствовать рациональному числу. Все множество рациональных чисел будет представлено множеством узлов. Нам нужно найти способ пронумеровать все узлы, чтобы не пропустить ни один узел. Это легко сделать, если нумеровать узлы по квадратам, центры которых расположены в точке (0; 0) (см. рисунок). При этом нижние части квадратов с q < 1 нам не нужны. Поэтому они не отображены на рисунке.


Итак, для верхней стороны первого квадрата имеем:
.
Далее нумеруем верхнюю часть следующего квадрата:

.
Нумеруем верхнюю часть следующего квадрата:

.
И так далее.

Таким способом мы получаем последовательность, содержащую все рациональные числа. Можно заметить, что любое рациональное число входит в эту последовательность бесконечное число раз. Действительно, наряду с узлом , в эту последовательность также будут входить узлы , где - натуральное число. Но все эти узлы соответствуют одному и тому же рациональному числу .

Тогда из построенной нами последовательности, мы можем выделить подпоследовательность (имеющую бесконечное число элементов), все элементы которой равны наперед заданному рациональному числу. Поскольку построенная нами последовательность имеет подпоследовательности, сходящиеся к различным числам, то последовательность не сходится ни к какому числу.

Заключение

Здесь мы дали точное определение числовой последовательности. Также мы затронули вопрос о ее сходимости, основываясь на интуитивных представлениях. Точное определение сходимости рассматривается на странице Определение предела последовательности . Связанные с этим свойства и теоремы изложены на странице Предел последовательности – основные теоремы и свойства .

См. также:

Последовательность

Последовательность - это набор элементов некоторого множества:

  • для каждого натурального числа можно указать элемент данного множества;
  • это число является номером элемента и обозначает позицию данного элемента в последовательности;
  • для любого элемента (члена) последовательности можно указать следующий за ним элемент последовательности.

Таким образом, последовательность оказывается результатом последовательного выбора элементов заданного множества. И, если любой набор элементов является конечным, и говорят о выборке конечного объёма, то последовательность оказывается выборкой бесконечного объёма.

Последовательность по своей природе - отображение, поэтому его не следует смешивать с множеством, которое «пробегает» последовательность.

В математике рассматривается множество различных последовательностей:

  • временные ряды как числовой, так и не числовой природы;
  • последовательности элементов метрического пространства
  • последовательности элементов функционального пространства
  • последовательности состояний систем управления и автоматов.

Целью изучения всевозможных последовательностей является поиск закономерностей, прогноз будущих состояний и генерация последовательностей.

Определение

Пусть задано некоторое множество элементов произвольной природы. | Всякое отображение множества натуральных чисел в заданное множество называется последовательностью (элементов множества ).

Образ натурального числа , а именно, элемент , называется -ым членом или элементом последовательности , а порядковый номер члена последовательности - её индексом.

Связанные определения

  • Если взять возрастающую последовательность натуральных чисел, то её можно рассматривать как последовательность индексов некоторой последовательности: если взять элементы исходной последовательности с соответствующими индексами (взятыми из возрастающей последовательности натуральных чисел), то можно снова получить последовательность, которая называется подпоследовательностью заданной последовательности.

Комментарии

  • В математическом анализе важным понятием является предел числовой последовательности .

Обозначения

Последовательности вида

принято компактно записывать при помощи круглых скобок:

или

иногда используются фигурные скобки:

Допуская некоторую вольность речи, можно рассматривать и конечные последовательности вида

,

которые представляют собой образ начального отрезка последовательности натуральных чисел.

См. также


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Последовательность" в других словарях:

    ПОСЛЕДОВАТЕЛЬНОСТЬ. У И. В. Киреевского в статье «Девятнадцатый век» (1830) читаем: «От самого падения Римской империи до наших времен просвещение Европы представляется нам в постепенном развитии и в беспрерывной последовательности» (т. 1, с.… … История слов

    ПОСЛЕДОВАТЕЛЬНОСТЬ, последовательности, мн. нет, жен. (книжн.). отвлеч. сущ. к последовательный. Последовательность каких нибудь явлений. Последовательность в смене приливов и отливов. Последовательность в рассуждениях. Толковый словарь Ушакова.… … Толковый словарь Ушакова

    Постоянство, преемственность, логичность; ряд, прогрессия, вывод, серия, вереница, череда, цепь, цепочка, каскад, эстафета; упорство, обоснованность, набор, методичность, расстановка, стройность, упорность, подпоследовательность, связь, очередь,… … Словарь синонимов

    ПОСЛЕДОВАТЕЛЬНОСТЬ, числа или элементы, расположенные в организованном порядке. Последовательности могут быть конечными (имеющие ограниченное число элементов) или бесконечными, как полная последовательность натуральных чисел 1, 2, 3, 4 ....… … Научно-технический энциклопедический словарь

    ПОСЛЕДОВАТЕЛЬНОСТЬ, совокупность чисел (математических выражений и т.п.; говорят: элементов любой природы), занумерованных натуральными числами. Последовательность записывается в виде x1, x2,..., xn,... или коротко {xi} … Современная энциклопедия

    Одно из основных понятий математики. Последовательность образуется элементами любой природы, занумерованными натуральными числами 1, 2, ..., n, ..., и записывается в виде x1, x2, ..., xn, ... или коротко {xn} … Большой Энциклопедический словарь

    Последовательность - ПОСЛЕДОВАТЕЛЬНОСТЬ, совокупность чисел (математических выражений и т.п.; говорят: элементов любой природы), занумерованных натуральными числами. Последовательность записывается в виде x1, x2, ..., xn, ... или коротко {xi}. … Иллюстрированный энциклопедический словарь

    ПОСЛЕДОВАТЕЛЬНОСТЬ, и, жен. 1. см. последовательный. 2. В математике: бесконечный упорядоченный набор чисел. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Англ. succession/sequence; нем. Konsequenz. 1. Порядок следования одного за другим. 2. Одно из основных понятий математики. 3. Качество правильного логического мышления, при к ром рассуждение свободно от внутренних противоречий по одному и тому… … Энциклопедия социологии

    Последовательность - «функция, определенная на множестве натуральных чисел, множество значений которой может состоять из элементов любой природы: чисел, точек, функций, векторов, множеств, случайных величин и др., занумерованных натуральными числами … Экономико-математический словарь

Книги

  • Выстраиваем последовательность. Котята. 2-3 года , . Игра "Котята" . Выстраиваем последовательность. 1 уровень. Серия" Дошкольное образование" . Весёлые котята решили позагорать на пляже! Но никак не могут поделить места. Помоги им разобраться!…