Температура возникновения сверхновой звезды. Новые и сверхновые звезды. Химическая эволюция и воздействие на межзвёздную среду

Еще несколько веков назад астрономы заметили, как блеск некоторых звезд в галактике неожиданно увеличивался более чем в тысячу раз. Редкое явление многократного увеличение свечения космического объекта ученые обозначили, как рождение сверхновой звезды. Это в некотором роде космический нонсенс, потому что в этот момент звезда не рождается, а прекращает свое существование.

Вспышка сверхновой звезды - это, по сути, взрыв звезды, сопровождающийся выделением колоссального количества энергии ~10 50 эрг. Яркость свечения сверхновой, которая становится видна в любой точке Вселенной, возрастает течение нескольких суток. При этом каждую секунду выделяется такое количество энергии, которое может выработать Солнце за все время своего существования.

Взрыв сверхновой звезды как следствие эволюции космических объектов

Ученые-астрономы объясняют это явление эволюционными процессами, миллионы лет происходящими со всеми космическими объектами. Чтобы представить себе процесс появления сверхновой, нужно понять строение звезды (рисунок ниже) .

Звезда - это огромный объект, обладающий колоссальной массой и, следовательно, такой же гравитацией. У звезды есть маленькое ядро, окруженное внешней оболочкой из газов, составляющих основную массу звезды. Гравитационные силы давят на оболочку и ядро, сжимая их с такой силой, что газовая оболочка раскаляется и, расширяясь, начинает давить изнутри, компенсируя силу гравитации. Паритет двух сил обусловливает стабильность звезды.

Под действием огромных температур в ядре начинается термоядерная реакция, превращающая водород в гелий. Выделяется еще больше тепла, излучение которого внутри звезды возрастает, но пока еще сдерживается гравитацией. А дальше начинается настоящая космическая алхимия: запасы водорода истощаются, гелий начинает превращаться в углерод, углерод - в кислород, кислород - в магний…Так посредством термоядерной реакции происходит синтез все более тяжелых элементов.

До момента появления железа все реакции идут с выделением тепла, но как только железо начинает перерождаться в следующие за ним элементы, реакция из экзотермической переходит в эндотермическую, то есть тепло перестает выделяться и начинает расходоваться. Баланс сил гравитации и теплового излучения нарушается, ядро сжимается в тысячи раз, и к центру звезды устремляются все внешние слои оболочки. Врезаясь в ядро со скоростью света, они отскакивают обратно, сталкиваясь друг с другом. Происходит взрыв внешних слоев, и вещество, из которого состоит звезда, разлетается со скоростью в несколько тысяч километров в секунду.

Процесс сопровождается такой яркой вспышкой, что ее можно увидеть даже невооруженным глазом, если сверхновая загорелась в ближайшей галактике. Затем свечение начинает угасать, и на месте взрыва образуется…А что же остается после взрыва сверхновой? Существует несколько вариантов развития событий: во-первых, остатком сверхновой может быть ядро из нейтронов, которое ученые называют нейтронной звездой, во-вторых, черная дыра, в-третьих, газовая туманность.

Вспышка сверхновой звезды (обозначается SN) - явление несравненно более крупного масштаба, чем вспышка новой. Когда в одной из звездных систем мы наблюдаем появление сверхновой, блеск этой одной звезды оказывается подчас того же порядка, что интегральный блеск всей звездной системы. Так, вспыхнувшая в 1885 г. близ центра туманности Андромеды звезда достигла блеска , тогда как интегральный блеск туманности равен , т. е. световой поток от сверхновой всего в четыре раза с небольшим уступает потоку от туманности. В двух случаях блеск сверхновой оказывался больше блеска галактики, в которой сверхновая появлялась. Абсолютные звездные величины сверхновых в максимуме близки к что на , т. е. в 600 раз ярче, чем абсолютная звездная величина обычной новой в максимальном блеске. Отдельные сверхновые достигают в максимуме , что в десять миллиардов раз превышает светимость Солнца.

В нашей Галактике за последнее тысячелетие достоверно наблюдались три сверхновые звезды: в 1054 г. (в Тельце), в 1572 г. (в Кассиопее), в 1604 г. (в Змееносце). По-видимому, прошла незамеченной также вспышка сверхновой в Кассиопее около 1670 г., от которой сейчас осталась система разлетающихся газовых волокон и мощное радиоизлучение (Cas А). В некоторых галактиках на протяжении 40 лет вспыхивало три и даже четыре сверхновые (в туманностях NGC 5236 и 6946). В среднем, в каждой галактике вспыхивает одна сверхновая за 200 лет, а у названных двух галактик этот интервал снижается до 8 лет! Международное сотрудничество за четыре года (1957-1961) привело к открытию сорока двух сверхновых. Общее число наблюдавшихся сверхновых превышает в настоящее время 500.

По особенностям изменения блеска сверхновые распадаются на два типа - I и II (рис. 129); возможно, что существует еще III тип, объединяющий сверхновые с наименьшей светимостью.

Сверхновые I типа отличаются быстротечным максимумом (около недели), после чего в течение 20-30 дней блеск падает со скоростью за одни сутки. Затем падение замедляется и далее, вплоть до наступления невидимости звезды, протекает с постоянной скоростью за сутки. Светимость звезды убывает при этом экспоненциально, вдвое за каждые 55 суток. Например, Сверхновая 1054 г. в Тельце достигла такого блеска , что была видна днем в течение почти месяца, а ее видимость невооруженным глазом продолжалась два года. В максимуме блеска абсолютная звездная величина сверхновых I типа достигает в среднем , а амплитуда от максимума до минимального блеска после вспышки .

Сверхновые II типа имеют меньшую светимость: в максимуме , амплитуда неизвестна. Вблизи максимума блеск несколько задерживается, но спустя 100 дней после максимума падает гораздо быстрее, чем у сверхновых I типа, а именно на за 20 дней.

Сверхновые звезды вспыхивают обычно на периферии галактик.

Сверхновые I типа встречаются в галактиках любой формы, а II типа - только в спиральных. Те и другие в спиральных галактиках бывают чаще всего вблизи экваториальной плоскости, предпочтительно в ветвях спиралей, и, вероятно, избегают центр галактики. Скорее всего они принадлежат к плоской составляющей (I типу населения).

Спектры сверхновых I типа ничем не похожи на спектры новых звезд. Их удалось расшифровать лишь после того, как отказались от идеи весьма широких эмиссионных полос, а темные промежутки были восприняты как весьма широкие абсорбционные полосы, сильно смещенные в фиолетовую сторону на величину ДХ, соответствующую скоростям приближения от 5000 до 20 000 км/с.

Рис. 129. Кривые фотографического блеска сверхновых звезд I и II типа. Вверху - изменение блеска двух сверхновых I типа, вспыхнувших в 1937 г. почти одновременно в туманностях IС 4182 и NGC 1003. На оси абсцисс отложены юлианские дни. Внизу - синтетическая кривая блеска трех сверхновых II типа, полученная соответствующим сдвигом индивидуальных кривых блеска вдоль оси звездных величин (ординаты, оставленной неразмеченной). Прерывистая кривая изображает изменение блеска сверхновой I типа. На оси абсцисс отложены дни от произвольного начала

Такими оказываются скорости расширения оболочек сверхновых! Понятно, что до максимума и первое время после максимума спектр сверхновой сходен со спектром сверхгиганта, цветовая температура которого около 10 000 К или выше (ультрафиолетовый избыток около );

вскоре после максимума температура излучения падает до 5-6 тыс. Кельвинов. Но спектр остается богатым линиями ионизованных металлов, прежде всего CaII (как ультрафиолетовый дублет, так и инфракрасный триплет), хорошо представлены линии гелия (HeI) и очень выделяются многочисленные линии азота (NI), а линии водорода идентифицируются с большой неуверенностью. Конечно, в отдельных фазах вспышки в спектре встречаются и эмиссионные линии, однако недолговечные. Очень большая ширина абсорбционных линий объясняется большой дисперсией скоростей в выброшенных газовых оболочках.

Спектры сверхновых II типа сходны со спектрами обыкновенных новых звезд: широкие эмиссионные линии, окаймленные с фиолетовой стороны линиями поглощения, которые имеют ту же ширину, что и эмиссии. Характерно наличие весьма заметных бальмеровских линий водорода, светлых и темных. Большая ширина абсорбционных линий, образующихся в движущейся оболочке, в той ее части, которая лежит между звездой и наблюдателем, свидетельствует как о дисперсии скоростей в оболочке, так и об ее огромных размерах. Температурные изменения у сверхновых II типа сходны с тем, что происходит у I типа, и скорости расширения доходят до 15 000 км/с.

Между типами сверхновых и их расположением в Галактике или частотой встречаемости в галактиках разных типов существует корреляция, хотя и не очень строгая. Сверхновые I типа встречаются предпочтительнее среди звездного населения сферической составляющей и, в частности, в эллиптических галактиках, а сверхновые II типа, наоборот - среди населения диска, в спиральных и редко - неправильных туманностях. Впрочем, все сверхновые, наблюдавшиеся в Большом Магеллановом Облаке, были I типа. Конечный продукт сверхновых в других галактиках, как правило, неизвестен. При амплитуде около сверхновые, наблюдаемые в других галактиках, в минимуме блеска должны быть объектами , т. е. совершенно недоступными наблюдению.

Все эти обстоятельства могут помочь при выяснении, какими могут быть звезды - предвестники сверхновых. Встречаемость сверхновых I типа в эллиптических галактиках с их старым населением позволяет считать и предсверхновые старыми звездами малой массы, израсходовавшими весь водород. Наоборот, у сверхновых II типа, которые появляются главным образом в богатых газом спиральных ветвях, предшественникам требуется для пересечения ветви около лет, так что их возраст около сотни миллионов лет. За это время звезда должна, начав с главной последовательности, покинуть ее при исчерпании водородного горючего в своих недрах. Звезда маломассивная не успеет пройти этот этап, и, следовательно, предвестник сверхновой II типа должен обладать массой не меньше и быть молодой ОВ-звездой вплоть до взрыва.

Правда, указанное выше появление сверхновых I типа в Большом Магеллановом облаке несколько нарушает достоверность описанной картины.

Естественно допустить, что предвестник сверхновой I типа есть белый карлике массой около , лишенный водорода. Но он стал таким потому, что входил в состав двойной системы, в которой более массивный красный гигант отдает свое вещество бурным потоком так, что от него остается, в конце концов, вырожденное ядро - белый карлик углеродно-кислородного состава, а бывший спутник сам становится гигантом и начинает обратно отсылать вещество белому карлику, образуя там Н = Не-оболочку. Масса его растет и тогда, когда приближается к пределу (18.9), а центральная температура его возрастает до 4-10° К, при которой «возгорается» углерод.

У обычной звезды с ростом температуры возрастает давление, которое поддерживает вышележащие слои. Но у вырожденного газа давление зависит только от плотности, оно не будет возрастать с температурой, и вышележащие слои будут падать к центру, а не расширяться, чтобы компенсировать рост температуры. Будет происходить спадание (коллапс) ядра и прилежащих к нему слоев. Спадание идет резко ускоренно, пока возросшая температура не снимет вырождения, и тогда начнется расширение звезды «в тщетных потугах» стабилизироваться, в то время как волна сгорания углерода проносится через нее. Этот процесс длится секунду-две, за это время вещество с массой около одной массы Солнца превращается в , распад которого (с выделением -квантов и позитронов) поддерживает высокую температуру у оболочки, бурно расширяющейся до размеров в десятки а. е. Образуется (с временем полураспада ), от распада которого возникает в количестве около Белый карлик разрушается до конца. Но не видно причин для образования нейтронной звезды. А между тем в остатках вспышки сверхновой мы не находим заметного количества железа, а находим нейтронные звезды (см. дальше). В этих фактах - главная трудность изложенной модели вспышки сверхновой I типа.

Но объяснения механизма вспышки сверхновой II типа встречаются с еще большими затруднениями. По-видимому, ее предшественник не входит в состав двойной системы. При большой массе (более ) он эволюционирует самостоятельно и быстро, переживая одну за другой фазы сгорания Н, Не, С, О до Na и Si и далее до Fe-Ni-ядра. Каждая новая фаза включается при исчерпании предыдущей, когда, потеряв способность противодействовать гравитации, ядро коллапсирует, температура повышается и следующий этап вступает в действие. Если дело дойдет до фазы Fe-Ni, источник энергии пропадет, так как железное ядро разрушается под воздействием высокоэнергичных фотонов на множество -частиц, и этот процесс эндотермичен. Он помогает коллапсу. И уже нет больше энергии, способной остановить коллапсирующую оболочку.

А у ядра есть возможность перейти в состояние черной дыры (см. с. 289) через стадию нейтронной звезды посредством реакции .

Дальнейшее развитие явлений становится очень неясным. Предложено много вариантов, но в них не содержится объяснения того, как при коллапсе ядра оболочка выбрасывается наружу.

Что же до описательной стороны дела, то при массе оболочки в и скорости выбрасывания около 2000 км/с, затраченная на это энергия достигает , а излучение в течение вспышки (в основном за 70 суток) уносит с собой .

Мы еще раз вернемся к рассмотрению процесса вспышки сверхновой, но уже с помощью изучения остатков вспышек (см. § 28).

Сверхновая звезда – взрыв умирающих очень крупных звезд с огромным выбросом энергии, в триллион раз превышающая энергию Солнца. Сверхновая звезда может осветить всю галактику, а свет, посланный звездой, дойдет то края Вселенной.Если одна из таких звезд взорвется на расстоянии 10 световых лет от Земли, то Земля полностью сгорит от выбросов энергии и радиации.

Сверхновая звезда

Сверхновые звезды не только уничтожают, они так же восполняют необходимые элементы в космос: железо, золото, серебро и другие. Всё что мы знаем о Вселенной было создано из останков когда-то взорвавшейся сверхновой звезды. Сверхновая один из самых красивых и интересных объектов во Вселенной. Самые крупные взрывы во Вселенной оставляют после себя особые, самые странные останки во Вселенной:

Нейтронные звезды

Нейтронные очень опасные и странные тела. Когда гигантская звезда превращается в сверхновую, ее ядро сжимается до размера с земной мегаполис. Давление внутри ядра настолько велико, что даже атомы внутри начинают плавиться. Когда атомы настолько спрессованы, что между ними не остается никакого пространства накапливается колоссальная энергия и происходит мощнейший взрыв. После взрыва остается невероятно плотная Нейтронная звезда. Чайная ложка Нейтронной звезды будет весить 90 млн. тонн.

Пульсар – останки после взрыва сверхновой звезды. Тело которое схожее с массой и плотностью нейтронной звезды. Вращаясь с огромной скоростью, пульсары выпускают в космос радиационные вспышки из северного и южного полюсов. Скорость вращения может достигать 1000 оборотов в секунду.

Когда взрывается звезда в 30 раз больше нашего Солнца она создает звезду, которая называется Магнитаром. Магнитары создают мощные магнитные поля они еще более странные чем Нейтронные звезды и Пульсары. Магнитное поле Магнитара превышает земное в несколько тысяч раз.

Черные дыры

После гибели гиперновых звезд, звезд еще более крупнее чем суперзвезда, образуется самое загадочное и опасное место во Вселенной – черная дыра. После смерти такой звезды, черная дыра начинает поглощать ее останки. Материала для поглощения у черной дыры слишком много и она выбрасывает останки звезды обратно в космос, образуя 2 луча гамма излучений.

Что касается нашей , то Солнце, конечно, не обладает достаточной массой для того, чтобы стать черной дырой, пульсаром, магнитаром или даже нейронной звездой. По космическим меркам наша звезда очень мала для такого финала её жизни. Ученые говорят о том, что после истощения топлива наша звезда увеличится в размерах в несколько десятков раз, что позволит ей поглотить в себя планеты земной группы: Меркурий, Венеру, Землю и, возможно, Марс.

Мы уже видели, что, в отличие от Солнца и других стационарных звезд, у физических переменных звезд изменяются размеры, температура фотосферы, светимость. Среди различных видов нестационарных звезд особый интерес представляют новые и сверхновые звезды. На самом деле это не вновь появившиеся звезды, а ранее существовавшие, которые привлекли к себе внимание резким возрастанием блеска.

При вспышках новых звезд блеск возрастает в тысячи и миллионы раз за время от нескольких суток до нескольких месяцев. Известны звезды, которые повторно вспыхивали как новые. Согласно современным данным, новые звезды обычно входят в состав двойных систем, а вспышки одной из звезд происходят в результате обмена веществом между звездами, образующими двойную систему. Например, в системе “белый карлик – обычная звезда (малой светимости)” взрывы, вызывающие явление новой звезды, могут возникать при падении газа с обычной звезды на белый карлик.

Еще более грандиозны вспышки сверхновых звезд, блеск которых внезапно возрастает примерно на 19 m ! В максимуме блеска излучающая поверхность звезды приближается к наблюдателю со скоростью в несколько тысяч километров в секунду. Картина вспышки сверхновых звезд свидетельствует о том, что сверхновые – это взрывающиеся звезды.

При взрывах сверхновых в течение нескольких суток выделяется огромная энергия – порядка 10 41 Дж. Такие колоссальные взрывы происходят на заключительных этапах эволюции звезд, масса которых в несколько раз больше массы Солнца.

В максимуме блеска одна сверхновая звезда может светить ярче миллиарда звезд, подобных нашему Солнцу. При наиболее мощных взрывах некоторых сверхновых звезд может выбрасываться вещество со скоростью 5000 – 7000 км/с, масса которого достигает нескольких солнечных масс. Остатки оболочек, сброшенных сверхновыми звездами, видны долгое время как расширяющиеся газовые .

Обнаружены не только остатки оболочек сверхновых звезд, но и то, что осталось от центральной части некогда взорвавшейся звезды. Такими “звездными остатками” оказались удивительные источники радиоизлучения, которые получили названия пульсаров. Первые пульсары были открыты в 1967 г.

У некоторых пульсаров поразительно стабильна частота повторения импульсов радиоизлучения: импульсы повторяются через строго одинаковые промежутки времени, измеренные с точностью, превышающей 10 -9 с! Открытые пульсары находятся от нас на расстояниях, не превышающих сотни парсек. Предполагается, что пульсары – это быстровращающиеся сверхплотные звезды, радиусы которых около 10 км, а массы близки к массе Солнца. Такие звезды состоят из плотно упакованных нейтронов и называются нейтронными. Лишь часть времени своего существования нейтронные звезды проявляют себя как пульсары.

Вспышки сверхновых звезд относятся к редким явлениям. За последнее тысячелетие в нашей звездной системе наблюдалось всего лишь несколько вспышек сверхновых. Из них наиболее достоверно установлены следующие три: вспышка 1054 г. в созвездии Тельца, в 1572 г. – в созвездии Кассиопеи, в 1604 г. – в созвездии Змееносца. Первая из этих сверхновых описана как “звезда-гостья” китайскими и японскими астрономами, вторая – Тихо Браге, а третью наблюдал Иоганн Кеплер. Блеск сверхновых 1054 г. и 1572 г. превосходил блеск Венеры, и эти звезды были видны днем. Со времени изобретения телескопа (1609 г.) в нашей звездной системе не наблюдалось ни одной сверхновой звезды (возможно, что некоторые вспышки остались незамеченными). Когда же появилась возможность исследовать другие звездные системы, в них стали часто открывать новые и сверхновые звезды.

23 февраля 1987 г. сверхновая звезда вспыхнула в Большом Магеллановом Облаке (созвездие Золотой Рыбы) – самом большом спутнике нашей Галактики. Впервые после 1604 г. сверхновую звезду можно было видеть даже невооруженным глазом. До вспышки на месте сверхновой находилась звезда 12-й звездной величины. Максимального блеска 4 m звезда достигла в начале марта, а затем стала медленно угасать. Ученым, наблюдавшим сверхновую с помощью телескопов крупнейших наземных обсерваторий, орбитальной обсерватории “Астрон” и рентгеновских телескопов на модуле “Квант” орбитальной станции “Мир”, удалось впервые проследить весь процесс вспышки. Наблюдения проводились в разных диапазонах спектра, включая видимый оптический диапазон, ультрафиолетовый, рентгеновский и радиодиапазоны. В научной печати появлялись сенсационные сообщения о регистрации нейтринного и, возможно, гравитационного излучения от взорвавшейся звезды. Были уточнены и обогащены новыми результатами модели строения звезды в фазе, предшествующей взрыву.

Их возникновение - это довольно редкое космическое явление. В среднем в доступных наблюдению просторах Вселенной вспыхивает три сверхновых в столетие. Каждая такая вспышка представляет собой гигантскую космическую катастрофу, при которой выделяется невероятно много энергии. По самой грубой оценке такое количество энергии могло бы образоваться при одновременном взрыве многих миллиардов водородных бомб.

Достаточно строгая теория вспышек сверхновых пока отсутствует, но ученые выдвинули любопытную гипотезу. Они предположили, на основании сложнейших расчетов, что в ходе альфа-синтеза элементов ядро продолжает сжиматься. Температура в нем достигает фантастической цифры - 3 миллиарда градусов. При таких условиях в ядре значительно ускоряются различные ; в результате выделяется много энергии. Быстрое сжатие ядра влечет за собой столь же быстрое сжатие оболочки звезды.

Она тоже сильно разогревается, и протекающие в ней ядерные реакции, в свою очередь, сильно ускоряются. Таким образом буквально в считанные секунды выделяется громадное количество энергии. Это приводит к взрыву. Конечно, такие условия достигаются далеко не всегда, и потому сверхновые вспыхивают довольно редко.

Такова гипотеза. Насколько ученые правы в своих предположениях, покажет будущее. Но и настоящее привело исследователей к совершенно поразительным догадкам. Астрофизические методы позволили проследить, как уменьшается светимость сверхновых. И вот что выяснилось: в первые несколько дней после взрыва светимость уменьшается очень быстро, а затем это уменьшение (в течение 600 дней) замедляется. Причем каждые 55 дней светимость ослабевает ровно вдвое. С точки зрения математики, это уменьшение происходит по так называемому экспоненциальному закону. Хорошим примером такого закона является закон радиоактивного распада. Ученые высказали смелое предположение: выделение энергии после взрыва сверхновой обусловлено радиоактивным распадом изотопа какого-то элемента с периодом полураспада 55 дней.

Но какого изотопа и какого элемента? Эти поиски продолжались несколько лет. «Кандидатами» на роль подобных «генераторов» энергии выступили бериллий-7 и стронций-89. Они распадались наполовину как раз за 55 дней. Но выдержать экзамен им не довелось: расчеты показали, что энергия, выделяющаяся при их бета-распаде, слишком мала. А другие известные радиоактивные изотопы подобным периодом полураспада не обладали.

Новый претендент обнаружился среди элементов, которые на Земле не существуют. Он оказался представителем трансурановых элементов, синтезированных учеными искусственно. Имя претендента - калифорний, его порядковый номер - девяносто восемь. Его изотоп калифорний-254 удалось приготовить в количестве всего лишь около 30 миллиардных долей грамма. Но и этого поистине невесомого количества вполне хватило, чтобы измерить период полураспада изотопа. Он оказался равным 55 дням.

А отсюда возникла любопытная гипотеза: именно энергия распада калифорния-254 обеспечивает в течение двух лет необычайно высокую светимость сверхновой звезды. Распад калифорния происходит путем самопроизвольного деления его ядер; при таком виде распада ядро как бы раскалывается на два осколка - ядра элементов середины периодической системы.

Но каким образом синтезируется сам калифорний? Ученые и здесь дают логичное объяснение. В ходе сжатия ядра, предшествующего взрыву сверхновой, необычайно ускоряется ядерная реакция взаимодействия уже знакомого нам неона-21 с альфа-частицами. Следствием этого оказывается появление в течение довольно короткого промежутка времени чрезвычайно мощного потока нейтронов. Снова возникает процесс нейтронного захвата, но на сей раз уже быстрого. Ядра успевают поглотить очередные нейтроны раньше, чем подвернутся бета-распаду. Для этого процесса неустойчивость трансвисмутовых элементов уже не препятствие. Цепь превращений не порвется, и конец периодической таблицы тоже будет заполнен. При этом, видимо, образуются даже такие трансурановые элементы, которые в искусственных условиях еще не получены.

Ученые подсчитали, что при каждом взрыве сверхновой только калифорния-254 образуется фантастическое количество. Из такого количества можно было бы изготовить 20 шаров, каждый из которых весил бы столько, сколько наша Земля. Какова же дальнейшая судьба сверхновой? Она погибает довольно быстро. На месте ее вспышки остается лишь маленькая очень тусклая звездочка. Она отличается, правда, необычайно высокой плотностью вещества: наполненный им спичечный коробок весил бы десятки тонн. Такие звезды называют « ». Что происходит с ними дальше, мы пока не знаем.

Материя, которая выбрасывается в мировое пространство, может сгуститься и образовать новые звезды; они начнут новый долгий путь развития. Ученые сделали пока лишь общие грубые мазки картины происхождения элементов, картины работы звезд - грандиозных фабрик атомов. Быть может, это сравнение в общем передает суть дела: художник набрасывает на холсте лишь первые контуры будущего произведения искусства. Уже ясен основной замысел, но многие, в том числе и существенные, детали еще приходится лишь угадывать.

Окончательное решение проблемы происхождения элементов потребует колоссального труда ученых различных специальностей. Вероятно, многое, что сейчас нам представляется несомненным, на самом деле окажется грубо приблизительным, а то и вовсе неверным. Наверное, ученым придется столкнуться с закономерностями, до сих пор нам неизвестными. Ведь для того чтобы разобраться в сложнейших процессах, протекающих во Вселенной, бесспорно, понадобится новый качественный скачок в развитии наших представлений о ней.