Теорема ферма формулировка. Великая теорема Ферма: доказательство Уайлса и Перельмана, формулы, правила расчета и полное доказательство теоремы. Краткая история доказательств

Файл FERMA-KDVar © Н. М. Козий, 2008

Свидетельство Украины № 27312

КРАТКОЕ ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА


Великая теорема Ферма формулируется следующим образом: диофантово уравнение (http://soluvel.okis.ru/evrika.html):

А n + В n = С n * /1/

где n - целое положительное число, большее двух, не имеет решения в целых положительных числах A , B , С .

ДОКАЗАТЕЛЬСТВО

Из формулировки Великой теоремы Ферма следует: если n – целое положительное число, большее двух, то при условии, что два из трех чисел А , В или С - целые положительные числа, одно из этих чисел не является целым положительным числом.

Доказательство строим, исходя из основной теоремы арифметики, которая называется «теоремой о единственности факторизации» или «теоремой о единственности разложения на простые множители целых составных чисел». Возможны нечетные и четные показатели степени n . Рассмотрим оба случая.

1. Случай первый: показатель степени n - нечетное число.

В этом случае выражение /1/ преобразуется по известным формулам следующим образом:

А n + В n = С n /2/

Полагаем, что A и B – целые положительные числа.

Числа А , В и С должны быть взаимно простыми числами.

Из уравнения /2/ следует, что при заданных значениях чисел A и B множитель ( A + B ) n , С.

Допустим, что число С - целое положительное число. С учетом принятых условий и основной теоремы арифметики должновыполняться условие:

С n = A n + B n =(A+B) n ∙ D n , / 3/

гдемножитель D n D

Из уравнения /3/ следует:

Из уравнения /3/ также следует, что число [C n = A n + B n ] при условии, что число С ( A + B ) n . Однако известно, что:

A n + B n < ( A + B ) n /5/

Следовательно:

- дробное число, меньшее единицы. /6/

Дробное число.

n

При нечетных показателях степени n >2 число:

< 1- дробное число, не являющееся рациональной дробью.

Из анализа уравнения /2/ следует, что при нечетном показателе степени n число:

С n = А n + В n = (A+B)

состоит из двух определенных алгебраических множителей, при этом при любом значении показателя степени n неизменным остаетсяалгебраический множитель ( A + B ).

Таким образом, великая теорема Ферма не имеет решения в целых положительных числах при нечетном показателе степени n >2.

2. Случай второй: показатель степени n - четное число.

Суть великой теоремы Ферма не изменится, если уравнение /1/ перепишем следующим образом:

A n = C n - B n /7/

В этом случае уравнение /7/ преобразуется следующим образом:

A n = C n - B n = ( С +B)∙(C n-1 + C n-2 · B+ C n-3 ∙ B 2 +…+ C B n -2 + B n -1 ). /8/

Принимаем, что С и В – целые числа.

Из уравнения /8/ следует, что при заданных значениях чисел B и C множитель (С+ B ) имеет одно и тоже значение при любых значениях показателя степени n , следовательно, он является делителем числа A .

Допустим, что число А – целое число. С учетом принятых условий и основной теоремы арифметики должновыполняться условие:

А n = С n - B n =(С+ B ) n D n , / 9/

гдемножитель D n должен быть целым числом и, следовательно, число D также должно быть целым числом.

Из уравнения /9/ следует:

/10/

Из уравнения /9/ также следует, что число [А n = С n - B n ] при условии, что число А – целое число, должно делиться на число (С+ B ) n . Однако известно, что:

С n - B n < (С+ B ) n /11/

Следовательно:

- дробное число, меньшее единицы. /12/

Дробное число.

Отсюда следует, что при нечетном значении показателя степени n уравнение /1/ великой теоремы Ферма не имеет решения в целых положительных числах.

При четных показателях степени n >2 число:

< 1- дробное число, не являющееся рациональной дробью.


Таким образом, великая теорема Ферма не имеет решения в целых положительных числах и при четном показателе степени n >2.

Из изложенного следует общий вывод: уравнение /1/ великой теоремы Ферма не имеет решения в целых положительных числах А, В и С при условии, что показатель степени n >2.

ДОПОЛНИТЕЛЬНЫЕ ОБОСНОВАНИЯ

В том случае когда показатель степени n четное число, алгебраическое выражение (C n - B n ) раскладывается на алгебраические множители:

C 2 – B 2 = (C-B) ∙ (C+B); /13/

C 4 – B 4 = ( C-B) ∙ (C+B) (C 2 + B 2);/14/

C 6 – B 6 = (C-B) ∙ (C+B) · (C 2 –CB + B 2) ∙ (C 2 +CB+ B 2); /15/

C 8 – B 8 = (C-B) ∙ (C+B) ∙ (C 2 + B 2) ∙ (C 4 + B 4)./16/

Приведем примеры в числах.

ПРИМЕР 1: В=11; С=35.

C 2 B 2 = (2 2 ∙ 3) ∙ (2 · 23) = 2 4 · 3 · 23;

C 4 B 4 = (2 2 ∙ 3) ∙ (2 · 23) · (2 · 673) = 2 4 · 3 · 23 · 673;

C 6 B 6 = (2 2 ∙ 3) ∙ (2 · 23) · (31 2) ·(3 · 577) =2 ∙ 3 ∙ 23 ∙ 31 2 ∙ 577;

C 8 B 8 = (2 2 ∙ 3) ∙ (2 · 23) · (2 · 673) ∙ (2 · 75633) = 2 5 ∙ 3 ∙ 23 ∙673 ∙ 75633.

ПРИМЕР 2: В=16; С=25.

C 2 B 2 = (3 2) ∙ (41) = 3 2 ∙ 41;

C 4 B 4 = (3 2) ∙ (41) · (881) =3 2 ∙ 41 · 881;

C 6 B 6 = (3 2) ∙ (41) ∙ (2 2 ∙ 3) ∙ (13 · 37) · (3 ∙ 7 · 61) = 3 3 · 7 ∙ 13· 37 ∙ 41 ∙ 61;

C 8 B 8 = (3 2) ∙ (41) ∙ (881) ∙ (17 ·26833) = 3 2 ∙ 41 ∙ 881 ∙ 17 ·26833.

Из анализа уравнений /13/, /14/, /15/ и /16/ и соответствующих им числовых примеров следует:

При заданном показателе степени n , если он четное число, число А n = С n - B n раскладывается на вполне определенное количество вполне определенных алгебраических множителей;

При любом показателе степени n , если он четное число, в алгебраическом выражении (C n - B n ) всегда имеются множители ( C - B ) и ( C + B ) ;

Каждому алгебраическому множителю соответствует вполне определенный числовой множитель;

При заданных значениях чисел В и С числовые множители могут быть простыми числами или составными числовыми множителями;

Каждый составной числовой множитель является произведением простых чисел, которые частично или полностью отсутствуют в составе других составных числовых множителей;

Величина простых чисел в составе составных числовых множителей увеличивается с увеличением этих множителей;

В состав наибольшего составного числового множителя, соответствующего наибольшему алгебраическому множителю, входит наибольшее простое число в степени, меньшей показателя степениn (чаще всего в первой степени).

ВЫВОДЫ: дополнительные обоснования подтверждают заключение о том, что великая теорема Ферма не имеет решения в целых положительных числах.

инженер-механик

Вряд ли хоть один год в жизни нашей редакции проходил без того, чтобы она не получала добрый десяток доказательств теоремы Ферма. Теперь, после «победы» над ней, поток поутих, но не иссяк.

Конечно, не для того чтобы его высушить окончательно, публикуем мы эту статью. И не в своё оправдание - что, мол, вот почему мы отмалчивались, сами не доросли ещё до обсуждения столь сложных проблем.

Но если статья действительно покажется сложной, загляните сразу в её конец. Вы должны будете почувствовать, что страсти поутихли временно, наука не окончена, и вскорости новые доказательства новых теорем направятся в редакции.

Кажется, ХХ век прошёл не зря. Сначала люди создали на миг второе Солнце, взорвав водородную бомбу. Потом они прогуливались по Луне и, наконец, доказали пресловутую теорему Ферма. Из этих трёх чудес первые два у всех на слуху, ибо они вызвали огромные социальные последствия. Напротив, третье чудо выглядит очередной учёной игрушкой - в одном ряду с теорией относительности, квантовой механикой и теоремой Гёделя о неполноте арифметики. Впрочем, относительность и кванты привели физиков к водородной бомбе, а изыскания математиков наполнили наш мир компьютерами. Продолжится ли этот ряд чудес в XXI веке? Можно ли проследить связь между очередными учёными игрушками и революциями в нашем быту? Позволяет ли эта связь делать успешные предсказания? Попробуем понять это на примере теоремы Ферма.

Заметим для начала, что она родилась гораздо позже своего естественного срока. Ведь первый частный случай теоремы Ферма - это уравнение Пифагора X 2 + Y 2 = Z 2 , связывающее длины сторон прямоугольного треугольника. Доказав эту формулу двадцать пять веков назад, Пифагор сразу задался вопросом: много ли в природе таких треугольников, у которых оба катета и гипотенуза имеют целую длину? Кажется, египтяне знали лишь один такой треугольник - со сторонами (3, 4, 5) . Но нетрудно найти и другие варианты: например (5, 12, 13) , (7, 24, 25) или (8, 15, 17) . Во всех этих случаях длина гипотенузы имеет вид (А 2 + В 2) , где А и В - взаимно простые числа разной чётности. При этом длины катетов равны (А 2 - В 2) и 2АВ.

Заметив эти соотношения, Пифагор без труда доказал, что любая тройка чисел (X = A 2 - B 2 , Y = 2AB , Z = A 2 + B 2) является решением уравнения X 2 + Y 2 = Z 2 и задаёт прямоугольник со взаимно простыми длинами сторон. Видно также, что число разных троек такого сорта бесконечно. Но все ли решения уравнения Пифагора имеют такой вид? Ни доказать, ни опровергнуть такую гипотезу Пифагор не смог и оставил эту проблему потомкам, не заостряя на ней внимание. Кому охота подчёркивать свои неудачи? Похоже, что после этого проблема целочисленных прямоугольных треугольников лежала в забвении семь столетий - до тех пор, пока в Александрии не появился новый математический гений по имени Диофант.

Мы мало знаем о нём, но ясно: он был совсем не похож на Пифагора. Тот чувствовал себя царём в геометрии и даже за её пределами - будь то в музыке, астрономии или политике. Первая арифметическая связь между длинами сторон благозвучной арфы, первая модель Вселенной из концентрических сфер, несущих планеты и звёзды, с Землёю в центре, наконец, первая республика учёных в италийском городе Кротоне - таковы личные достижения Пифагора. Что мог противопоставить таким успехам Диофант - скромный научный сотрудник великого Музея, давно переставшего быть гордостью городской толпы?

Только одно: лучшее понимание древнего мира чисел, законы которого едва успели ощутить Пифагор, Евклид и Архимед. Заметим, что Диофант ещё не владел позиционной системой записи больших чисел, но он знал, что такое отрицательные числа и, наверное, провёл немало часов, размышляя о том, почему произведение двух отрицательных чисел положительно. Мир целых чисел впервые открылся Диофанту как особая вселенная, отличная от мира звёзд, отрезков или многогранников. Главное занятие учёных в этом мире - решение уравнений, настоящий мастер находит все возможные решения и доказывает, что других решений нет. Так поступил Диофант с квадратным уравнением Пифагора, а потом задумался: имеет ли хоть одно решение сходное кубическое уравнение X 3 + Y 3 = Z 3 ?

Найти такое решение Диофанту не удалось, его попытка доказать, что решений нет, тоже не увенчалась успехом. Поэтому, оформляя итоги своих трудов в книге «Арифметика» (это был первый в мире учебник теории чисел), Диофант подробно разобрал уравнение Пифагора, но ни словом не заикнулся о возможных обобщениях этого уравнения. А мог бы: ведь именно Диофант впервые предложил обозначения для степеней целых чисел! Но увы: понятие «задачник» было чуждо эллинской науке и педагогике, а публиковать перечни нерешённых задач считалось неприличным занятием (только Сократ поступал иначе). Не можешь решить проблему - молчи! Диофант умолк, и это молчание затянулось на четырнадцать веков - вплоть до наступления Нового времени, когда возродился интерес к процессу человеческого мышления.

Кто только и о чём не фантазировал на рубеже XVI - XVII веков! Неутомимый вычислитель Кеплер пытался угадать связь между расстояниями от Солнца до планет. Пифагору это не удалось. Кеплер добился успеха после того, как научился интегрировать многочлены и другие несложные функции. Напротив, фантазёр Декарт не любил длинных расчётов, но именно он первый представил все точки плоскости или пространства, как наборы чисел. Эта дерзкая модель сводит любую геометрическую задачу о фигурах к некой алгебраической задаче об уравнениях - и наоборот. Например, целые решения уравнения Пифагора соответствуют целым точкам на поверхности конуса. Поверхность, соответствующая кубическому уравнению X 3 + Y 3 = Z 3 , выглядит сложнее, её геометрические свойства ничего не подсказали Пьеру Ферма, и тому пришлось прокладывать новые пути сквозь дебри целых чисел.

В 1636 году в руки молодого юриста из Тулузы попала книга Диофанта, только что переведённая на латынь с греческого оригинала, случайно уцелевшего в каком-то византийском архиве и привезённого в Италию кем-то из беглецов-ромеев в пору турецкого разорения. Читая изящное рассуждение об уравнении Пифагора, Ферма задумался: можно ли найти такое его решение, которое состоит из трёх чисел-квадратов? Малых чисел такого сорта нет: это легко проверить перебором. А как насчёт больших решений? Не имея компьютера, Ферма не мог поставить численный эксперимент. Но он заметил, что по каждому «большому» решению уравнения X 4 + Y 4 = Z 4 можно построить меньшее его решение. Значит, сумма четвёртых степеней двух целых чисел никогда не равна той же степени третьего числа! А как насчёт суммы двух кубов?

Вдохновлённый успехом для степени 4, Ферма попытался модифицировать «метод спуска» для степени 3 - и это ему удалось. Оказалось, что невозможно составить два малых куба из тех единичных кубиков, на которые рассыпался большой куб с целой длиной ребра. Торжествующий Ферма сделал краткую запись на полях книги Диофанта и послал в Париж письмо с подробным сообщением о своём открытии. Но ответа он не получил - хотя обычно столичные математики быстро реагировали на очередной успех их одинокого коллеги-соперника в Тулузе. В чём тут дело?

Очень просто: к середине XVII века арифметика вышла из моды. Большие успехи итальянских алгебраистов XVI века (когда были решены уравнения-многочлены степеней 3 и 4) не стали началом общенаучной революции, ибо они не позволили решить новые яркие задачи в сопредельных областях науки. Вот если бы Кеплеру удалось угадать орбиты планет с помощью чистой арифметики… Но увы - для этого потребовался математический анализ. Значит, его и надо развивать - вплоть до полного торжества математических методов в естествознании! Но анализ вырастает из геометрии, арифметика же остаётся полем забав для досужих юристов и прочих любителей вечной науки о числах и фигурах.

Итак, арифметические успехи Ферма оказались несвоевременны и остались неоценёнными. Он не был этим огорчён: для славы математика довольно впервые открывшихся ему фактов дифференциального исчисления, аналитической геометрии и теории вероятностей. Все эти открытия Ферма сразу вошли в золотой фонд новой европейской науки, меж тем как теория чисел отошла на задний план ещё на сто лет - пока её не возродил Эйлер.

Этот «король математиков» XVIII века был чемпионом во всех применениях анализа, но не пренебрегал и арифметикой, поскольку новые методы анализа приводили к неожиданным фактам о числах. Кто бы мог подумать, что бесконечная сумма обратных квадратов (1 + 1/4 + 1/9 + 1/16+…) равна π 2 /6? Кто из эллинов мог предвидеть, что похожие ряды позволят доказать иррациональность числа π?

Такие успехи заставили Эйлера внимательно перечитать сохранившиеся рукописи Ферма (благо, сын великого француза успел их издать). Правда, доказательство «большой теоремы» для степени 3 не сохранилось, но Эйлер легко восстановил его по одному лишь указанию на «метод спуска», и сразу постарался перенести этот метод на следующую простую степень - 5.

Не тут-то было! В рассуждениях Эйлера появились комплексные числа, которые Ферма ухитрился не заметить (таков обычный удел первооткрывателей). Но разложение целых комплексных чисел на множители - дело тонкое. Даже Эйлер не разобрался в нём до конца и отложил «проблему Ферма» в сторону, торопясь завершить свой главный труд - учебник «Основы анализа», который должен был помочь каждому талантливому юноше встать вровень с Лейбницем и Эйлером. Издание учебника завершилось в Петербурге в 1770 году. Но к теореме Ферма Эйлер уже не возвращался, будучи уверен: всё, чего коснулись его руки и разум, не будет забыто новой учёной молодёжью.

Так и вышло: преемником Эйлера в теории чисел стал француз Адриен Лежандр. В конце XVIII века он завершил доказательство теоремы Ферма для степени 5 - и хотя потерпел неудачу для больших простых степеней, но составил очередной учебник теории чисел. Пусть его юные читатели превзойдут автора так же, как читатели «Математических принципов натурфилософии» превзошли великого Ньютона! Лежандр был не чета Ньютону или Эйлеру, но среди его читателей оказались два гения: Карл Гаусс и Эварист Галуа.

Столь высокой кучности гениев способствовала Французская революция, провозгласившая государственный культ Разума. После этого каждый талантливый учёный ощутил себя Колумбом или Александром Македонским, способным открыть или покорить новый мир. Многим это удавалось, оттого в XIX веке научно-технический прогресс сделался главным движителем эволюции человечества, и все разумные правители (начиная с Наполеона) сознавали это.

Гаусс по характеру был близок к Колумбу. Но он (как и Ньютон) не умел пленять воображение правителей или студентов красивыми речами, и потому ограничил свои амбиции сферой научных понятий. Здесь он мог всё, чего хотел. Например, древняя задача о трисекции угла почему-то не решается с помощью циркуля и линейки. С помощью комплексных чисел, изображающих точки плоскости, Гаусс переводит эту задачу на язык алгебры - и получает общую теорию выполнимости тех или иных геометрических построений. Так одновременно появились строгое доказательство невозможности построения циркулем и линейкой правильного 7- или 9-угольника и такой способ построения правильного 17-угольника, о котором не мечтали самые мудрые геометры Эллады.

Конечно, такой успех не даётся даром: приходится изобретать новые понятия, отражающие суть дела. Ньютон ввёл три таких понятия: флюксию (производную), флюенту (интеграл) и степенной ряд. Их хватило для создания математического анализа и первой научной модели физического мира, включающей механику и астрономию. Гаусс тоже ввёл три новых понятия: векторное пространство, поле и кольцо. Из них выросла новая алгебра, подчинившая себе греческую арифметику и созданную Ньютоном теорию числовых функций. Оставалось ещё подчинить алгебре логику, созданную Аристотелем: тогда можно будет с помощью расчётов доказывать выводимость или невыводимость любых научных утверждений из данного набора аксиом! Например, выводится ли теорема Ферма из аксиом арифметики, или постулат Евклида о параллельных прямых - из прочих аксиом планиметрии?

Эту дерзкую мечту Гаусс не успел осуществить - хотя продвинулся он далеко и угадал возможность существования экзотических (некоммутативных) алгебр. Построить первую неевклидову геометрию сумел только дерзкий россиянин Николай Лобачевский, а первую некоммутативную алгебру (Теорию Групп) - француз Эварист Галуа. И лишь много позже смерти Гаусса - в 1872 году - юный немец Феликс Кляйн догадался, что разнообразие возможных геометрий можно привести во взаимно-однозначное соответствие с разнообразием возможных алгебр. Попросту говоря, всякая геометрия определяется своей группой симметрий - тогда как общая алгебра изучает все возможные группы и их свойства.

Но такое понимание геометрии и алгебры пришло гораздо позже, а штурм теоремы Ферма возобновился ещё при жизни Гаусса. Сам он пренебрёг теоремой Ферма из принципа: не царское это дело - решать отдельные задачи, которые не вписываются в яркую научную теорию! Но ученики Гаусса, вооружённые его новой алгеброй и классическим анализом Ньютона и Эйлера, рассуждали иначе. Сначала Петер Дирихле доказал теорему Ферма для степени 7, используя кольцо целых комплексных чисел, порождённых корнями этой степени из единицы. Потом Эрнст Куммер распространил метод Дирихле на ВСЕ простые степени (!) - так ему сгоряча показалось, и он восторжествовал. Но вскоре пришло отрезвление: доказательство проходит безупречно, только если всякий элемент кольца однозначно разлагается на простые множители! Для обычных целых чисел этот факт был известен ещё Евклиду, но только Гаусс дал его строгое доказательство. А как обстоит дело с целыми комплексными числами?

Согласно «принципу наибольшей пакости», там может и ДОЛЖНО встретиться неоднозначное разложение на множители! Как только Куммер научился вычислять степень неоднозначности методами математического анализа, он обнаружил эту пакость в кольце для степени 23. Гаусс не успел узнать о таком варианте экзотической коммутативной алгебры, но ученики Гаусса вырастили на месте очередной пакости новую красивую Теорию Идеалов. Правда, решению проблемы Ферма это не особенно помогло: только стала яснее её природная сложность.

На протяжении XIX века этот древний идол требовал от своих почитателей всё новых жертв в форме новых сложных теорий. Не удивительно, что к началу ХХ века верующие пришли в уныние и взбунтовались, отвергая былой кумир. Слово «ферматист» стало бранным прозвищем среди профессиональных математиков. И хотя за полное доказательство теоремы Ферма была назначена немалая премия, но её соискателями выступали в основном самоуверенные невежды. Сильнейшие математики той поры - Пуанкаре и Гильберт - демонстративно сторонились этой темы.

В 1900 году Гильберт не включил теорему Ферма в перечень двадцати трёх важнейших проблем, стоящих перед математикой ХХ века. Правда, он включил в их ряд общую проблему разрешимости диофантовых уравнений. Намёк был ясен: следуйте примеру Гаусса и Галуа, создавайте общие теории новых математических объектов! Тогда в один прекрасный (но не предсказуемый заранее) день старая заноза выпадет сама собой.

Именно так действовал великий романтик Анри Пуанкаре. Пренебрегая многими «вечными» проблемами, он всю жизнь изучал СИММЕТРИИ тех или иных объектов математики или физики: то функций комплексного переменного, то траекторий движения небесных тел, то алгебраических кривых или гладких многообразий (это многомерные обобщения кривых линий). Мотив его действий был прост: если два разных объекта обладают сходными симметриями - значит, между ними возможно внутреннее родство, которое мы пока не в силах постичь! Например, каждая из двумерных геометрий (Евклида, Лобачевского или Римана) имеет свою группу симметрий, которая действует на плоскости. Но точки плоскости суть комплексные числа: таким путём действие любой геометрической группы переносится в безбрежный мир комплексных функций. Можно и нужно изучать самые симметричные из этих функций: АВТОМОРФНЫЕ (которые подвластны группе Евклида) и МОДУЛЯРНЫЕ (которые подчиняются группе Лобачевского)!

А ещё на плоскости есть эллиптические кривые. Они никак не связаны с эллипсом, но задаются уравнениями вида Y 2 = AX 3 + BX 2 + CX и потому пересекаются с любой прямой в трёх точках. Этот факт позволяет ввести среди точек эллиптической кривой умножение - превратить её в группу. Алгебраическое устройство этой группы отражает геометрические свойства кривой, может быть, она однозначно определена своей группой? Этот вопрос стоит изучить, поскольку для некоторых кривых интересующая нас группа оказывается модулярной, то есть она связана с геометрией Лобачевского…

Так рассуждал Пуанкаре, соблазняя математическую молодёжь Европы, но в начале ХХ века эти соблазны не привели к ярким теоремам или гипотезам. Иначе получилось с призывом Гильберта: изучать общие решения диофантовых уравнений с целыми коэффициентами! В 1922 году молодой американец Льюис Морделл связал множество решений такого уравнения (это - векторное пространство определённой размерности) с геометрическим родом той комплексной кривой, которая задаётся этим уравнением. Морделл пришёл к выводу, что если степень уравнения достаточно велика (больше двух), то размерность пространства решений выражается через род кривой, и потому эта размерность КОНЕЧНА. Напротив - в степени 2 уравнение Пифагора имеет БЕСКОНЕЧНОМЕРНОЕ семейство решений!

Конечно, Морделл видел связь своей гипотезы с теоремой Ферма. Если станет известно, что для каждой степени n > 2 пространство целых решений уравнения Ферма конечномерно, это поможет доказать, что таких решений вовсе нет! Но никаких путей к доказательству своей гипотезы Морделл не видел - и хотя он прожил долгую жизнь, но не дождался превращения этой гипотезы в теорему Фальтингса. Это случилось в 1983 году - в совсем иную эпоху, после великих успехов алгебраической топологии многообразий.

Пуанкаре создал эту науку как бы нечаянно: ему захотелось узнать, какие бывают трёхмерные многообразия. Ведь разобрался же Риман в строении всех замкнутых поверхностей и получил очень простой ответ! Если в трёхмерном или многомерном случае такого ответа нет - нужно придумать систему алгебраических инвариантов многообразия, определяющую его геометрическое строение. Лучше всего, если такие инварианты будут элементами каких-нибудь групп - коммутативных или некоммутативных.

Как ни странно, этот дерзкий план Пуанкаре удался: он был выполнен с 1950 по 1970 год благодаря усилиям очень многих геометров и алгебраистов. До 1950 года шло тихое накопление разных методов классификации многообразий, а после этой даты как будто накопилась критическая масса людей и идей и грянул взрыв, сравнимый с изобретением математического анализа в XVII веке. Но аналитическая революция растянулась на полтора столетия, охватив творческие биографии четырёх поколений математиков - от Ньютона и Лейбница до Фурье и Коши. Напротив, топологическая революция ХХ века уложилась в двадцать лет - благодаря большому числу её участников. При этом сложилось многочисленное поколение самоуверенных молодых математиков, вдруг оставшихся без работы на исторической родине.

В семидесятые годы они устремились в сопредельные области математики и теоретической физики. Многие создали свои научные школы в десятках университетов Европы и Америки. Между этими центрами поныне циркулирует множество учеников разного возраста и национальности, с разными способностями и склонностями, и каждый хочет прославиться каким-нибудь открытием. Именно в этом столпотворении были, наконец, доказаны гипотеза Морделла и теорема Ферма.

Однако первая ласточка, не ведая о своей судьбе, выросла в Японии в голодные и безработные послевоенные годы. Звали ласточку Ютака Танияма. В 1955 году этому герою исполнилось 28 лет, и он решил (вместе с друзьями Горо Шимура и Такаудзи Тамагава) возродить в Японии математические исследования. С чего начать? Конечно, с преодоления изоляции от зарубежных коллег! Так в 1955 году три молодых японца устроили в Токио первую международную конференцию по алгебре и теории чисел. Сделать это в перевоспитанной американцами Японии было, видимо, легче, чем в замороженной Сталиным России…

Среди почётных гостей были два богатыря из Франции: Андре Вейль и Жан-Пьер Серр. Тут японцам крупно повезло: Вейль был признанным главой французских алгебраистов и членом группы Бурбаки, а молодой Серр играл сходную роль среди топологов. В жарких дискуссиях с ними головы японской молодёжи трещали, мозги плавились, но в итоге кристаллизовались такие идеи и планы, которые вряд ли могли родиться в иной обстановке.

Однажды Танияма пристал к Вейлю с неким вопросом насчёт эллиптических кривых и модулярных функций. Сначала француз ничего не понял: Танияма был не мастер изъясняться по-английски. Потом суть дела прояснилась, но придать своим надеждам точную формулировку Танияма так и не сумел. Всё, что Вейль мог ответить молодому японцу, - это что если ему очень повезёт по части вдохновения, то из его невнятных гипотез вырастет что-то дельное. Но пока надежда на это слаба!

Очевидно, Вейль не заметил небесного огня во взоре Танияма. А огонь-то был: похоже, что на миг в японца вселилась неукротимая мысль покойного Пуанкаре! Танияма пришёл к убеждению, что каждая эллиптическая кривая порождается модулярными функциями - точнее, она «униформизуется модулярной формой». Увы, эта точная формулировка родилась много позже - в разговорах Танияма с его другом Шимура. А потом Танияма покончил с собой в приступе депрессии… Его гипотеза осталась без хозяина: непонятно было, как её доказать или где её проверить, и оттого её долгое время никто не принимал всерьёз. Первый отклик пришёл лишь через тридцать лет - почти как в эпоху Ферма!

Лёд тронулся в 1983 году, когда двадцатисемилетний немец Герд Фальтингс объявил всему миру: гипотеза Морделла доказана! Математики насторожились, но Фальтингс был истинный немец: в его длинном и сложном доказательстве не нашлось пробелов. Просто пришло время, накопились факты и понятия - и вот один талантливый алгебраист, опираясь на результаты десяти других алгебраистов, сумел решить проблему, которая шестьдесят лет простояла в ожидании хозяина. В математике ХХ века это не редкость. Стоит вспомнить вековую континуум-проблему в теории множеств, две гипотезы Бернсайда в теории групп или гипотезу Пуанкаре в топологии. Наконец и в теории чисел пришла пора собирать урожай давних посевов… Какая вершина станет следующей в ряду покорённых математиками? Неужели рухнут проблема Эйлера, гипотеза Римана или теорема Ферма? Хорошо бы!

И вот через два года после откровения Фальтингса в Германии объявился ещё один вдохновенный математик. Звали его Герхард Фрей, и утверждал он нечто странное: будто теорема Ферма ВЫВОДИТСЯ из гипотезы Танияма! К сожалению, стилем изложения своих мыслей Фрей больше напоминал невезучего Танияма, чем своего чёткого соотечественника Фальтингса. В Германии Фрея никто не понял, и он поехал за океан - в славный городок Принстон, где после Эйнштейна привыкли и не к таким визитёрам. Недаром там свил своё гнездо Барри Мазур - разносторонний тополог, один из героев недавнего штурма гладких многообразий. И вырос рядом с Мазуром ученик - Кен Рибет, равно искушённый в тонкостях топологии и алгебры, но ещё ничем себя не прославивший.

Впервые услыхав речи Фрея, Рибет решил, что это чушь и околонаучная фантастика (вероятно, так же реагировал Вейль на откровения Танияма). Но забыть эту «фантастику» Рибет не смог и временами возвращался к ней мысленно. Через полгода Рибет поверил, что в фантазиях Фрея есть нечто дельное, а через год он решил, что сам почти умеет доказать странную гипотезу Фрея. Но оставались некоторые «дырки», и Рибет решил исповедаться своему шефу Мазуру. Тот внимательно выслушал ученика и спокойно ответил: «Да у тебя же всё сделано! Вот здесь нужно применить преобразование Ф, тут - воспользоваться леммами В и К, и всё примет безупречный вид!» Так Рибет совершил прыжок из безвестности в бессмертие, использовав катапульту в лице Фрея и Мазура. По справедливости, всем им - вместе с покойным Танияма - следовало бы считаться доказателями великой теоремы Ферма.

Да вот беда: они выводили своё утверждение из гипотезы Танияма, которая сама не доказана! А вдруг она неверна? Математики давно знают, что «из лжи следует всё, что угодно», если догадка Танияма ошибочна, то грош цена безупречным рассуждениям Рибета! Нужно срочно доказывать (или опровергать) гипотезу Танияма - иначе кто-нибудь вроде Фальтингса докажет теорему Ферма иным путём. Он и выйдет в герои!

Вряд ли мы когда-нибудь узнаем, сколько юных или матёрых алгебраистов накинулось на теорему Ферма после успеха Фальтингса или после победы Рибета в 1986 году. Все они старались работать в тайне, чтобы в случае неудачи не быть причисленными к сообществу «чайников»-ферматистов. Известно, что самый удачливый из всех - Эндрю Уайлз из Кембриджа - ощутил вкус победы только в начале 1993 года. Это не столько обрадовало, сколько напугало Уайлза: что если в его доказательстве гипотезы Танияма обнаружится ошибка или пробел? Тогда погибла его научная репутация! Надо же аккуратно записать доказательство (но это будут многие десятки страниц!) и отложить его на полгода-год, чтобы потом перечитать хладнокровно и придирчиво… Но если за это время кто-нибудь опубликует своё доказательство? Ох, беда…

Всё же Уайлз придумал двойной способ быстрой проверки своего доказательства. Во-первых, нужно довериться одному из надёжных друзей-коллег и рассказать ему весь ход рассуждений. Со стороны все ошибки видней! Во-вторых, надо прочитать спецкурс на эту тему смышлёным студентам и аспирантам: уж эти умники не пропустят ни одной ошибки лектора! Только надо не сообщать им конечную цель курса до последнего момента - иначе об этом узнает весь мир! И конечно, искать такую аудиторию надо подальше от Кембриджа - лучше даже не в Англии, а в Америке… Что может быть лучше далёкого Принстона?

Туда и направился Уайлз весной 1993 года. Его терпеливый друг Никлас Кац, выслушав долгий доклад Уайлза, обнаружил в нём ряд пробелов, но все они оказались легко исправимы. Зато принстонские аспиранты вскоре разбежались со спецкурса Уайлза, не желая следовать за прихотливой мыслью лектора, который ведёт их неведомо куда. После такой (не особенно глубокой) проверки своей работы Уайлз решил, что пора явить великое чудо свету.

В июне 1993 года в Кембридже проходила очередная конференция, посвящённая «теории Ивасава» - популярному разделу теории чисел. Уайлз решил рассказать на ней своё доказательство гипотезы Танияма, не объявляя главный результат до самого конца. Доклад шёл долго, но успешно, постепенно начали стекаться журналисты, которые что-то почуяли. Наконец, грянул гром: теорема Ферма доказана! Общее ликование не было омрачено какими-либо сомнениями: кажется, всё чисто… Но через два месяца Кац, прочтя окончательный текст Уайлза, заметил в нём ещё одну брешь. Некий переход в рассуждениях опирался на «систему Эйлера» - но то, что построил Уайлз, такой системой не являлось!

Уайлз проверил узкое место и понял, что тут он ошибся. Хуже того: непонятно, чем заменить ошибочное рассуждение! После этого в жизни Уайлза наступили самые мрачные месяцы. Прежде он вольно синтезировал небывалое доказательство из подручного материала. Теперь он привязан к узкой и чёткой задаче - без уверенности, что она имеет решение и что он сумеет его найти в обозримый срок. Недавно Фрей не устоял в такой же борьбе - и вот его имя заслонилось именем удачливого Рибета, хотя догадка Фрея оказалась верна. А что будет с МОЕЙ догадкой и с МОИМ именем?

Эта каторжная работа тянулась ровно год. В сентябре 1994 года Уайлз был готов признать своё поражение и оставить гипотезу Танияма более удачливым преемникам. Приняв такое решение, он начал медленно перечитывать своё доказательство - с начала до конца, вслушиваясь в ритм рассуждений, вновь переживая удовольствие от удачных находок. Дойдя до «проклятого» места, Уайлз, однако, не услышал мысленно фальшивой ноты. Неужели ход его рассуждений был всё-таки безупречен, а ошибка возникла лишь при СЛОВЕСНОМ описании мысленного образа? Если тут нет «системы Эйлера», то что тут скрыто?

Неожиданно пришла простая мысль: «система Эйлера» не работает там, где применима теория Ивасава. Почему бы не применить эту теорию напрямую - благо, самому Уайлзу она близка и привычна? И почему он не испробовал этот подход с самого начала, а увлёкся чужим видением проблемы? Вспомнить эти детали Уайлз уже не мог - да и ни к чему это стало. Он провёл необходимое рассуждение в рамках теории Ивасава, и всё получилось за полчаса! Так - с опозданием в один год - была закрыта последняя брешь в доказательстве гипотезы Танияма. Итоговый текст был отдан на растерзание группе рецензентов известнейшего математического журнала, годом позже они заявили, что теперь ошибок нет. Таким образом, в 1995 году последняя гипотеза Ферма скончалась на трёхсотшестидесятом году своей жизни, превратившись в доказанную теорему, которая неизбежно войдёт в учебники теории чисел.

Подводя итог трёхвековой возне вокруг теоремы Ферма, приходится сделать странный вывод: этой геройской эпопеи могло и не быть! Действительно, теорема Пифагора выражает простую и важную связь между наглядными природным объектами - длинами отрезков. Но нельзя сказать то же самое о теореме Ферма. Она выглядит скорее как культурная надстройка на научном субстрате - вроде достижения Северного полюса Земли или полёта на Луну. Вспомним, что оба эти подвига были воспеты литераторами задолго до их свершения - ещё в античную эпоху, после появления «Начал» Евклида, но до появления «Арифметики» Диофанта. Значит, тогда возникла общественная потребность в интеллектуальных подвигах этого сорта - хотя бы воображаемых! Прежде эллинам хватало поэм Гомера, как за сто лет до Ферма французам хватало религиозных увлечений. Но вот религиозные страсти схлынули - и рядом с ними встала наука.

В России такие процессы начались полтораста лет назад, когда Тургенев поставил Евгения Базарова в один ряд с Евгением Онегиным. Правда, литератор Тургенев плохо понимал мотивы действий учёного Базарова и не решился их воспеть, но это вскоре сделали учёный Иван Сеченов и просвещённый журналист Жюль Верн. Стихийная научно-техническая революция нуждается в культурной оболочке, чтобы проникнуть в умы большинства людей, и вот появляется сперва научная фантастика, а за нею научно-популярная литература (включая журнал «Знание - сила»).

При этом конкретная научная тема совсем не важна для широкой публики и не очень важна даже для героев-исполнителей. Так, услыхав о достижении Северного полюса Пири и Куком, Амундсен мгновенно изменил цель своей уже подготовленной экспедиции - и вскоре достиг Южного полюса, опередив Скотта на один месяц. Позднее успешный полёт Юрия Гагарина вокруг Земли вынудил президента Кеннеди сменить прежнюю цель американской космической программы на более дорогую, но гораздо более впечатляющую: высадку людей на Луне.

Ещё раньше проницательный Гильберт на наивный вопрос студентов: «Решение какой научной задачи было бы сейчас наиболее полезно»? - ответил шуткой: «Поймать муху на обратной стороне Луны!» На недоумённый вопрос: «А зачем это нужно?» - последовал чёткий ответ: «ЭТО никому не нужно! Но подумайте о тех научных методах и технических средствах, которые нам придётся развить для решения такой проблемы - и какое множество иных красивых задач мы решим попутно!»

Именно так получилось с теоремой Ферма. Эйлер вполне мог её не заметить.

В таком случае кумиром математиков стала бы какая-нибудь другая задача - возможно, также из теории чисел. Например, проблема Эратосфена: конечно или бесконечно множество простых чисел-близнецов (таких, как 11 и 13, 17 и 19 и так далее)? Или проблема Эйлера: всякое ли чётное число является суммой двух простых чисел? Или: есть ли алгебраическое соотношение между числами π и e? Эти три проблемы до сих пор не решены, хотя в ХХ веке математики заметно приблизились к пониманию их сути. Но этот век породил и много новых, не менее интересных задач, особенно на стыках математики с физикой и другими ветвями естествознания.

Ещё в 1900 году Гильберт выделил одну из них: создать полную систему аксиом математической физики! Сто лет спустя эта проблема далека от решения - хотя бы потому, что арсенал математических средств физики неуклонно растёт, и не все они имеют строгое обоснование. Но после 1970 года теоретическая физика разделилась на две ветви. Одна (классическая) со времён Ньютона занимается моделированием и прогнозированием УСТОЙЧИВЫХ процессов, другая (новорождённая) пытается формализовать взаимодействие НЕУСТОЙЧИВЫХ процессов и пути управления ими. Ясно, что эти две ветви физики надо аксиоматизировать порознь.

С первой из них, вероятно, удастся справиться лет за двадцать или пятьдесят…

А чего не хватает второй ветви физики - той, которая ведает всяческой эволюцией (включая диковинные фракталы и странные аттракторы, экологию биоценозов и теорию пассионарности Гумилёва)? Это мы вряд ли скоро поймём. Но поклонение учёных новому кумиру уже стало массовым явлением. Вероятно, здесь развернётся эпопея, сравнимая с трёхвековой биографией теоремы Ферма. Так на стыках разных наук рождаются всё новые кумиры - подобные религиозным, но более сложные и динамичные…

Видимо, не может человек оставаться человеком, не свергая время от времени прежних кумиров и не сотворяя новых - в муках и с радостью! Пьеру Ферма повезло оказаться в роковой момент вблизи от горячей точки рождения нового кумира - и он сумел оставить на новорождённом отпечаток своей личности. Можно позавидовать такой судьбе, и не грех ей подражать.

Сергей Смирнов
«Знание-сила»

Судя по популярности запроса "теорема Ферма - краткое доказательство", эта математическая проблема действительно многих интересует. Эта теорема была впервые высказана Пьером де Ферма в 1637 году на краю копии "Арифметики", где он утверждал, что у него было ее решение, оно было слишком велико для того, чтобы поместиться на краю.

Первое успешное доказательство было опубликовано в 1995 году - это было полное доказательство теоремы Ферма, осуществленное Эндрю Уайлсом. Оно было описано как «ошеломляющий прогресс», и привело Уайлса к получению премии Абеля в 2016 году. Будучи описанным относительно кратко, доказательство теоремы Ферма также доказало большую часть теоремы модульности и открыло новые подходы к многочисленным другим проблемам и эффективным методам подъема модульности. Эти свершения продвинули математику на 100 лет вперед. Доказательство малой теоремы Ферма сегодня не является чем-то из ряда вон выходящим.

Неразрешенная проблема стимулировала развитие алгебраической теории чисел в XIX веке и поиск доказательства теоремы модульности в XX веке. Это одна из самых заметных теорем в истории математики и до полного доказательства великой теоремы Ферма методом деления она была в Книге рекордов Гиннеса как «самая сложная математическая проблема», одной из особенностей которой является то, что она имеет наибольшее количество неудачных доказательств.

Историческая справка

Пифагорейское уравнение x 2 + y 2 = z 2 имеет бесконечное число положительных целочисленных решений для x, y и z. Эти решения известны как троицы Пифагора. Примерно в 1637 году Ферма написал на краю книги, что более общее уравнение a n + b n = c n не имеет решений в натуральных числах, если n является целым числом, большим чем 2. Хотя сам Ферма утверждал, что имеет решение своей задачи, он не оставил никаких подробностей о ее доказательстве. Элементарное доказательство теоремы Ферма, заявленное ее создателем, скорее было его хвастливой выдумкой. Книга великого французского математика была обнаружена спустя 30 лет после его смерти. Это уравнение, получившее название «Последняя теорема Ферма», в течение трех с половиной столетий оставалось нерешенным в математике.

Теорема в конечном итоге стала одной из самых заметных нерешенных проблем математики. Попытки доказать это вызвали существенное развитие теории чисел, и с течением времени последняя теорема Ферма получила известность как нерешенная проблема математики.

Краткая история доказательств

Если n = 4, что доказано самим Ферма, достаточно доказать теорему для индексов n, которые являются простыми числами. В течение следующих двух столетий (1637-1839) гипотеза была доказана только для простых чисел 3, 5 и 7, хотя Софи Жермен обновляла и доказывала подход, который имел отношение ко всему классу простых чисел. В середине 19 века Эрнст Куммер расширил это и доказал теорему для всех правильных простых чисел, в результате чего нерегулярные простые числа анализировались индивидуально. Основываясь на работе Куммера и, используя сложные компьютерные исследования, другие математики смогли расширить решение теоремы, имея цель охватить все основные показатели до четырех миллионов, но док-во для всех экспонентов по-прежнему было недоступным (это означает, что математики обычно считали решение теоремы невозможным, чрезвычайно сложным, или недостижимым с современными знаниями).

Работа Шимуры и Таниямы

В 1955 году японские математики Горо Шимура и Ютака Танияма подозревали, что существует связь между эллиптическими кривыми и модульными формами, двумя совершенно разными областями математики. Известная в то время, как гипотеза Танияма-Шимура-Вейля и (в конечном счете) как теорема модульности, она существовала сама по себе, без видимой связи с последней теоремой Ферма. Она сама по себе широко рассматривалась как важная математическая теорема, но при этом считалась (как и теорема Ферма) невозможной для доказательства. В то же время доказательство великой теоремы Ферма (методом деления и применения сложных математических формул) было осуществлено лишь полвека спустя.

В 1984 году Герхард Фрей заметил очевидную связь между этими двумя ранее не связанными и нерешенными проблемами. Полное подтверждение того, что две теоремы были тесно связаны, было опубликовано в 1986 году Кеном Рибетом, который основывался на частичном доказательстве Жана-Пьера Серра, который доказал все, кроме одной части, известной как «гипотеза эпсилона». Проще говоря, эти работы Фрея, Серра и Рибе показали, что если бы теорема о модульности могла быть доказана, по крайней мере, для полустабильного класса эллиптических кривых, то и доказательство последней теоремы Ферма также рано или поздно будет открыто. Любое решение, которое может противоречить последней теореме Ферма, может также использоваться, чтобы противоречить теореме модульности. Поэтому, если теорема о модульности оказалась истинной, то по определению не может существовать решение, противоречащее последней теореме Ферма, а значит она вскоре должна была быть доказана.

Хотя обе теоремы были сложными проблемами для математики, считающимися нерешаемыми, работа двух японцев стала первым предположением о том, как последняя теорема Ферма могла бы быть продолжена и доказана для всех чисел, а не только для некоторых. Важным для исследователей, выбравших тему исследования, был тот факт, что в отличие от последней теоремы Ферма, теорема модульности была основной активной областью исследований, для которой было разработано доказательство, а не только исторической странностью, поэтому время, затраченное на ее работу, могло быть оправдано с профессиональной точки зрения. Однако общее мнение заключалось в том, что решение гипотезы Таниямы-Шимуры оказалось нецелесообразным.

Великая теорема Ферма: доказательство Уайлса

Узнав, что Рибет доказал правильность теории Фрея, английский математик Эндрю Уайлс, с детства интересующийся последней теоремой Ферма и имеющий опыт работы с эллиптическими кривыми и смежными областями, решил попытаться доказать гипотезу Таниямы-Шимуры, как способ доказать последнюю теорему Ферма. В 1993 году, спустя шесть лет после объявления о своей цели, тайно работая над проблемой решения теоремы, Уайльсу удалось доказать смежную гипотезу, что, в свою очередь, помогло бы ему доказать последнюю теорему Ферма. Документ Уайлса был огромным по размеру и масштабу.

Недостаток был обнаружен в одной части его оригинальной статьи во время рецензирования и потребовал еще один год сотрудничества с Ричардом Тейлором, чтобы совместно решить теорему. В результате окончательное доказательство Уайлсом великой теоремы Ферма не заставило долго себя ждать. В 1995 году оно было опубликовано в куда меньшем масштабе, чем предыдущая математическая работа Уайлса, наглядно показывая, он не ошибся в своих предыдущих выводах о возможности доказательства теоремы. Достижение Уайлса было широко растиражировано в популярной прессе и популяризировано в книгах и телевизионных программах. Остальные части гипотезы Танияма-Шимура-Вейля, которые теперь были доказаны и известны как теорема о модульности, впоследствии были доказаны другими математиками, которые основывались на работе Уайлса в период между 1996 и 2001 годами. За свое достижение Уайлс был удостоен чести и получил многочисленные награды, в том числе, премию Абеля 2016 года.

Доказательство Уайлсом последней теоремы Ферма является частным случаем решения теоремы модульности для эллиптических кривых. Тем не менее, это самый известный случай столь масштабной математической операции. Вместе с решением теоремы Рибе, британский математик также получил доказательство последней теоремы Ферма. Последняя теорема Ферма и теорема о модульности почти повсеместно считались недоказуемыми современными математиками, но Эндрю Уайлс смог доказать всему научному миру, что даже ученые мужи способны заблуждаться.

Уайлс впервые объявил о своем открытии в среду 23 июня 1993 года на лекции в Кембридже под названием «Модульные формы, эллиптические кривые и представления Галуа». Однако в сентябре 1993 года было установлено, что его расчеты содержат ошибку. Год спустя, 19 сентября 1994 года, в том, что он назвал бы «самым важным моментом его трудовой жизни», Уайлс наткнулся на откровение, которое позволило ему исправить решение задачи до того уровня, когда оно сможет удовлетворить математическое сообщество.

Характеристика работы

Доказательство теоремы Ферма Эндрю Уайлсом использует многие методы из алгебраической геометрии и теории чисел и имеет много разветвлений в этих областях математики. Он также использует стандартные конструкции современной алгебраической геометрии, такие как категория схем и теория Ивасавы, а также другие методы XX века, которые не были доступны Пьеру Ферма.

Две статьи, содержащие доказательства, составляют 129 страниц, которые писались в течение семи лет. Джон Коутс описал это открытие как одно из величайших достижений теории чисел, а Джон Конвей назвал его главным математическим свершением 20 века. Уайлс, чтобы доказать последнюю теорему Ферма путем доказательства теоремы модульности для частного случая полустабильных эллиптических кривых, разработал действенные методы подъема модульности и открыл новые подходы к многочисленным другим проблемам. За решение последней теоремы Ферма он был посвящен в рыцари и получил другие награды. Когда стало известно, что Уайлс выиграл премию Абеля, Норвежская академия наук описала его достижение как «восхитительное и элементарное доказательство последней теоремы Ферма».

Как это было

Одним из людей, анализировавших первоначальную рукопись Уайлса с решением теоремы, был Ник Кац. В ходе своего обзора он задал британцу ряд уточняющих вопросов, которые заставили Уайлса признать, что его работа явно содержит пробел. В одной критической части доказательства была допущена ошибка, которая давала оценку для порядка конкретной группы: система Эйлера, используемая для расширения метода Колывагина и Флача, была неполной. Ошибка, однако, не сделала его работу бесполезной - каждая часть работы Уайлса была очень значительной и новаторской сама по себе, как и многие разработки и методы, которые он создал в ходе своей работы и которые затрагивали лишь одну часть рукописи. Тем не менее в этой первоначальной работе, опубликованной в 1993 году, действительно не было доказательства великой теоремы Ферма.

Уайлс провел почти год, пытаясь заново найти решение теоремы - сперва в одиночку, а затем в сотрудничестве со своим бывшим учеником Ричардом Тейлором, но все, казалось, было тщетным. К концу 1993 года распространились слухи, что при проверке доказательство Уайльса потерпело неудачу, но насколько серьезной была эта неудача, известно не было. Математики начали оказывать давление на Уайлса, чтобы он раскрыл детали своей работы, независимо от того, была она выполнена или нет, чтобы более широкое сообщество математиков могло исследовать и использовать все, чего ему удалось добиться. Вместо того, чтобы быстро исправить свою ошибку, Уайлс лишь обнаружил дополнительные сложные аспекты в доказательстве великой теоремы Ферма, и наконец-то осознал, насколько сложной она является.

Уайлс заявляет, что утром 19 сентября 1994 года он был на грани того, чтобы бросить все и сдаться, и почти смирился с тем, что потерпел неудачу. Он готов был опубликовать свою неоконченную работу, чтобы другие могли на ней основываться и найти, в чем он ошибся. Английский математик решил дать себе последний шанс и в последний раз проанализировал теорему, чтобы попытаться понять основные причины, по которым его подход не работал, как вдруг внезапно осознал, что подход Колывагина-Флака не будет работать, пока он не подключит к процессу доказательства еще и теорию Ивасавы, заставив ее работать.

6 октября Уайлс попросил трех коллег (включая Фалтинса) рассмотреть его новую работу, а 24 октября 1994 г. он представил две рукописи - «Модульные эллиптические кривые и последняя теорема Ферма» и «Теоретические свойства кольца некоторых Гекке-алгебр», вторую из которых Уайлс написал совместно с Тейлором и доказал, что были выполнены определенные условия, необходимые для оправдания исправленного шага в основной статье.

Эти две статьи были проверены и, наконец, опубликованы в качестве полнотекстового издания в журнале «Анналы математики» за май 1995 года. Новые расчеты Эндрю были широко проанализированы и научное сообщество в конце концов их признало. В этих работах была установлена теорема модульности для полустабильных эллиптических кривых - последний шаг к доказательству великой теоремы Ферма, спустя 358 лет после того, как она была создана.

История великой проблемы

Решение этой теоремы считалось самой большой проблемой в математике на протяжении многих столетий. В 1816 и в 1850 годах Французская академия наук предложила приз за общее доказательство великой теоремы Ферма. В 1857 году Академия присудила 3000 франков и золотую медаль Куммеру за исследования идеальных чисел, хотя он и не подавал заявку на приз. Еще одна премия была предложена ему в 1883 году Брюссельской академией.

Премия Вольфскеля

В 1908 году немецкий промышленник и математик-любитель Пауль Вольфскель завещал 100 000 золотых марок (большую сумму для того времени) Академии наук Геттингена, чтобы эти деньги стали призом за полное доказательство великой теоремы Ферма. 27 июня 1908 года Академия опубликовала девять правил награждения. Среди прочего, эти правила требовали опубликования доказательства в рецензируемом журнале. Приз должен был присуждаться лишь через два года после публикации. Срок конкурса должен был истечь 13 сентября 2007 - примерно через столетие после своего начала. 27 июня 1997 года Уайлс получил призовые деньги Вольфсхеля, а затем еще 50 000 долларов. В марте 2016 года он получил 600 000 евро от правительства Норвегии в рамках премии Абеля за «потрясающее доказательство последней теоремы Ферма с помощью гипотезы модульности для полустабильных эллиптических кривых, открывающей новую эру в теории чисел». Это был мировой триумф скромного англичанина.

До доказательства Уайлса теорема Ферма, как уже говорилось ранее, считалась абсолютно нерешаемой на протяжении целых столетий. Тысячи неверных доказательств в разное время были представлены комитету Вольфскеля, составив примерно 10 футов (3 метра) корреспонденции. Только в первый год существования премии (1907-1908) было подано 621 заявок с претензией на решение теоремы, хотя к 1970-м годам их количество уменьшилось примерно до 3-4 заявок в месяц. По мнению Ф. Шлихтинга, рецензента Вольфсхеля, большинство доказательств были основаны на элементарных методах, преподаваемых в школах, и часто представлялись «людьми с техническим образованием, но неудачной карьерой». По словам историка математики Говарда Эйвса, последняя теорема Ферма установила своеобразный рекорд - это теорема, набравшая наибольшее количество неверных доказательств.

Лавры Ферма достались японцам

Как уже говорилось ранее, примерно в 1955 году японские математики Горо Шимура и Ютака Танияма открыли возможную связь между двумя, по-видимому, совершенно разными отраслями математики - эллиптическими кривыми и модульными формами. Полученная в результате их исследований теорема модульности (в то время известная как гипотеза Таниямы-Шимуры) гласит, что каждая эллиптическая кривая является модулярной, что означает, что она может быть связана с уникальной модулярной формой.

Теория первоначально была отклонена как маловероятная или весьма спекулятивная, но была воспринята более серьезно, когда теоретик чисел Андре Вейль нашел доказательства, подтверждающие выводы японцев. В результате гипотеза часто называлась гипотезой Таниямы-Шимуры-Вейля. Она стала частью программы Langlands, представляющей собой список важных гипотез, требующих доказательства в будущем.

Даже после серьезного внимания, гипотеза была признана современными математиками как чрезвычайно трудная или, возможно, недоступная для доказательства. Теперь именно эта теорема ждет своего Эндрю Уайлса, который смог бы удивить весь мир ее решением.

Теорема Ферма: доказательство Перельмана

Не смотря на расхожий миф, российский математик Григорий Перельман, при всей своей гениальности, не имеет никакого отношения к теореме Ферма. Что, впрочем, никак не умаляет его многочисленных заслуг перед научным сообществом.

Итак, Великая теорема Ферма (нередко называемая послед­ней теоремой Ферма), сформулированная в 1637 году блестя­щим французским математиком Пьером Ферма, очень проста по своей сути и понятна любому человеку со средним образова­нием. Она гласит, что формула а в степени n + b в степени n = c в степени n не имеет натуральных (то есть не дробных) решений для n > 2. Вроде все просто и понятно, но лучшие ученые-математики и простые любители бились над поиском решения более трех с половиной веков.


Почему она так знаменита? Сейчас узнаем...



Мало ли доказанных, недоказанных и пока не доказанных теорем? Тут все дело в том, что Великая теорема Ферма являет собой самый большой контраст между простотой формулировки и сложностью доказательства. Великая теорема Ферма – задача невероятно трудная, и тем не менее ее формулировку может понять каждый с 5-ю классами средней школы, а вот доказательство – даже далеко не всякий математик-профессионал. Ни в физике, ни в химии, ни в биологии, ни в той же математике нет ни одной проблемы, которая формулировалась бы так просто, но оставалась нерешенной так долго. 2. В чем же она состоит?

Начнем с пифагоровых штанов Формулировка действительно проста – на первый взгляд. Как известно нам с детства, «пифагоровы штаны на все стороны равны». Проблема выглядит столь простой потому, что в основе ее лежало математическое утверждение, которое всем известно, – теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах.

В V веке до н.э. Пифагор основал пифагорейское братство. Пифагорейцы, помимо прочего, изучали целочисленные тройки, удовлетворяющие равенству x²+y²=z². Они доказали, что пифагоровых троек бесконечно много, и получили общие формулы для их нахождения. Наверное, они пробовали искать тройки и более высоких степеней. Убедившись, что это не получается, пифагорейцы оставили бесполезные попытки. Члены братства были больше философами и эстетами, чем математиками.


То есть легко подобрать множество чисел, которые прекрасно удовлетворяют равенству x²+y²=z²

Начиная с 3, 4, 5 – действительно, младшекласснику понятно, что 9+16=25.

Или 5, 12, 13: 25 + 144 = 169. Замечательно.

Ну и так далее. А если взять похожее уравнение x³+y³=z³ ? Может, тоже есть такие числа?




И так далее (рис.1).

Так вот, оказывается, что их НЕТ. Вот тут начинается подвох. Простота – кажущаяся, потому что трудно доказать не наличие чего-то, а наоборот, отсутствие. Когда надо доказать, что решение есть, можно и нужно просто привести это решение.

Доказать отсутствие сложнее: например, некто говорит: такое-то уравнение не имеет решений. Посадить его в лужу? легко: бац – а вот оно, решение! (приведите решение). И все, оппонент сражен. А как доказать отсутствие?

Сказать: «Я не нашел таких решений»? А может, ты плохо искал? А вдруг они есть, только очень большие, ну очень, такие, что даже у сверхмощного компьютера пока не хватает силенок? Вот это-то и сложно.

В наглядном виде это можно показать так: если взять два квадратика подходящих размеров и разобрать на единичные квадратики, то из этой кучки единичных квадратиков получается третий квадратик (рис. 2):


А проделаем то же с третьим измерением (рис. 3) – не получается. Не хватает кубиков, или остаются лишние:





А вот математик XVII века француз Пьер де Ферма с увлечением исследовал общее уравнение x n +y n =z n . И, наконец, сделал вывод: при n>2 целочисленных решений не существует. Доказательство Ферма безвозвратно утеряно. Рукописи горят! Осталось лишь его замечание в «Арифметике» Диофанта: «Я нашел поистине удивительное доказательство этого предложения, но поля здесь слишком узки для того, чтобы вместить его».

Вообще-то, теорема без доказательства называется гипотезой. Но за Ферма закрепилась слава, что он никогда не ошибается. Даже если он не оставлял доказательства какого-нибудь утверждения, впоследствии оно подтверждалось. К тому же, Ферма доказал свой тезис для n=4. Так гипотеза французского математика вошла в историю как Великая теорема Ферма.

После Ферма над поиском доказательства работали такие ве­ликие умы, как Леонард Эйлер (в 1770 году им было предложено решение для n = 3),

Адриен Лежандр и Иоганн Дирихле (эти ученые в 1825 году совместно нашли доказательство для n = 5), Габриель Ламе (нашедший доказательство для n = 7) и многие другие. К середине 80-х годов прошлого века стало понятно, что ученый мир находится на пути к окончательному решению Великой теоремы Ферма, однако только в 1993 году математики увидели и поверили, что трехвековая эпопея по поиску доказа­тельства последней теоремы Ферма практически закончилась.

Легко показывается, что теорему Ферма достаточно доказать только для простых n: 3, 5, 7, 11, 13, 17, … При составных n доказательство остаётся в силе. Но и простых чисел бесконечно много…

В 1825 году, применив метод Софи Жермен, женщины-математика, Дирихле и Лежандр независимо друг от друга доказали теорему для n=5. В 1839 году тем же методом француз Габриель Ламе показал истинность теоремы для n=7. Постепенно теорему доказали почти для всех n, меньших ста.


Наконец, немецкий математик Эрнст Куммер в блестящем исследовании показал, что методами математики XIX века теорему в общем виде доказать нельзя. Премия Французской Академии Наук, учреждённая в 1847 году за доказательство теоремы Ферма, осталась невручённой.

В 1907 году богатый немецкий промышленник Пауль Вольфскель из-за неразделённой любви решил свести счёты с жизнью. Как истинный немец он назначил дату и время самоубийства: ровно в полночь. В последний день он составил завещание и написал письма друзьям и родственникам. Дела закончились раньше полночи. Надо сказать, что Пауль интересовался математикой. От нечего делать он пошёл в библиотеку и принялся читать знаменитую статью Куммера. Неожиданно ему показалось, что Куммер в ходе рассуждений совершил ошибку. Вольфскель стал с карандашом в руках разбирать это место статьи. Полночь миновала, наступило утро. Пробел в доказательстве был восполнен. Да и сам повод для самоубийства теперь выглядел совершенно нелепым. Пауль разорвал прощальные письма и переписал завещание.

Вскоре он умер естественной смертью. Наследники были изрядно удивлены: 100 000 марок (более 1 000 000 нынешних фунтов стерлингов) передавались на счёт Королевского научного общества Гёттингена, которое в том же году объявило о проведении конкурса на соискание премии Вольфскеля. 100 000 марок полагались доказавшему теорему Ферма. За опровержение теоремы не полагалось ни пфеннига…


Большинство профессиональных математиков считали поиск доказательства Великой теоремы Ферма безнадёжным делом и решительно отказывались тратить время на такое бесполезное занятие. Зато любители порезвились на славу. Через несколько недель после объявления на Гёттингенский университет обрушилась лавина «доказательств». Профессор Э. М. Ландау, в обязанность которого входил разбор присланных доказательств, раздал своим студентам карточки:


Уважаемый(ая) . . . . . . . .

Благодарю Вас за присланную Вами рукопись с доказательством Великой теоремы Ферма. Первая ошибка находится на стр. ... в строке... . Из-за неё всё доказательство утрачивает силу.
Профессор Э. М. Ландау











В 1963 году Пауль Коэн, опираясь на выводы Гёделя, доказал неразрешимость одной из двадцати трех проблем Гильберта — гипотезы континуума. А что, если Великая теорема Ферма тоже неразрешима?! Но истинных фанатиков Великой теоремы это ничуть не разочаровало. Появление компьютеров неожиданно дало математикам новый метод доказательства. После Второй мировой войны группы программистов и математиков доказали Великую теорему Ферма при всех значениях n до 500, затем до 1 000, а позже до 10 000.

В 80-е годы Сэмюэль Вагстафф поднял предел до 25 000, а в 90-ых математики заявили, что Великая теорема Ферма верна при всех значениях n до 4 миллионов. Но если от бесконечности отнять даже триллион триллионов, она не станет меньше. Математиков не убеждает статистика. Доказать Великую теорему значило доказать её для ВСЕХ n, уходящих в бесконечность.




В 1954 году два молодых японских друга-математика занялись исследованием модулярных форм. Эти формы порождают ряды чисел, каждая - свой ряд. Случайно Танияма сравнил эти ряды с рядами, порождаемыми эллиптическими уравнениями. Они совпадали! Но модулярные формы – геометрические объекты, а эллиптические уравнения – алгебраические. Между столь разными объектами никогда не находили связи.

Тем не менее, друзья после тщательной проверки выдвинули гипотезу: у каждого эллиптического уравнения существует двойник – модулярная форма, и наоборот. Именно эта гипотеза стала фундаментом целого направления в математике, но до тех пор, пока гипотеза Таниямы–Симуры не была доказана, всё здание могло рухнуть в любой момент.

В 1984 году Герхард Фрей показал, что решение уравнения Ферма, если оно существует, можно включить в некоторое эллиптическое уравнение. Двумя годами позже профессор Кен Рибет доказал, что это гипотетическое уравнение не может иметь двойника в модулярном мире. Отныне Великая теорема Ферма была нерасторжимо связана с гипотезой Таниямы–Симуры. Доказав, что любая эллиптическая кривая модулярна, мы делаем вывод, что эллиптического уравнения с решением уравнения Ферма не существует, и Великая теорема Ферма была бы тотчас же доказана. Но в течение тридцати лет доказать гипотезу Таниямы–Симуры не удавалось, и надежд на успех оставалось всё меньше.

В 1963 году, когда ему было всего десять лет, Эндрю Уайлс уже был очарован математикой. Когда он узнал о Великой теореме, то понял, что не сможет отступиться от неё. Школьником, студентом, аспирантом он готовил себя к этой задаче.

Узнав о выводах Кена Рибета, Уайлс с головой ушёл в доказательство гипотезы Таниямы–Симуры. Он решил работать в полной изоляции и секретности. «Я понимал, что всё, что имеет какое-то отношение к Великой теореме Ферма, вызывает слишком большой интерес… Слишком много зрителей заведомо мешают достижению цели». Семь лет упорной работы принесли плоды, Уайлс наконец завершил доказательство гипотезы Таниямы–Симуры.

В 1993 году английский математик Эндрю Уайлс представил миру свое доказательство Великой теоремы Ферма (Уайльс прочитал свой сенсационный доклад на конференции в Институте сэра Исаака Ньютона в Кембридже.) , работа над которым продолжалась более семи лет.







Пока в печати продолжалась шумиха, началась серьёзная работа по проверке доказательства. Каждый фрагмент доказательства должен быть тщательно изучен прежде, чем доказательство может быть признано строгим и точным. Уайлс провёл беспокойное лето в ожидании отзывов рецензентов, надеясь, что ему удастся получить их одобрение. В конце августа эксперты нашли недостаточно обоснованное суждение.

Оказалось, что данное решение содержит грубую ошибку, хотя в целом и верно. Уайлс не сдался, призвал на помощь известного специалиста в теории чисел Ричарда Тейлора, и уже в 1994 году они опубликовали исправлен­ное и дополненное доказательство теоремы. Самое удивительное, что эта работа заняла целых 130 (!) полос в математическом журнале «Annals of Mathematics». Но и на этом история не закончилась — последняя точка была поставлена только в следующем, 1995 году, когда в свет вышел окончательный и «идеальный», с математи­ческой точки зрения, вариант доказательства.

«…через полминуты после начала праздничного обеда по случаю её дня рождения, я подарил Наде рукопись полного доказательства» (Эндрю Уальс). Я ещё не говорил, что математики странные люди?






На этот раз никаких сомнений в доказательстве не было. Две статьи были подвергнуты самому тщательному анализу и в мае 1995 года были опубликованы в журнале «Annals of Mathematics».

С того момента прошло немало времени, однако в обществе до сих пор бытует мнение о неразрешимости Великой теоремы Фер­ма. Но даже те, кто знает о найденном доказательстве, продолжают работу в этом направлении — мало кого устраивает, что Великая теорема требует решения в 130 страниц!

Поэтому сейчас силы очень многих математиков (в основном это любители, а не профессио­нальные ученые) брошены на поиски простого и лаконичного до­казательства, однако этот путь, скорее всего, не приведет никуда...

Григорий Перельман. Отказник

Василий Максимов

В августе 2006 года были объявлены имена лучших математиков планеты, получивших престижнейшую Медаль Филдса – своеобразный аналог Нобелевской премии, которой математики, по прихоти Альфреда Нобеля, были лишены. Премия Fields Medal – помимо почетного знака, лауреатам вручается чек на пятнадцать тысяч канадских долларов – присуждается Международным конгрессом математиков раз в четыре года. Она учреждена канадским ученым Джоном Чарльзом Филдсом и впервые вручена в 1936 году. С 1950 года Fields Medal вручается регулярно лично королем Испании за вклад в развитие математической науки. Лауреатами премии могут стать от одного до четырех ученых в возрасте до сорока лет. Премию уже получили сорок четыре математика, среди которых восемь россиян.

Григорий Перельман. Анри Пуанкаре.

В 2006 году лауреатами стали француз Венделин Вернер, австралиец Теренс Тао и двое россиян – работающий в США Андрей Окуньков и ученый из Петербурга Григорий Перельман. Однако в последний момент стало известно, что Перельман отказался от этой престижной награды – как объявили организаторы, «по принципиальным соображениям».

Столь экстравагантный поступок российского математика не стал неожиданностью для знающих его людей. Он уже не в первый раз отказывается от математических наград, объясняя свое решение тем, что не любит торжественные мероприятия и излишнюю шумиху вокруг своего имени. Еще десять лет назад, в 1996 году, Перельман отказался от премии Европейского математического конгресса, сославшись на то, что не закончил работу над номинированной на награду научной проблемой, и это был не последний случай. Российский математик словно сделал целью своей жизни удивлять людей, идя наперекор общественному мнению и научной общественности.

Григорий Яковлевич Перельман родился 13 июня 1966 года в Ленинграде. С юных лет увлекался точными науками, с блеском окончил знаменитую 239-ю среднюю школу с углубленным изучением математики, побеждал на многочисленных математических олимпиадах: так, в 1982 году в составе команды советских школьников участвовал в Международной математической олимпиаде, проходившей в Будапеште. Перельман без экзаменов был зачислен на мехмат Ленинградского университета, где учился на «отлично», продолжая побеждать в математических соревнованиях всех уровней. Окончив университет с красным дипломом, он поступил в аспирантуру при Петербургском отделении Математического института имени В. А. Стеклова. Его научным руководителем был известный математик академик Александров. Защитив кандидатскую диссертацию, Григорий Перельман остался в институте, в лаборатории геометрии и топологии. Известны его работы по теории пространств Александрова, он сумел найти доказательства к ряду важных гипотез. Несмотря на многочисленные предложения от ведущих западных университетов, Перельман предпочитает работать в России.

Самым громким его успехом стало решение в 2002 году знаменитой гипотезы Пуанкаре, опубликованной в 1904 году и с тех пор остававшейся не доказанной. Перельман работал над нею восемь лет. Гипотеза Пуанкаре считалась одной из величайших математических загадок, а ее решение – важнейшим достижением в математической науке: оно моментально продвинет вперед исследования проблем физико-математических основ мироздания. Виднейшие умы планеты прогнозировали ее решение лишь через несколько десятилетий, а Институт математики Клея в Кембридже, штат Массачусетс, внес проблему Пуанкаре в число семи наиболее интересных нерешенных математических проблем тысячелетия, за решение каждой из которых была обещана премия в миллион долларов (Millennium Prize Problems).

Гипотеза (иногда называемая задачей) французского математика Анри Пуанкаре (1854–1912) формулируется так: любое замкнутое односвязное трехмерное пространство гомеоморфно трехмерной сфере. Для пояснения используют наглядный пример: если обмотать яблоко резиновой лентой, то в принципе, стягивая ленту, можно сжать яблоко в точку. Если же обмотать такой же лентой бублик, то в точку его сжать нельзя без разрыва или бублика, или резины. В таком контексте яблоко называют «односвязной» фигурой, бублик же не односвязен. Почти сто лет назад Пуанкаре установил, что двумерная сфера односвязна, и предположил, что трехмерная сфера тоже односвязна. Доказать эту гипотезу не могли лучшие математики мира.

Чтобы претендовать на приз Института Клея, Перельману нужно было всего лишь опубликовать свое решение в одном из научных журналов, и если в течение двух лет никто не сможет найти ошибку в его вычислениях, то решение будут считать верным. Однако Перельман с самого начала отступил от правил, опубликовав свое решение на сайте препринтов Лос-Аламосской научной лаборатории. Возможно, он опасался того, что в его расчеты вкралась ошибка – подобная история уже происходила в математике. В 1994 году английский математик Эндрю Уайлз предложил решение знаменитой теоремы Ферма, а спустя несколько месяцев выяснилось, что в его расчеты вкралась ошибка (правда, впоследствии она была исправлена, и сенсация всё же состоялась). Официальной публикации доказательства гипотезы Пуанкаре нет до сих пор – зато есть авторитетное мнение лучших математиков планеты, подтверждающих верность расчетов Перельмана.

Медаль Филдса Григорию Перельману была присуждена именно за решение проблемы Пуанкаре. Но российский ученый отказался от премии, которой он без сомнения достоин. «Григорий сказал мне, что чувствует себя изолированным от международного математического сообщества, вне этого сообщества, поэтому не хочет получать награду», – заявил на пресс-конференции в Мадриде президент Всемирного союза математиков (ВСМ) англичанин Джон Болл.

Ходят слухи, что Григорий Перельман и вовсе собирается уйти из науки: еще полгода назад он уволился из родного Математического института имени Стеклова, и говорят, будто он не будет больше заниматься математикой. Возможно, российский ученый считает, что, доказав знаменитую гипотезу, он сделал для науки всё, что мог. А впрочем, кто возьмется рассуждать о ходе мыслей столь яркого ученого и неординарного человека?.. От любых комментариев Перельман отказывается, а газете The Daily Telegraph он заявил: «Ничто из того, что я могу сказать, не представляет ни малейшего общественного интереса». Однако ведущие научные издания были единодушны в своих оценках, когда сообщили, что «Григорий Перельман, разрешив теорему Пуанкаре, встал в один ряд с величайшими гениями прошлого и настоящего».

Ежемесячный литературно-публицистический журнал и издательство.