Распределение максвелла по компонентам скоростей. Распределение по энергии. Наиболее вероятная скорость молекул

Функция плотности распределения

Распределение Ма́ксвелла - распределение вероятности , встречающееся в физике и химии . Оно лежит в основании кинетической теории газов , которая объясняет многие фундаментальные свойства газов, включая давление и диффузию . Распределение Максвелла также применимо для электронных процессов переноса и других явлений. Распределение Максвелла применимо к множеству свойств индивидуальных молекул в газе. О нем обычно думают как о распределении энергий молекул в газе, но оно может также применяться к распределению скоростей, импульсов, и модуля импульсов молекул. Также оно может быть выражено как дискретное распределение по множеству дискретных уровней энергии, или как непрерывное распределение по некоторому континууму энергии.

Распределение Максвелла может быть получено при помощи статистической механики (см. происхождение статсуммы). Как распределение энергии, оно соответствует самому вероятному распределению энергии, в столкновительно-доминируемой системе, состоящей из большого количества невзаимодействующих частиц, в которой квантовые эффекты являются незначительными. Так как взаимодействие между молекулами в газе является обычно весьма небольшим, распределение Максвелла даёт довольно хорошее приближение ситуации, существующей в газе.

Во многих других случаях, однако, даже приблизительно не выполнено условие доминирования упругих соударений над всеми другими процессами. Это верно, например, в физике ионосферы и космической плазмы , где процессы рекомбинации и столкновительного возбуждения (то есть излучательные процессы) имеют большое значение, в особенности для электронов. Предположение о применимости распределения Максвелла дало бы в этом случае не только количественно неверные результаты, но даже предотвратило бы правильное понимание физики процессов на качественном уровне. Также, в том случае где квантовая де Бройлева длина волны частиц газа не является малой по сравнению с расстоянием между частицами, будут наблюдаться отклонения от распределения Максвелла из-за квантовых эффектов.

Распределение энергии Максвелла может быть выражено как дискретное распределение энергии:

,

где является числом молекул имеющих энергию при температуре системы , является общим числом молекул в системе и - постоянная Больцмана . (Отметьте, что иногда вышеупомянутое уравнение записывается с множителем , обозначающим степень вырождения энергетических уровней. В этом случае сумма будет по всем энергиям, а не всем состояниям системы). Поскольку скорость связана с энергией, уравнение (1) может использоваться для получения связи между температурой и скоростями молекул в газе. Знаменатель в уравнении (1) известен как каноническая статистическая сумма .

Распределение Максвелла

Распределение по вектору импульса

Представленное ниже очень сильно отличается от вывода, предложенного Джеймсом Клерком Максвеллом и позже описанного с меньшим количеством предположений Людвигом Больцманом .

В случае идеального газа , состоящего из невзаимодействующих атомов в основном состоянии, вся энергия находится в форме кинетической энергии. Кинетическая энергия соотносится с импульсом частицы следующим образом

,

где - квадрат вектора импульса .

Мы можем поэтому переписать уравнение (1) как:

,

где - статсумма , соответствующая знаменателю в уравнении (1), - молекулярная масса газа, - термодинамическая температура, и - постоянная Больцмана . Это распределение пропорционально функции плотности вероятности нахождения молекулы в состоянии с этими значениями компонентов импульса. Таким образом:

Постоянная нормировки C , определяется из условия, в соответствии с которым вероятность того, что молекулы имеют какой-либо вообще импульс, должна быть равна единице. Поэтому интеграл уравнения (4) по всем значениям и должен быть равен единице. Можно показать, что:

.

Таким образом, чтобы интеграл в уравнении (4) имел значение 1 необходимо, чтобы

.

Подставляя выражение (6) в уравнение (4) и используя тот факт, что , мы получим

.

Распределение по вектору скорости

Учитывая, что плотность распределения по скоростям пропорциональна плотности распределения по импульсам:

и используя мы получим:

,

что является распределением Максвелла по скоростям. Вероятность обнаружения частицы в бесконечно малом элементе около скорости равна

Распределение по абсолютной величине импульса

Интегрируя, мы можем найти распределение по абсолютной величине импульса

Распределение по энергии

Наконец, используя соотношения и , мы получаем распределение по кинетической энергии:

Распределение по проекции скорости

Распределение Максвелла для вектора скорости - является произведением распределений для каждого из трех направлений:

,

где распределение по одному направлению:

Это распределение имеет форму нормального распределения . Как и следует ожидать для покоящегося газа, средняя скорость в любом направлении равна нулю.

Распределение по модулю скоростей

Обычно, более интересно распределение по абсолютному значению, а не по проекциям скоростей молекул. Модуль скорости, v определяется как:

поэтому модуль скорости всегда будет больше или равен нулю. Так как все распределены нормально , то будет иметь хи-квадрат распределение с тремя степенями свободы. Если - функция плотности вероятности для модуля скорости, то:

,

таким образом, функция плотности вероятности для модуля скорости равна

Характерная скорость

Хотя Уравнение (11) дает распределение скоростей, или, другими словами, долю молекул, имеющих специфическую скорость, часто более интересны другие величины, такие как средние скорости частиц. В следующих подразделах мы определим и получим наиболее вероятную скорость , среднюю скорость и среднеквадратичную скорость .

Наиболее вероятная скорость

наиболее вероятная скорость , - вероятность обладания которой любой молекулой системы максимальна, и которая соответствует максимальному значению . Чтобы найти её, необходимо вычислить , приравнять её нулю и решить относительно :

Средняя скорость

Среднеквадратичная скорость

Подставляя и интегрируя, мы получим

Вывод распределения по Максвеллу

Получим теперь формулу распределения так, как это делал сам Джеймс Клерк Максвелл .
Рассмотрим пространство скоростных точек (каждую молекулу представляем как точку в системе координат ) в стационарном состоянии газа. Выберем бесконечно малый элемент объема . Так как газ стационарный, количество скоростных точек в остается неизменным с течением времени. Пространство скоростей изотропно , поэтому функции плотности вероятности для всех направлений одинаковы.

Максвелл предположил, что распределения скоростей по направлениям статистически независимы, то есть компонента скорости молекулы не зависит от и компонент.

- фактически вероятность нахождения скоростной точки в объеме .

Правая часть не зависит от и , значит и левая от и не зависит. Однако и равноправны, следовательно левая часть не зависит также и от . Значит данное выражение может лишь равняться некоторой константе.

Теперь нужно сделать принципиальный шаг - ввести температуру. Кинетическое определение температуры (как меры средней кинетической энергии движения молекул).

Движение молекул газа подчиняется законам статистической фи-зики. В среднем скорости и энергии всех молекул одинаковы. Од-нако в каждый момент времени энергия и скорости отдельных молекул могут значительно отличаться от среднего значения.

С помощью теории вероятности Максвеллу удалось вывести формулу для относительной частоты, с которой в газе при данной температуре встречаются молекулы со скоростями в определенном интервале значений.

Закон распределения Максвелла определяет относительное число молекул dN/N, скорости которых лежат в интервале (u, u + du ).

Оно имеет вид:

где N - общее число молекул газа; - число молекул, скорости которых заключены в определенном интервале; u - нижняя граница интервала скоростей; d u - величина интервала скоростей; T - температура газа; e = 2,718… - основание натуральных логарифмов;

k = 1,38×10 -23 Дж/К - постоянная Больцмана; m 0 - масса молекулы.

При получении этой формулы Максвелл основывался на следующих предположениях:

1. Газ состоит из большого числа N одинаковых молекул.

2. Температура газа постоянна.

3. Молекулы газа совершают тепловое хаотическое движение.

4. На газ не действуют силовые поля.

Отметим , что под знаком экспоненты в формуле (8.29) стоит отношение кинетической энергии молекулы к величине kT , характеризующей среднее (по молекулам) значение этой энергии.

Распределение Максвелла показывает, какая доля dN/N общего числа молекул данного газа обладает скоростью в интервале от u до u + du.

График функций распределения (рис. 8.5) асимметричен . Положение максимума характеризует наиболее часто встречающуюся скорость, которую называют наиболее вероятной скоростью u m . Скорости, превышающие u m , встречаются чаще, чем меньшие скорости. С повышением температуры максимум распределения сдвигается в направлении больших скоростей.

Одновременно кривая становится более плоской (площадь, заключенная под кривой, не может измениться, так как число молекул N остается постоянным).

Рис. 8.5

Для определения наиболее вероятной скорости нужно исследовать на максимум функцию распределения Максвелла (приравнять первую производную к нулю и решить относительно u). В результате получаем:

.

Мы опустили множители, не зависящие от u. Осуществив дифференцирование, придем к уравнению:

.

Первый сомножитель (экспонента) обращается в нуль при u = ¥, а третий сомножитель (u) при u = 0. Однако из графика (рис. 8.5) видно, что значения u = 0 и u = ¥ соответствуют минимумам функции (8.29). Следовательно, значение u , отвечающее максимуму, получается из равенства нулю второй скобки: . Отсюда


. (8.30)

Введем обозначения для функции распределения молекул по скоростям (8.29):

. (8.31)

Известно, что среднее значение некоторой физической величины j(x ) можно вычислить по формуле:

Так как в состоянии равновесия давление во всех частях системы одинаково, то естественно допустить, что в газе отсутствуют какие-либо направленные движения молекул, то есть движения молекул предельно неупорядочены.

В отношении скоростей молекулы это означает:

Скорость молекул и ее проекции являются непрерывными величинами, так как ни одно значение скорости не имеет преимущества перед другими значениями;

При тепловом равновесии в газе все направления скоростей молекул равновероятны. В противном случае это привело бы к образованию направленных макроскопических потоков молекул и возникновению перепадов давления.

Так как скорость и ее проекции являются непрерывными величинами, вводится понятие функции плотности распределения f(v x), f(v y), f(v z) по компонентам скоростей молекул (v x , v y , v z) и по модулю скорости f(v)

Выражения для функций плотности вероятности по компонентам скоростей v x , v y , v z имеют вид

;

.

График функции f(v x)изображен на рис. 1.

Функция имеет максимум при v x = 0, симметрична относительно его и экспоненциально стремится к нулю при v x ® ± ¥. Отложим по оси абсцисс элементарные скоростные интервалы dv x около значений v x , равных 0; ± v x ¢; ± v x ¢¢. Произведение f(v x) dv x равно доле молекул, компонента скорости v x которых лежит в интервале около указанных значений. С другой стороны, произведение f(v x) dv x на графике равно заштрихованным площадкам около выбранных скоростей.

Из сопоставления размеров заштрихованных площадей следует:

Относительное большинство молекул имеет проекцию скорости вдоль оси v x , близкую к нулю;

Доли молекул, имеющих одинаковые значения v x , но летящие в противоположных направлениях (разные знаки +v x и -v x), одинаковы;

Число молекул, имеющих большие значения компонент скоростей, мало (мала площадь около ± v x ¢¢).

Аналогичный анализ можно провести и для f(v y), f(v z).

График функции f(v) изображен на рис. 2.

Функция равна 0 при v = 0; стремится к нулю при v ® ¥, при v = v b имеет максимум. Значение скорости v b , при которой функция плотности распределения достигает максимума, называется наиболее вероятной скоростью. Ее значение находится из условия экстремума.

.

Произведение f(v) dv дает долю молекул, скорости которых лежат в выбранном интервале dv. На графике это произведение равно заштрихованным площадкам. Как видно из графика, максимальная площадка соответствует скорости v b . С увеличением скорости доля молекул, обладающих большими скоростями, уменьшается (малая площадь при v 3). Зная аналитический вид f(v), можно найти

;

.

Распределение молекул по скоростям зависит от температуры.

Закон Максвелла распределения молекул газа по скоростям описывает поведение очень большого числа частиц, то есть является статистическим законом. Распределение молекул по скоростям устанавливается посредством их столкновений. При столкновениях изменяются скорости отдельных молекул, но закон распределения по скоростям не изменяется.

Характерными параметрами распределения Максвелла являются наиболее вероятная скорость υ в, соответствующая максимуму кривой распределения, и среднеквадратичная скорость где – среднее значение квадрата скорости.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме Распределение Максвелла по скоростям. Наиболее вероятная среднеквадратичная скорость движения молекулы.:

  1. 57. Молекулярно-кинетический смысл температуры. Энергия и скорость теплового движения молекул.
  2. Механическое движение Относительность движения, Система отсчета, Материальная точка, Траектория. Путь и перемещение. Мгновенная скорость. Ускорение. Равномерное и равноускоренное движение

Статистические распределения

При тепловом движении положения частиц, величина и направление их скоростей изменяются случайным образом. Вследствие гигантского числа частиц случайный характер их движения, проявляется в существовании определенных статистических закономерностей в распределении частиц системы по координатам, значениям скоростей и т.д. Подобные распределения характеризуются соответствующими функциями распределения. Функция распределения (плотность вероятности) характеризует распределения частиц по соответствующей переменной (координаты, величины скоростей и т.д). В основе классической статистики лежат следующие положения:

Все частицы классической системы различимы (т.е. их можно пронумеровать и следить за каждой частицей);

Все динамические переменные, характеризующие состояние частицы, изменяются непрерывно;

В заданном состоянии может находиться неограниченное число частиц.

В состоянии теплового равновесия как бы не изменялись скорости молекул при столкновениях, средняя квадратичная скорость молекул в газе, при Т=cоnst, остается постоянной и равной


Это объясняется тем, что в газе устанавливается некоторое стационарное статистическое распределение молекул по значениям скоростей, называемое распределением Максвелла. Распределение Максвелла описывается некоторой функцией f(u), называемой функцией распределения молекул по скоростям .

,

где N – общее число молекул, dN(u) – число молекул, скорости которых принадлежат интервалу скоростей от u до u + du.

Таким образом, функция Максвелла f(u) равна вероятности того, что величина скорости наугад выбранной молекулы принадлежит единичному интервалу скоростей вблизи значения u. Или она равна доле молекул, скорости которых принадлежат единичному интервалу скоростей вблизи значения u.

Явный вид функции f(u) был получен теоретически Максвеллом:

.

График функции распределения приведен на рис. 12. Из графика следует, что функция распределения стремится к нулю при u®0 и u®¥ и проходит через максимум при некоторой скорости u В, называемой наиболее вероятной скоростью . Этой скоростью и близкой к ней обладает наибольшее число молекул. Кривая несимметрична относительно u В. Значение наиболее вероятной скорости можно найти, используя условие для максимума функции f(u).

.

На рис. 13 показано смещение u В с изменением температуры, при этом площадь под графиком остается постоянной и равной 1, что следует из условия нормировки функции Максвелла

Условие нормировки следует из смысла данного интеграла – он определяет вероятность того, что скорость молекулы попадает в интервал скоростей от 0 до ¥. Это достоверное событие, его вероятность, по определению, принимается равной 1.