Скалярная физическая. Векторная и скалярная величина — чем они отличаются? Разложение вектора на составляющие

В курсе физике часто встречаются такие величины, для описания которых достаточно знать только числовые значения. Например, масса, время, длина.

Величины, которые характеризуются только числовым значением, называются скалярными или скалярами .

Кроме скалярных величин, используются величины, которые имеют и числовое значение и направление. Например, скорость, ускорение, сила.

Величины, которые характеризуются числовым значением и направлением, называются векторными или векторами .

Обозначаются векторные величины соответствующими буквами со стрелкой наверху или выделяются жирным шрифтом. Например, вектор силы обозначается \(\vec F\) или F . Числовое значение векторной величины называется модулем или длиной вектора. Значение вектора силы обозначают F или \(\left|\vec F \right|\).

Изображение вектора

Векторы изображают направленными отрезками. Началом вектора называют ту точку, откуда начинается направленный отрезок (точка А на рис. 1), концом вектора – точку, в которой заканчивается стрелка (точка B на рис. 1).

Рис. 1.

Два вектора называются равными , если они имеют одинаковую длину и направлены в одну сторону. Такие вектора изображают направленными отрезками, имеющими одинаковые длины и направления. Например, на рис. 2 изображены векторы \(\vec F_1 =\vec F_2\).

Рис. 2.

При изображении на одном рисунке двух и более векторов, отрезки строят в заранее выбранном масштабе. Например, на рис. 3 изображены вектора, длины которых \(\upsilon_1\) = 2 м/c, \(\upsilon_2\) = 3 м/c.

Рис. 3.

Способ задания вектора

На плоскости вектор можно задавать несколькими способами:

1. Указать координаты начала и конца вектора. Например, вектор \(\Delta\vec r\) на рис. 4 задан координатами начала вектора – (2, 4) (м), конца – (6, 8) (м).

Рис. 4.

2. Указать модуль вектора (его значение) и угол между направлением вектора и некоторым заранее выбранным направлением на плоскости. Часто за такое направление в положительную сторону оси 0Х . Углы, измеренные от этого направления против часовой стрелки, считаются положительными. На рис. 5 вектор \(\Delta\vec r\) задан двумя числами b и \(\alpha\) , указывающими длину и направление вектора.

Рис. 5.

При изучении различных разделов физики, механики и технических наук встречаются величины, которые полностью определяются заданием их числовых значений, более точно, которые полностью определяются при помощи числа, полученного в результате их измерения однородной величиной, принятой за единицу. Такие величины называются скалярными или, короче, скалярами. Ска­лярными величинами, например, являются длина, площадь, объ­ем, время, масса, температура тела, плотность, работа, электроёмкость и др. Так как скалярная величина определяется числом (положительным или отрицательным), то ее можно откладывать на соответствующей координатной оси. Так например, часто стро­ят ось времени, температуры, длины (пройденного пути) и другие.

Помимо скалярных величин, в различных задачах встречаются величины, для определения ко­торых, кроме числового значения, необходимо знать также их направление в пространстве. Такие величины называются векторными . Физиче­скими примерами векторных величин могут служить смещение материальной точки, двигающейся в пространстве, скорость и ускорение этой точки, а также действующая на нее сила, напряженность электрического или магнитного поля. Век­торные величины используются, например, и в климатологии. Рассмотрим простой пример из климатологии. Если мы скажем, что ветер дует со скоростью 10 м/с, то тем самым введем скаляр­ную величину скорости ветра, но если мы скажем, что дует се­верный ветер со скоростью 10 м/с, то в этом случае скорость ветра будет уже векторной величиной.

Векторные величины изображаются с помощью векторов.

Для геометрического изображения векторных величин слу­жат направленные отрезки, то есть отрезки, имеющие фикси­рованное направление в пространстве. При этом длина отрез­ка равна числовому значению векторной величины, а его на­правление совпадает с направлением векторной величины. Направленный отрезок, характеризующий данную векторную величину, называют геометрическим вектором или просто вектором.

Понятие вектора играет большую роль как в математике, так и во многих областях физики и механики. Многие физические величины могут быть представлены при помощи векторов, и это представление очень часто способствует обобщению и упрощению формул и результатов. Часто векторные величины и векторы, их изображающие, отождествляются друг с другом: так, например, говорят, что сила (или скорость) есть вектор.

Элементы векторной алгебры применяются в таких дисциплинах как: 1) электрические машины; 2) автоматизированный электропривод; 3) электроосвещение и облучение; 4) неразвлетвлённые цепи переменного тока; 5) прикладная механика; 6) теоретическая механика; 7) физика; 8) гидравлика:9) детали машин; 10) сопромат; 11) управление; 12) химия; 13) кинематика; 14) статика и др.

2. Определение вектора. Отрезок прямой задается дву­мя равноправными точками -его концами. Но можно рассматривать направленный отрезок, определяемый упо­рядоченной парой точек. Про эти точки известно, какая из них первая (начало), а какая вторая (конец).

Под направленным отрезком понимают упорядоченную пару точек, первая из которых - точка А - называется его началом, а вторая - В - его концом.

Тогда под вектором понимается в простейшем случае сам направленный отрезок, а в других случаях различные векторы - это разные классы эквивалентности направленных отрезков, определяемые неким конкретным отношением эквивалентности. Причем отношение эквивалентности может быть разным, определяя тип вектора («свободный», «фиксированный» и т.д.). Проще говоря, внутри класса эквивалентности все входящие в него направленные отрезки рассматриваются как совершенно равные, и каждый может равно представлять весь класс.

Большую роль играют векторы в изучении бесконечно малых трансформаций пространства.

Определение 1. Направленный отрезок (или, что то же, упорядоченную пару точек) мы будем называть вектором . Направление на отрезке принято отмечать стрелкой. Над буквенным обозначением вектора при письме ста­вится стрелка, например: (при этом буква, соответст­вующая началу вектора, обязательно ставится впереди). В книгах часто буквы, обозначающие вектор, набираются полужирным шрифтом, например: а .

К векторам будем относить и так называемый нулевой вектор, у которого начало и конец совпадают.

Вектор, начало которого совпадает с его концом, называют нулевым. Нулевой вектор обозначается или просто 0.

Расстояние между началом и концом вектора называ­ется его длиной (а также модулем и абсолютной величи­ной). Длина вектора обозначается | | или | |. Длиной вектора, или модулем вектора, называют длину соответствующего направленного отрезка: | | = .

Векторы называются коллинеарными , если они распо­ложены на одной прямой или на параллельных прямых, короче говоря, если существует прямая, которой они параллельны.

Векторы называются компланарными , если существует плоскость, которой они параллельны, их можно изобразить векторами, лежащими на одной плоскости. Нулевой вектор считается коллинеарным любому вектору, так как он не имеет определенного направления. Длина его, разумеется, равна нулю. Очевидно, любые два вектора компланарны; но, конечно, не каждые три вектора в пространстве компланарны. Так как векторы, параллельные друг другу, параллельны одной и той же плоскости, то коллинеарные векторы подавно компланарны. Разумеется, обратное неверно: компланарные векторы могут быть и не коллинеарными. В силу принятого выше условия нулевой вектор коллинеарен со всяким вектором и компланарен со всякой парой векторов, т.е. если среди трёх векторов хотя бы один нулевой, то они компланарны.

2) Слово «компланарные» означает в сущности: «имеющие общую плос­кость», т. е. «расположенные в одной плоскости». Но так как речь здесь идет о свободных векторах, которые можно переносить (не изменяя длины и направ­ления) произвольным образом, мы должны называть компланарными векторы, параллельные одной и той же плоскости, ибо в этом случае их можно пере­нести так, чтобы они оказались расположенными в одной плоскости.

Для сокращения речи условимся в одном термине: если несколько свободных векторов параллельны одной и той же плоскости, то мы будем говорить, что они компланарны. В частности, два вектора всегда компланарны; чтобы в этом убе­диться, достаточно отложить их от одной и той же точки. Ясно, далее, что направление плоскости, в которой параллельны два дан­ных вектора, вполне определено, если эти два вектора не парал­лельны между собою. Любую плоскость, которой параллельны данные компланарные векторы, мы будем называть просто пло­скостью данных векторов.

Определение 2. Два вектора называются равными , если они коллинеарны, одинаково направлены и имеют равные длины.

Необходимо всегда помнить, что равенство длин двух векторов ещё не означает равенства этих векторов.

По самому смыслу определения, два вектора, порознь равные третьему, равны между собой. Очевидно, все нулевые векторы равны между собой.

Из этого определения непосредственно вытекает, что, выбрав любую точку А", мы может построить (и притом только один) вектор А" В", равный некоторому заданному вектору , или, как говорят, перенести вектор в точку А" .

Замечание . Для векторов нет понятий «больше» или «меньше», т.е. они равны или не равны.

Вектор, длина которого равна единице, называется единичным вектором и обозначается через е. Единичный вектор, направление которого совпадает с направлением вектора а, называется ортом вектора и обозначается а .

3. О другом определении вектора . Заметим, что понятие равенства векторов существенно отличается от понятия равенства, например, чисел. Каждое число равно только самому себе, иначе говоря, два равных числа при всех обстоятельствах могут рассматриваться как одно и то же число. С векторами, как мы видим, дело обстоит по-другому: в силу определения существуют различные, но равные между собой векторы. Хотя в большинстве случаев у нас не будет необходимости различать их между собой, вполне может оказаться, что в какой-то момент нас будет интересовать именно вектор , а не другой, равный ему вектор А"В".

Для того чтобы упростить понятие равенства векторов (и снять некоторые связанные с ним трудности), иногда идут на усложнение определения вектора. Мы не будем пользоваться этим усложненным определением, но сформулируем его. Чтобы не путать, мы будем писать «Вектор» (с большой буквы) для обозначения определяемого ниже понятия.

Определение 3 . Пусть дан направленный отрезок. Множество всех направленных отрезков, равных данному в смысле определения 2, называется Вектором.

Таким образом, каждый направленный отрезок определяет Век­тор. Легко заметить, что два направленных отрезка определяют один и тот же Вектор тогда и только тогда, когда они равны. Для Векторов, как и для чисел, равенство означает совпадение: два Вектора равны в том и только в том случае, когда это один и тот же Век­тор.

При параллельном переносе пространства точка и ее образ сос­тавляют упорядоченную пару точек и определяют направленный отрезок, причем все такие направленные отрезки равны в смысле определения 2. Поэтому параллельный перенос пространства можно отождествить с Вектором, составленным из всех этих направленных отрезков.

Из начального курса физики хорошо известно, что сила может быть изображена направленным отрезком. Но она не может быть изображена Вектором, поскольку силы, изображаемые равными нап­равленными отрезками, производят, вообще говоря, различные дейст­вия. (Если сила действует на упругое тело, то изображающий ее направленный отрезок не может быть перенесён даже вдоль той прямой, на которой он лежит.)

Это только одна из причин, по которым наряду с Векторами, т. е. множествами (или, как говорят, классами) равных направлен­ных отрезков, приходится рассматривать и отдельных представителей этих классов. При этих обстоятельствах применение определения 3 усложняется большим числом оговорок. Мы будем придерживаться определения 1, причем по общему смыслу всегда будет ясно, идет ли речь о вполне определенном векторе, или на его место может быть подставлен любой, ему равный.

В связи с определением вектора стоит разъяснить значение не­которых слов, встречающихся в литературе.

Величины, которые характеризуются числовым значением и направлением, называются векторными или векторами. НО! Одна и та же физическая величина может иметь несколько буквенных обозначений (в разной литературе). В физике существует два вида физических величин: векторные и скалярные. Такие вектора изображают направленными отрезками, имеющими одинаковые длины и направления.


Скалярная величина (от - ступлат.matuercızylarенчатый) в физике - величина, каждое значение которой может быть выражено одним действительным числом. То есть скалярная величина определяется только своим значением, в отличие от вектора, который кроме значения имеет направление. Учитывая эти соображения конкретности с соображениями краткости и удобства, можно понять, что терминологическая практика в физике заметно отличается от математической.

Этот вектор может иметь в принципе любую размерность, а как правило - бесконечномерен. Всё это позволило термину «векторный» сохранить в качестве, пожалуй, основного смысла - смысл 4-вектора. Именно этот смысл вкладывается в термины векторное поле, векторная частица (векторный бозон, векторный мезон); сопряженный смысл в подобных терминах имеет и слово скалярный.

Будем исходить из обычного трехмерного «геометрического» пространства, в котором мы живем и можем перемещаться. В качестве исходного и образцового вектора возьмем вектор бесконечно малого перемещения. Довольно очевидно, что это обычный «геометрический» вектор (как и вектор конечного перемещения).

Обозначение векторных величин

То же можно сказать о сумме и разности векторов. В этой главе мы не будем делать разницы между полярными и аксиальными векторами, поэтому заметим, что и векторное произведение двух векторов дает новый вектор.

Масса и плотность

Это можно сказать дальше и о производных всех высших порядков. Продолжая эту процедуру, мы обнаруживаем, что все известные нам векторные величины оказываются теперь не только интуитивно, но и формально, привязаны к исходному пространству. Примеры псевдовекторов: все величины, определяемые через векторное произведение двух полярных векторов. В принципе, такая формулировка используется и для квантовых теорий, и для не-квантовых.

В курсе физике часто встречаются такие величины, для описания которых достаточно знать только числовые значения. Обозначаются векторные величины соответствующими буквами со стрелкой наверху или выделяются жирным шрифтом. Два вектора называются равными, если они имеют одинаковую длину и направлены в одну сторону. При изображении на одном рисунке двух и более векторов, отрезки строят в заранее выбранном масштабе.

То, какие эти предметы, что с ними происходит, или будет происходить, если что-нибудь сделать: кинуть, разогнуть, засунуть в печь. То, почему с ними происходит что-либо и как именно происходит? Перед покупкой нового холодильника можно ознакомиться еще с рядом физических величин, которые позволяют судить о том, какой он, лучше или хуже, и почему он стоит дороже.

Второй и третий законы Ньютона

Все физические величины принято обозначать буквами, чаще греческого алфавита. Несмотря на то, что с такой буквой вы могли не сталкиваться, смысл физической величины, участие ее в формулах остается прежним. Еще одним примером такой величины может служить температура. Другие очень важные в физике величины имеют направление, это, например, скорость; мы должны задать не только быстроту перемещения тела, но и путь, по которому оно движется. Согласно тому, как в математике обозначают вектор!

Два вектора равны, если совпадают их модули и направления. Проекции вектора a на оси Ox и Oy прямоугольной системы координат. Скалярными называют величины, имеющие численное значение, но не имеющие направления. Сила, действующая на материальную точку, есть векторная величина, вектор, так как она обладает направлением.

МЕЖДУ МОЛОТОМ И НАКОВАЛЬНЕЙ.

Температура тела - скалярная величина, скаляр, так как с этой величиной не связано никакое направление. Число полученное в результате измерения характеризует скалярную величину полностью, а векторную частично. Во всех учебниках и умных книжках, силу принято выражать в Ньютонах, но кроме как в моделях которыми оперируют физики ньютоны ни где не применяются.

Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал и сила зависят только от положения тела в данный момент времени. Но нельзя обозначить оба эти явления одним и тем же выражением «сделать легче».

Изображение вектора

Векторная величина (например сила, приложенная к телу), помимо значения (модуля), характеризуется также направлением. Скалярная же величина (например, длина) характеризуется только значением. Все классические законы механики сформулированы для векторных величин. Рассмотрим опору, на которой стоят грузы. На неё действуют 3 силы: ${\large \overrightarrow{N_1},\ \overrightarrow{N_2},\ \overrightarrow{N},}$ точки приложения этих сил А, В и С соответственно.

В чем сила измеряется?

Это векторное уравнение, т.е. фактически три уравнения - по одному для каждого из трех направлений. Масса - фундаментальная физическая величина. Второй закон Ньютона связывает векторы ускорения и силы. Это означает, что справедливы следующие утверждения.

Два тела действуют друг на друга с силами, равными по модулю и противоположными по направлению. Дело в том, что варианты эти не равноценны. И это правда. Но не вся…. И применение этого знания на практике. В рассматриваемой нами системе есть 3 объекта: тягач $(T)$, полуприцеп ${\large ({p.p.})}$ и груз ${\large (gr)}$.

Эта статья о физическом понятии. В целом в физике понятие вектора практически полностью совпадает с таковым в математике. Однако есть терминологическая специфика, связанная с тем, что в современной математике это понятие несколько излишне абстрактно (по отношению к нуждам физики).

Однако она не входит с последней в явное противоречие. Всё сказанное еще в большей степени, чем к термину «вектор», относится к термину «векторная величина». Каким образом физические «векторные величины» привязаны к пространству? Также новый вектор дает дифференцирование вектора по скаляру (поскольку такая производная есть предел отношения разности векторов к скаляру). Лоренца напряженность электрического поля и вектор магнитной индукции привязаны к векторам силы и скорости.

Масса, длина, температура — это и есть физическая величина. Основное их отличие в том, что векторные физические величины имеют направление. Рисуют стрелку только над буквами векторных физических величин. Оказывается, что все 4-векторные величины «происходят» от 4-перемещения, являясь поэтому в некотором смысле такими же векторами пространства-времени, как и само 4-перемещение. Векторные величины лучше запомнить.

В физике существует несколько категорий величин: векторные и скалярные.

Что такое векторная величина?

Векторная величина имеет две основные характеристики: направление и модуль . Два вектора будут одинаковыми, если их значение по модулю и направление совпадают. Для обозначения векторной величины чаще всего используют буквы, над которыми отображается стрелочка. В качестве примера векторной величины можно привести силу, скорость или ускорение.

Для того, чтобы понять сущность векторной величины, следует рассмотреть ее с геометрической точки зрения. Вектор представляет собой отрезок, имеющий направление. Длина такого отрезка соотносится со значением его модуля. Физическим примером векторной величины является смещение материальной точки, перемещающейся в пространстве. Такие параметры, как ускорение этой точки, скорость и действующие на нее силы, электромагнитного поля тоже будут отображаться векторными величинами.

Если рассматривать векторную величину независимо от направления, то такой отрезок можно измерить. Но, полученный результат будет отображать только лишь частичные характеристики величины. Для ее полного измерения следует дополнить величину другими параметрами направленного отрезка.

В векторной алгебре существует понятие нулевого вектора . Под этим понятием подразумевается точка. Что касается направления нулевого вектора, то оно считается неопределенным. Для обозначения нулевого вектора используется арифметический нуль, набранный полужирным шрифтом.

Если проанализировать все вышесказанное, то можно сделать вывод, что все направленные отрезки определяют вектора. Два отрезка будут определять один вектор только в том случае, если они являются равными. При сравнении векторов действует тоже правило, что и при сравнении скалярных величин. Равенство означает полное совпадение по всем параметрам.

Что такое скалярная величина?

В отличие от вектора, скалярная величина обладает только лишь одним параметром – это ее численное значение . Стоит отметить, что анализируемая величина может иметь как положительное численное значение, так и отрицательное.

В качестве примера можно привести массу, напряжение, частоту или температуру. С такими величинами можно выполнять различные арифметические действия: сложение, деление, вычитание, умножение. Для скалярной величины такая характеристика, как направление, не свойственна.

Скалярная величина измеряется числовым значением, поэтому ее можно отображать на координатной оси. Например, очень часто строят ось пройденного пути, температуры или времени.

Основные отличия между скалярными и векторными величинами

Из описаний, приведенных выше, видно, что главное отличие векторных величин от скалярных заключается в их характеристиках . У векторной величины есть направление и модуль, а у скалярной только численное значение. Безусловно, векторную величину, как и скалярную, можно измерить, но такая характеристика не будет полной, так как отсутствует направление.

Для того, чтобы более четко представить отличие скалярной величины от векторной, следует привести пример. Для этого возьмем такую область знаний, как климатология . Если сказать, что ветер дует со скоростью 8 метров в секунду, то будет введена скалярная величина. Но, если сказать, что северный ветер дует со скоростью 8 метров в секунду, то речь пойдет о векторном значении.

Векторы играют огромную роль в современной математике, а также во многих сферах механики и физики. Большинство физических величин может быть представлено в виде векторов. Это позволяет обобщить и существенно упростить используемые формулы и результаты. Часто векторные значения и векторы отождествляются друг с другом. Например, в физике можно услышать, что скорость или сила является вектором.

(тензорам ранга 0), с другой - тензорным величинам (строго говоря - тензорам ранга 2 и более). Также может противопоставляться тем или иным объектам совершенно другой математической природы.

В большинстве случаев термин вектор употребляется в физике для обозначения вектора в так называемом «физическом пространстве», то есть в обычном трёхмерном пространстве классической физики или в четырёхмерном пространстве-времени в современной физике (в последнем случае понятие вектора и векторной величины совпадают с понятием 4-вектора и 4-векторной величины).

Употребление словосочетания «векторная величина» практически исчерпывается этим. Что же касается употребления термина «вектор», то оно, несмотря на тяготение по умолчанию к этому же полю применимости, в большом количестве случаев всё же весьма далеко выходит за такие рамки. Об этом см. ниже.

Употребление терминов вектор и векторная величина в физике

В целом в физике понятие вектора практически полностью совпадает с таковым в математике. Однако есть терминологическая специфика, связанная с тем, что в современной математике это понятие несколько излишне абстрактно (по отношению к нуждам физики).

В математике, произнося «вектор» понимают скорее вектор вообще, то есть любой вектор любого сколько угодно абстрактного линейного пространства любой размерности и природы, что, если не прилагать специальных усилий, может приводить даже к путанице (не столько, конечно, по существу, сколько по удобству словоупотребления). Если же необходимо конкретизировать, в математическом стиле приходится или говорить довольно длинно («вектор такого-то и такого-то пространства»), или иметь в виду подразумеваемое явно описанным контекстом.

В физике же практически всегда речь идёт не о математических объектах (обладающих теми или иными формальными свойствами) вообще, а об определённой их конкретной («физической») привязке. Учитывая эти соображения конкретности с соображениями краткости и удобства, можно понять, что терминологическая практика в физике заметно отличается от математической. Однако она не входит с последней в явное противоречие. Этого удаётся достичь несколькими простыми «приемами». Прежде всего, к ним относится соглашение об употребление термина по умолчанию (когда контекст особо не оговаривается). Так, в физике, в отличие от математики, под словом вектор без дополнительных уточнений обычно понимается не «какой-то вектор любого линейного пространства вообще», а прежде всего вектор, связанный с «обычным физическим пространством» (трёхмерным пространством классической физики или четырёхмерным пространством-временем физики релятивистской). Для векторов же пространств, не связанных прямо и непосредственно с «физическим пространством» или «пространством-временем», как раз применяют специальные названия (иногда включающие слово «вектор», но с уточнением). Если вектор некоторого пространства, не связанного прямо и непосредственно с «физическим пространством» или «пространством-временем» (и которое трудно сразу как-то определённо охарактеризовать), вводится в теории, он часто специально описывается как «абстрактный вектор».

Всё сказанное ещё в большей степени, чем к термину «вектор», относится к термину «векторная величина». Умолчание в этом случае ещё жёстче подразумевает привязку к «обычному пространству» или пространству-времени, а употребление по отношению к элементам абстрактных векторных пространств скорее практически не встречается, по крайней мере, такое применение видится редчайшим исключением (если вообще не оговоркой).

В физике векторами чаще всего, а векторными величинами - практически всегда - называют векторы двух сходных между собою классов:

Примеры векторных физических величин: скорость , сила , поток тепла.

Генезис векторных величин

Каким образом физические «векторные величины» привязаны к пространству? Прежде всего, бросается в глаза то, что размерность векторных величин (в том обычном смысле употребления этого термина, который разъяснён выше) совпадает с размерностью одного и того же «физического» (и «геометрического») пространства, например, пространство трёхмерно и вектор электрического поля трехмерен. Интуитивно можно заметить также, что любая векторная физическая величина, какую бы туманную связь она не имела с обычной пространственной протяжённостью, тем не менее имеет вполне определённое направление именно в этом обычном пространстве.

Однако оказывается, что можно достичь и гораздо большего, прямо «сведя» весь набор векторных величин физики к простейшим «геометрическим» векторам, вернее даже - к одному вектору - вектору элементарного перемещения, а более правильно было бы сказать - произведя их всех от него.

Эта процедура имеет две различные (хотя по сути детально повторяющие друг друга) реализации для трёхмерного случая классической физики и для четырёхмерной пространственно-временной формулировки, обычной для современной физики.

Классический трёхмерный случай

Будем исходить из обычного трёхмерного «геометрического» пространства, в котором мы живём и можем перемещаться.

В качестве исходного и образцового вектора возьмём вектор бесконечно малого перемещения. Довольно очевидно, что это обычный «геометрический» вектор (как и вектор конечного перемещения).

Заметим теперь сразу, что умножение вектора на скаляр всегда даёт новый вектор. То же можно сказать о сумме и разности векторов. В этой главе мы не будем делать разницы между полярными и аксиальными векторами , поэтому заметим, что и векторное произведение двух векторов даёт новый вектор.

Также новый вектор даёт дифференцирование вектора по скаляру (поскольку такая производная есть предел отношения разности векторов к скаляру). Это можно сказать дальше и о производных всех высших порядков. То же верно по отношению к интегрированию по скалярам (времени, объёму).

Теперь заметим, что, исходя из радиус-вектора r или из элементарного перемещения dr , мы легко понимаем, что векторами являются (поскольку время - скаляр) такие кинематические величины, как

Из скорости и ускорения, умножением на скаляр (массу), появляются

Поскольку нас сейчас интересуют и псевдовекторы, заметим, что

  • с помощью формулы силы Лоренца напряжённость электрического поля и вектор магнитной индукции привязаны к векторам силы и скорости.

Продолжая эту процедуру, мы обнаруживаем, что все известные нам векторные величины оказываются теперь не только интуитивно, но и формально, привязаны к исходному пространству. А именно все они в некотором смысле являются его элементами, так как выражаются в сущности как линейные комбинации других векторов (со скалярными множителями, возможно, и размерными, но скалярными, а поэтому формально вполне законными).