Потенциал покоя мембраны. Характеристика потенциала действия и механизм его возникновения. Мембранный потенциал действия

Все живые клетки обладают способностью под влиянием раздражителей переходить из состояния физиологического покоя в состояние активности или возбуждения.

Возбуждение - это комплекс активных электрических, химических и функциональных изменений в возбудимых тканях (нервной, мышечной или железистой), которыми ткань отвечает на внешнее воздействие. Важную роль при возбуждении играют электрические процессы, обеспечивающие проведение возбуждения по нервным волокнам и приводящие ткани в активное (рабочее) состояние.

Мембранный потенциал

Живые клетки обладают важным свойством: внутренняя поверхность клетки всегда заряжена отрицательно по отношению к внешней ее стороне. Между внешней поверхностью клетки, заряженной электроположительно по отношению к протоплазме, и внутренней стороной клеточной мембраны существует разность потенциалов, которая колеблется в пределах 60-70 мВ. По данным П. Г. Ко- стюка (2001), у нервной клетки эта разность колеблется в пределах от 30 до 70 мВ. Разность потенциалов между внешней и внутренней сторонами мембраны клетки называют мембранным потенциалом, или потенциалом покоя (рис. 2.1).

Мембранный потенциал покоя присутствует на мембране до тех пор, пока клетка жива, и исчезает с гибелью клетки. Л. Гальвани еще в 1794 г. показал, что если повредить нерв или мышцу, сделав поперечное сечение и приложив к поврежденной части и к месту повреждения электроды, соединенные с гальванометром, то гальванометр покажет ток, который течет всегда от неповрежденной части ткани к месту разреза. Это течение он назвал током покоя. По своей физиологической сути ток покоя и мембранный потенциал покоя - одно и то же. Измеренная в данном опыте разность потенциалов составляет 30-50 мВ, поскольку при повреждении ткани часть тока шунтируется в межклеточном пространстве и окружающей исследуемую структуру жидкости. Разность потенциалов можно рассчитать по формуле Нернста:

где R - газовая постоянная, Т - абсолютная температура, F - число Фарадея, [К] вн. и [К] нар. - концентрация калия внутри и снаружи клетки.

Рис. 2.1.

Причина возникновения потенциала покоя общая для всех клеток. Между протоплазмой клетки и внеклеточной средой существует неравномерное распределение ионов (ионная асимметрия). Состав крови человека по солевому балансу напоминает состав океанской воды. Внеклеточная среда в центральной нервной системе также содержит много хлорида натрия. Ионный состав цитоплазмы клеток беднее. Внутри клеток в 8-10 раз меньше ионов Na + и в 50 раз меньше ионовС!". Основным катионом цитоплазмы является К + . Его концентрация внутри клетки в 30 раз выше, чем во внеклеточной среде, и приблизительно равняется внеклеточной концентрации Na Основными противоионами для К + в цитоплазме являются органические анионы, в частности анионы аспарагиновой, гистаминовой и других аминокислот. Такая асимметрия - это нарушение термодинамического равновесия. Для того чтобы восстановить его, ионы калия должны постепенно покидать клетку, а ионы натрия - стремиться в нее. Однако этого не происходит.

Первым препятствием для выравнивания разности концентраций ионов является плазматическая мембрана клетки. Она состоит из двойного слоя молекул фосфолипидов, покрытых изнутри слоем белковых молекул, а снаружи - слоем углеводов (мукополисахари- дов). Некоторая часть клеточных белков встроена непосредственно в двойной липидный слой. Это внутренние белки.

Мембранные белки всех клеток делят на пять классов: насосы, каналы, рецепторы, ферменты и структурные белки. Насосы служат для перемещения ионов и молекул против градиентов концентрации, используя для этого метаболическую энергию. Белковые каналы, или поры, обеспечивают избирательную проницаемость (диффузию) через мембрану соответствующих им по размеру ионов и молекул. Рецепторные белки, обладающие высокой специфичностью, распознают и связывают, прикрепляя к мембране, многие типы молекул, необходимых для жизнедеятельности клетки в каждый определенный момент времени. Ферменты ускоряют течение химических реакций у поверхности мембраны. Структурные белки обеспечивают соединение клеток в органы и поддержание субклеточной структуры.

Все эти белки специфичны, но не строго. В определенных условиях тот или иной белок может быть одновременно и насосом, и ферментом, и рецептором. Через каналы мембраны молекулы воды, а также соответствующие размерам пор ионы входят в клетку и выходят из нее. Проницаемость мембраны для различных катионов не одинакова и изменяется при разных функциональных состояниях ткани. В покое мембрана в 25 раз более проницаема для ионов калия, чем для ионов натрия, а при возбуждении натриевая проницаемость примерно в 20 раз превышает калиевую. В состоянии покоя равные концентрации калия в цитоплазме и натрия во внеклеточной среде должны обеспечить и равное количество положительных зарядов по обе стороны мембраны. Но поскольку проницаемость для ионов калия выше в 25 раз, то калий, выходя из клетки, делает ее поверхность все более положительно заряженной по отношению к внутренней стороне мембраны, около которой все более накапливаются слишком крупные для пор мембраны отрицательно заряженные молекулы аспарагиновой, гистаминовой и других аминокислот, «отпустивших» калий за пределы клетки, но «не дающих» ему уйти далеко благодаря своему отрицательному заряду. С внутренней стороны мембраны копятся отрицательные заряды, а с внешней - положительные. Возникает разность потенциалов. Диффузный ток ионов натрия в протоплазму из внеклеточной жидкости удерживает эту разность на уровне 60-70 мВ, не давая ей возрастать. Диффузный ток ионов натрия в покое в 25 раз слабее, чем встречный ток ионов калия. Ионы натрия, проникая внутрь клетки, снижают величину потенциала покоя, позволяя ей удерживаться на определенном уровне. Таким образом, величина потенциала покоя мышечных и нервных клеток, а также нервных волокон определяется соотношением числа положительно заряженных ионов калия, диффундирующих в единицу времени из клетки наружу, и положительно заряженных ионов натрия, диффундирующих через мембрану в противоположном направлении. Чем это соотношение выше, тем больше величина потенциала покоя, и наоборот.

Вторым препятствием, удерживающим разность потенциалов на определенном уровне, является натрий-калиевый насос (рис. 2.2). Он получил название натрий-калиевого или ионного, поскольку осуществляет активное выведение (выкачивание) из протоплазмы проникающих в нее ионов натрия и введение (нагнетание) в нее ионов калия. Источником энергии для работы ионного насоса является расщепление АТФ (аденозинтрифосфата), которое происходит под воздействием фермента аденозинтрифосфатазы, локализованного в мембране клетки и активируемого теми же ионами, т. е. калием и натрием (нагрий-калий-зависимая АТФ-аза).

Рис. 2.2.

Это крупный белок, превышающий по размеру толщину клеточной мембраны. Молекула этого белка, пронизывая мембрану насквозь, связывает с внутренней стороны преимущественно натрий и АТФ, а с наружной - калий и различные ингибиторы типа глико- зидов. При этом возникает мембранный ток. Благодаря этому току обеспечивается соответствующее направление переноса ионов. Перенос ионов происходит в три этапа. Сначала ион соединяется с молекулой переносчика, образуя комплекс ион-переносчик. Затем этот комплекс проходит через мембрану или переносит через нее заряд. В завершении - ион освобождается от переносчика на противоположной стороне мембраны. Одновременно происходит аналогичный процесс, переносящий ионы в противоположном направлении. Если насос осуществляет перенос одного иона натрия на один ион калия, то он просто поддерживает концентрационный градиент по обе стороны мембраны, но не вносит вклада в создание мембранного потенциала. Чтобы внести этот вклад, ионный насос должен переносить натрий и калий в соотношении 3:2, т. е. на 2 иона калия, поступающих в клетку, из клетки он должен выводить 3 иона натрия. Работая с максимальной нагрузкой, каждый насос способен перекачивать через мембрану около 130 ионов калия и 200 ионов натрия в секунду. Это предельная скорость. В реальных условиях работа каждого насоса регулируется в соответствии с потребностями клетки. У большинства нейронов на один квадратный микрон мембранной поверхности приходится от 100 до 200 ионных насосов. Следовательно, мембрана любой нервной клетки содержит 1 миллион ионных насосов, способных перемещать до 200 миллионов ионов натрия в секунду.

Таким образом, мембранный потенциал (потенциал покоя) создается в результате как пассивных, так и активных механизмов. Степень участия тех или иных механизмов в разных клетках неодинакова, из чего следует, что мембранный потенциал может быть неодинаковым в разных структурах. Активность насосов может зависеть от диаметра нервных волокон: чем тоньше волокно, тем отношение размера поверхности к объему цитоплазмы выше, соответственно, и активность насосов, необходимая для поддержания разницы концентраций ионов на поверхности и внутри волокна, должна быть больше. Другими словами, мембранный потенциал может зависеть от структуры нервной ткани, а значит, и от ее функционального назначения. Электрическая поляризация мембраны - главное условие, обеспечивающее возбудимость клетки. Это ее постоянная готовность к действию. Это запас потенциальной энергии клетки, который она может использовать в случае, если нервной системе понадобится ее немедленная реакция.

Мембранным потенциалом покоя (МПП) или потенциалом покоя (ПП) называют разность потенци­алов покоящейся клетки между внутренней и наружной сторонами мембраны.Внутренняя сторона мембраны клетки заряжена отрица­тельно по отношению к наружной. Принимая потенциал наружного раствора за нуль, МПП записывают со знаком «минус». ВеличинаМПП зависит от вида ткани и варьирует от -9 до -100 мв. Сле­довательно, в состоянии покоя клеточная мембранаполяризована. Уменьшение величины МПП называютдеполяризацией, увеличение -гиперполяризацией, восстановление исходного значенияМПП -реполяризацией мембраны.

Основные положения мембранной теории происхождения МПП сводятся к следующему. В состоянии покоя клеточная мембрана хорошо проницаема для ионов К + (в ряде клеток и для СГ), менее проницаема для Na + и практически непроницаема для внутриклеточ­ных белков и других органических ионов. Ионы К + диффундируют из клетки по концентрационному градиенту, а непроникающие анионы остаются в цитоплазме, обеспечивая появление разности по­тенциалов через мембрану.

Возникающая разность потенциалов препятствует выходу К + из клет­ки и при некотором ее значении наступает равновесие между выходом К + по концентрационному градиенту и входом этих катионов по воз­никшему электрическому градиенту. Мембранный потенциал, при ко­тором достигается это равновесие, называетсяравновесным потенци­алом. Его величина может быть рассчитана из уравнения Нернста:

10 В нервных волокнах сигналы передаются с помощью потенциалов действия, которые представляют собой быстрые изменения мембранного потенциала, быстро распространяющиеся вдоль мембраны нервного волокна. Каждый потенциал действия начинается со стремительного сдвига потенциала покоя от нормального отрицательного значения до положительной величины, затем он почти так же быстро возвращается к отрицательному потенциалу. При проведении нервного сигнала потенциал действия движется вдоль нервного волокна вплоть до его окончания. На рисунке показаны изменения, возникающие на мембране во время потенциала действия, с переносом положительных зарядов внутрь волокна вначале и возвращением положительных зарядов наружу в конце. В нижней части рисунка графически представлены последовательные изменения мембранного потенциала в течение нескольких 1/10000 сек, иллюстрирующие взрывное начало потенциала действия и почти столь же быстрое восстановление. Стадия покоя. Эта стадия представлена мембранным потенциалом покоя, который предшествует потенциалу действия. Мембрана во время этой стадии поляризована в связи с наличием отрицательного мембранного потенциала, равного -90 мВ. Фаза деполяризации. В это время мембрана внезапно становится высокопроницаемой для ионов натрия, позволяя огромному числу положительно заряженных ионов натрия диффундировать внутрь аксона. Нормальное поляризованное состояние в -90 мВ немедленно нейтрализуется поступающими внутрь положительно заряженными ионами натрия, в результате потенциал стремительно нарастает в положительном направлении. Этот процесс называют деполяризацией, В крупных нервных волокнах значительный избыток входящих внутрь положительных ионов натрия обычно приводит к тому, что мембранный потенциал «проскакивает» за пределы нулевого уровня, становясь слегка положительным. В некоторых более мелких волокнах, как и в большинстве нейронов центральной нервной системы, потенциал достигает нулевого уровня, не «перескакивая» его. Фаза реполяризации. В течение нескольких долей миллисекунды после резкого повышения проницаемости мембраны для ионов натрия, натриевые каналы начинают закрываться, а калиевые - открываться. В результате быстрая диффузия ионов калия наружу восстанавливает нормальный отрицательный мембранный потенциал покоя. Этот процесс называют реполя-ризацией мембраны. потенциал действия Для более полного понимания факторов, являющихся причиной деполяризации и реполяризации, необходимо изучить особенности двух других типов транспортных каналов в мембране нервного волокна: электроуправляемых натриевых и калиевых каналов. Электроупавляемые натриевые и калиевые каналы. Необходимым участником процессов деполяризации и реполяризации во время развития потенциала действия в мембране нервного волокна является электроуправляемый натриевый канал. Электроуправляемый калиевый канал также играет важную роль в увеличении скорости реполяризации мембраны. Оба типа электроуправляемых каналов существуют дополнительно к Na+/K+ -насосу и каналам К*/Na+-утечки. Электроуправляемый натриевый канал. В верхней части рисунка показан электроуправляемый натриевый канал в трех различных состояниях. Этот канал имеет двое ворот: одни вблизи наружной части канала, которые называют активационными воротами, другие - у внутренней части канала, которые называют инактивационными воротами. В верхней левой части рисунка изображено состояние этих ворот в покое, когда мембранный потенциал покоя равен -90 мВ. В этих условиях активационные ворота закрыты и препятствуют поступлению ионов натрия внутрь волокна. Активация натриевого канала. Когда мембранный потенциал покоя смещается в направлении менее отрицательных значений, поднимаясь от -90 мВ в сторону нуля, на определенном уровне (обычно между -70 и -50 мВ) происходит внезапное конформационное изменение актива-ционных ворот, в результате они переходят в полностью открытое состояние. Это состояние называют активированным состоянием канала, при котором ионы натрия могут свободно входить через него внутрь волокна; при этом натриевая проницаемость мембраны возрастает в диапазоне от 500 до 5000 раз. Инактивация натриевого канала. В верхней правой части рисунке показано третье состояние натриевого канала. Увеличение потенциала, открывающее активационные ворота, закрывает инактивационные ворота. Однако инактивационные ворота закрываются в течение нескольких десятых долей миллисекунды после открытия активационных ворот. Это значит, что конформационное изменение, приводящее к закрытию инактивационных ворот, - процесс более медленный, чем конформационное изменение, открывающее активационные ворота. В результате через несколько десятых долей миллисекунды после открытия натриевого канала инактивационные ворота закрываются, и ионы натрия не могут более проникать внутрь волокна. С этого момента мембранный потенциал начинает возвращаться к уровню покоя, т.е. начинается процесс реполяризации. Существует другая важная характеристикая процесса инактивации натриевого канала: инактивационные ворота не открываются повторно до тех пор, пока мембранный потенциал не вернется к значению, равному или близкому к уровню исходного потенциала покоя. В связи с этим повторное открытие натриевых каналов обычно невозможно без предварительной реполяризации нервного волокна.

13Механизм проведения возбуждения по нервным волокнам зависит от их типа. Существуют два типа нервных волокон: миелиновые и безмиелиновые. Процессы метаболизма в безмиелиновых волокнах не обеспечивают быструю компенсацию расхода энергии. Распространение возбуждения будет идти с постепенным затуханием – с декрементом. Декре-ментное поведение возбуждения характерно для низкоорганизованной нервной системы. Возбуждение распространяется за счет малых круговых токов, которые возникают внутрь волокна или в окружающую его жидкость. Между возбужденными и невозбужденными участками возникает разность потенциалов, которая способствует возникновению круговых токов. Ток будет распространяться от «+» заряда к«-». В месте выхода кругового тока повышается проницаемость плазматической мемб-раны для ионов Na, в результате чего происходит деполяризация мембраны. Между вновь возбужденным участком и соседним невозбужденным вновь возникает разность потенциалов, что приводит к возникновению круговых токов. Возбуждение постепенно охватывает соседние участки осевого цилиндра и так распространяется до конца аксона. В миелиновых волокнах благодаря совершенству метаболизма возбуждение проходит, не затухая, без декремента. За счет большого радиуса нервного волокна, обусловленного миелиновой оболочкой, электрический ток может входить и выходить из волокна только в области перехвата. При нанесения раздражения возникает деполяризация в области перехвата А, соседний перехват В в это время поляризован. Между перехватами возникает разность потенциалов, и появляются круговые токи. За счет круговых токов возбуждаются другие перехваты, при этом возбуждение распространяется сальтаторно, скачкообразно от одного перехвата к другому. Существует три закона проведения раздражения по нервному волокну. Закон анатомо-физиологической целостности. Проведение импульсов по нервному волокну возможно лишь в том случае, если не нарушена его целостность. Закон изолированного проведения возбуждения. Существует ряд особенностей распространения возбуждения в периферических, мякотных и безмя-котных нервных волокнах. В периферических нервных волокнах возбуждение передается только вдоль нервного волокна, но не передается на соседние, которые находятся в одном и том же нервном стволе. В мякотных нервных волокнах роль изолятора выполняет мие-линовая оболочка. За счет миелина увеличивается удельное сопротивление и происходит уменьшение электрической емкости оболочки. В безмякотных нервных волокнах возбуждение передается изолированно. Закон двустороннего проведения возбуждения. Нервное волокно проводит нервные импульсы в двух направлениях – центростремительно и цен-тробежно.

14 Синапсы – это специализированная структура, которая обеспечивает передачу нервного импульса из нервного волокна на эффекторную клетку – мышечное волокно, нейрон или секреторную клетку.

Синапсы – это места соединения нервного отростка (аксона) одного нейрона с телом или отростком (дендритом, аксоном) другой нервной клетки (прерывистый контакт между нервными клетками).

Все структуры, обеспечивающие передачу сигнала с одной нервной структуры на другую – синапсы .

Значение – передает нервные импульсы с одного нейрона на другой => обеспечивает передачу возбуждения по нервному волокну (распространение сигнала).

Большое количество синапсов обеспечивает большую площадь для передачи информации.

Строение синапса:

1. Пресинаптическая мембрана - принадлежит нейрону, ОТ которого передается сигнал.

2. Синаптическая щель , заполненная жидкостью с высоким содержанием ионов Са.

3. Постсинаптическая мембрана - принадлежит клеткам, НА которые передается сигнал.

Между нейронами всегда существует перерыв, заполненный межтканевой жидкостью.

В зависимости от плотности мембран, выделяют:

- симметричные (с одинаковой плотностью мембран)

- асимметричные (плотность одной из мембран выше)

Пресинаптическая мембрана покрывает расширение аксона передающего нейрона.

Расширение - синаптическая пуговка/синаптическая бляшка .

На бляшке - синаптические пузырьки (везикуль).

С внутренней стороны пресинаптической мембраны – белковая/гексогональная решетка (необходима для высвобождения медиатора), в которой находится белок - нейрин . Заполнена синаптическими пузырьками, которые содержат медиатор – специальное вещество, участвующее в передаче сигналов.

В состав мембраны пузырьков входит - стенин (белок).

Постсинаптическая мембрана покрывает эффекторную клетку. Содержит белковые молекулы, избирательно чувствительные к медиатору данного синапса, что обеспечивает взаимодействие.

Эти молекулы – часть каналов постсинаптической мембраны + ферменты (много), способные разрушать связь медиатора с рецепторами.

Рецепторы постсинаптической мембраны.

Постсинаптическая мембрана содержит рецепторы, обладающие родством с медиатором данного синапса.

Между ними находится снаптическая щель . Она заполнена межклеточной жидкостью, имеющей большое количество кальция. Обладает рядом структурных особенностей – содержит белковые молекулы, чувствительные к медиатору, осуществляющему передачу сигналов.

15 Синаптическая задержка проведения возбуждения

Для того, чтобы возбуждение распространилось по рефлекторной дуге затрачивается определенное время. Это время состоит из следующих периодов:

1. период временно необходимый для возбуждения рецепторов (рецептора) и для проведения импульсов возбуждения по афферентным волокнам до центра;

2. период времени, необходимый для распространения возбуждения через нервные центры;

3. период времени, необходимый на распространение возбуждения по эфферентным волокнам до рабочего органа;

4. латентный период рабочего органа.

16 Торможение играет важную роль в обработке поступающей в ЦНС информации. Особенно ярко выражена эта роль у пресинаптического торможения. Оно более точно регулирует процесс возбуждения, поскольку этим торможением могут быть заблокированы отдельные нервные волокна. К одному возбуждающему нейрону могут подходить сотни и тысячи импульсов по разным терминалям. Вместе с тем число дошедших до нейрона импульсов определяется пресинаптическим торможением. Торможение латеральных путей обеспечивает выделение существенных сигналов из фона. Блокада торможения ведет к широкой иррадиации возбуждения и судорогам, например при выключении пресинаптического торможения бикукулином.

Потенциал покоя

Мембраны, в том чикле плазматические, в принципе непроницаемы для заряженных частиц. Правда, в мембране имеется Na+/K+-АТФ-аза (Nа+/К+-АТР-аза), осуществляющая активный перенос ионов Na+ из клетки в обмен на ионы К+. Этот транспорт энергозависим и сопряжен с гидролизом АТФ (АТР) . За счет работы «Nа+,К+-насоса» поддерживается неравновесное распределение ионов Na+ и К+ между клеткой и окружающей средой. Поскольку расщепление одной молекулы АТФ обеспечивает перенос трех ионов Na+ (из клетки) и двух ионов К+ (в клетку), этот транспорт электрогенен, т. е. цитоплазма клетки заряжена отрицательно по отношению к внеклеточному пространству.

Электрохимический потенциал. Содержимое клетки заряжено отрицательно по отношению к внеклеточному пространству. Основная причина возникновения на мембране электрического потенциала (мембранного потенциала Δψ) - существование специфических ионных каналов. Транспорт ионов через каналы происходит по градиенту концентрации или под действием мембранного потенциала. В невозбужденной клетке часть К+-каналов находится в открытом состоянии и ионы К+ постоянно диффундируют из нейрона в окружающую среду (по градиенту концентрации). Покидая клетку, ионы К+ уносят положительный заряд, что создает потенциал покоя равный примерно -60 мВ. Из коэффициентов проницаемости различных ионов видно, что каналы, проницаемые для Na+ и Cl- , преимущественно закрыты. Ионы фосфата и органические анионы, например белки, практически не могут проходить через мембраны. С помощью уравнения Нернста (RT/ZF,где R-газовая постоянная,T-абсолютная температура,Z-валентность иона,F-число Фарадея) можно показать, что мембранный потенциал нервной клетки в первую очередь определяется ионами К+, которые вносят основной вклад в проводимость мембраны.

Ионные каналы . В мембранах нервной клетки имеются каналы, проницаемые для ионов Na+, К+, Са2+ и Cl-. Эти каналы чаще всего находятся в закрытом состоянии и открываются лишь на короткое время. Каналы подразделяются на потенциал-управляемые (или электровозбудимые), например быстрые Na+-каналы, и лиганд-управляемые (или хемовозбудимые), например никотиновые холинэргические рецепторы. Каналы - это интегральные мембранные белки, состоящие из многих субъединиц. В зависимости от изменения мембранного потенциала или взаимодействия с соответствующими лигандами, нейромедиаторами и нейромодуляторами (см. рис. 343), белки-рецепторы могут находиться в одном их двух конформационных состояний, что и определяет проницаемость канала («открыт» - «закрыт» - и т.д.).

Активный транспорт:

Стабильность градиента ионов достигается посредством активного транспорта: мембранные белки переносят ионы через мембрану против электрического и (или) концентрационного градиентов, потребляя для этого метаболическую энергию. Наиболее важный процесс активного транспорта - это работа Na/K-насоса, существующего практически во всех клетках; насос выкачивает ионы натрия из клетки, одновременно накачивая ионы калия внутрь клетки. Таким образом обеспечивается низкая внутриклеточная концентрация ионов натрия и высокая-калия. Градиент концентрации ионов натрия на мембране имеет специфические функции, связанные с передачей информации в виде электрических импульсов, а также с поддержанием других активных транспортных механизмов и регулирования объема клетки. Поэтому неудивительно, что более 1/3 энергии, потребляемой клеткой, расходуется на Na/К-насос, а в некоторых наиболее активных клетках на его работу расходуется до 70% энергии.

Пассивный транспорт:

Свободная диффузия и транспортные процессы, обеспечиваемые ионными каналами и переносчиками, осуществляются по градиенту концентрации или градиенту электрическою заряда (называемым вместе электрохимическим градиентом). Такие механизмы транспорта классифицируются как «пассивный транспорт». Например, по такому механизму в клетки поступает глюкоза из крови, где ее концентрация гораздо выше.

Ионный насос:

Ионные насосы (помпы) – интегральные белки, которые обеспечивают активный перенос ионов против градиента концентрации. Энергией для транспорта служит энергия гидролиза АТФ. Различают Na+ / K+ помпу (откачивает из клетки Na+ в обмен на К+), Ca++ помпу (откачивает из клетки Ca++), Cl– помпу (откачивает из клетки Cl –).

В результате работы ионных насосов создаются и поддерживаются трансмембранные ионные градиенты:

Концентрация Na+, Ca++, Cl – внутри клетки ниже, чем снаружи (в межклеточной жидкости);

Концентрация K+ внутри клетки выше, чем снаружи.

Натрий - калиевый насос - это особый белок, пронизывающий всю толщу мембраны, который постоянно накачивает ионы калия внутрь клетки, одновременно выкачивая из нее ионы натрия; при этом перемещение обоих ионов происходит против градиентов их концентраций. Выполнение этих функций возможно благодаря двум важнейшим свойствам этого белка. Во-первых, форма молекулы переносчика может меняться. Эти изменения происходят в результате присоединения к молекуле переносчика фосфатной группы за счет энергии, выделяющейся при гидролизе АТФ (т. е. разложения АТФ до АДФ и остатка фосфорной кислоты). Во-вторых, сам этот белок действует как АТФ-аза (т. е. фермент, гидролизующий АТФ). Поскольку этот белок осуществляет транспорт натрия и калия и, кроме того, об­ладает АТФ-азной активностью, он так и называется - «натрий-калиевая АТФ-аза».

Упрощенно действие натрий-калиевого насоса можно представить следующим образом.

1. С внутренней стороны мембраны к молекуле белка-переносчика поступают АТФ и ионы натрия, а с наружной - ионы калия.

2. Молекула переносчика осуществляет гидролиз одной молекулы АТФ.

3. При участии трех ионов натрия за счет энергии АТФ к переносчику присоединяется остаток фосфорной кислоты (фосфорилирование переносчика); сами эти три иона натрия также присоединяются к переносчику.

4. В результате присоединения остатка фосфорной кислоты происходит такое изменение формы молекулы переносчика (конформация), что ионы натрия оказываются по другую сторону мембраны, уже вне клетки.

5. Три иона натрия выделяются во внешнюю среду, а вместо них с фосфорилированным переносчиком соединяются два иона калия.

6. Присоединение двух ионов калия вызывает дефосфорилирование переносчика - отдачу им остатка фосфорной кислоты.

7. Дефосфорилирование, в свою очередь, вызывает такую конформацию переносчика, что ионы калия оказываются по другую сторону мембраны, внутри клетки.

8. Ионы калия высвобождаются внутри клетки, и весь процесс повторяется.

Значение натрий-калиевого насоса для жизни каждой клетки и организма в целом определяется тем, что непрерывное откачивание из клетки натрия и нагнетание в нее калия необходимо для осуществления многих жизненно важных процессов: осморегуляции и сохранения клеточного объема, поддержания разности потенциалов по обе стороны мембраны, поддержания электрической активности в нервных и мышечных клетках, для активного транспорта через мембраны других веществ (сахаров, аминокислот). Большие количества калия требуются также для белкового синтеза, гликолиза, фотосинтеза и других процессов. Примерно треть всей АТФ, расходуемой животной клеткой в состоянии покоя, затрачивается именно на поддержание работы натрий-калиевого насоса. Если каким-либо внешним воздействием подавить дыхание клетки, т. е. прекратить поступление кислорода и выработку АТФ, то ионный состав внутреннего содержимого клетки начнет постепенно меняться. В конце концов он придет в равновесие с ионным составом среды, окружающей клетку; в этом случае наступает смерть.

Потенциал действия возбудимой клетки и его фазы:

П.Д,-быстрое колебание мембранного потенциала, возникающего при возбуждении нервн.,мыш. И др клеток.может распрост-ся.

1. фаза нарастания

2.реверсия или овершут(переворачивается заряд)

3.восстановление полярности или реполяризация

4.положительный следовой потенциал

5. отрицательный след. Потенциал

Локальный ответ- это процесс ответа мембраны на раздражитель в определенной зоне нейрона. Не распростр по аксонам. Чем больше стимул, тем больше меняется локальный ответ. При этом уровень деполяризации не достигает критического, остается допороговым. Вследствие этого локальный ответ может оказывать электротонические влияния на соседние участки мембраны, но не может распространяться так, как потенциал действия. Возбудимость мембраны в местах локальной деполяризации и в местах вызванной ей электротонической деполяризации повышена.

Активация и инактивация натриевой системы:

Деполяризующий толчок тока приводит к активации натриевых каналов и увеличению натриевого тока. Это обеспечивает локальный ответ. Смещение мембранного потенциала до критического уровня приводит к стремительной деполяризации клеточной мембраны и обеспечивает фронт нарастания потенциала действия. Если удалить ион Na+ из внешней среды, то потенциал действия не возникает. Аналогичный эффект удавалось получить при добавлении в перфузионный раствор ТТХ (тетродотоксин) - специфического блокатора на­триевых каналов. При использовании метода «voltage-clamp» было показано, что в ответ на действие деполяризующего тока через мембрану протекает кратковременный (1-2 мс) входящий ток, который сменяется через некоторое время выходящим током (рис. 2.11). При замене ионов натрия на другие ионы и вещества, например холин, удалось показать, что входящий ток обеспечивается натриевым током, т. е. в ответ на деполяризующий стимул происходит повышение натриевой проводимости (gNa+). Таким образом, развитие фазы деполяризации потенциала действия обусловлено повышением на­триевой проводимости.

Рассмотрим принцип работы ионных каналов на примере натриевого канала. Полагают, что в состоянии покоя натриевый канал закрыт. При деполяризации клеточной мембраны до определенного уровня происходит открытие m-активационных ворот (активация) и усиление поступления ионов Na+ внутрь клетки. Через несколько миллисекунд после открытия m-ворот происходит закрытие п-ворот, расположенных у выхода натриевых каналов (инактивация) (рис. 2.4). Инактивация развивается в клеточной мембране очень быстро и степень инактивации зависит от величины и времени действия деполяризующего стимула.

Работа натриевых каналов определяется величиной мембранного потенциала в соответствии с определенными законами вероятности. Рассчитано, что активированный натриевый канал пропускает всего 6000 ионов за 1 мс. При этом весьма существенный натриевый ток, который проходит через мембраны во время возбуждения, представляет собой сумму тысяч одиночных токов.

При генерации одиночного потенциала действия в толстом нервном волокне изменение концентрации ионов Na+ во внутренней среде составляет всего 1/100000 от внутреннего содержания ионов Na гигантского аксона кальмара. Однако для тонких нервных волокон это изменение концентрации может быть весьма существенным.

Кроме натриевых, в клеточных мембранах установлены другие виды каналов, избирательно проницаемых для отдельных ионов: К+, Са2+, причем существуют разновидности каналов для этих ионов (см. табл. 2.1).

Ходжкин и Хаксли сформулировали принцип «независимости» каналов, согласно которому потоки натрия и калия через мембрану независимы друг от друга.

Изменение возбудимости при возбуждении:

1. Абсолютная рефрактерность - т.е. полная невозбудимость, определяемая сначала полной занятостью "натриевого" механизма, а затем инактивацией натриевых каналов (это примерно соотвествует пику потенциала действия).

2. Относительная рефрактерность - т.е. сниженная возбудимость, связанная с частичной натриевой инактивацией и развитием калиевой активации. При этом порог повышен, а ответ [ПД] снижен.

3. Экзальтация - т.е. повышенная возбудимость - супернормальность, появляющаяся от следовой деполяризации.

4. Субнормальность - т.е. пониженная возбудимость, возникающая от следовой гиперполяризации. Амплитуды потенциала действия на фазе следовой негативности несколько снижены, а на фоне следовой позитивности - несколько повышены.

Наличие рефрактерных фаз обусловливает прерывистый (дискретный) характер нервной сигнализации, а ионный механизм потенциала действия обеспечивает стандартность потенциала действия (нерных импульсов). В этой ситуации изменения внешних сигналов кодируется лишь изменением частоты потенциала действия (частотный код) или изменением количества потенциалов действия.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20

Мембранный потенциал покоя

В покое на наружной стороне плазматической мембраны располагается тонкий слой положительных зарядов, а на внутренней стороне – отрицательных. Разность между ними называется мембранным потенциалом покоя. Если считать наружный заряд равным нулю, то разность зарядов между наружной и внутренней поверхностями у большинства нейронов оказывается близкой к -65 мВ, хотя она и может у отдельных клеток варьировать от -40 до -80 мВ.

Возникновение этой разности зарядов обусловлено неодинаковым распределением ионов калия, натрия и хлора внутри клетки и снаружи её, а также большей проницаемостью покоящейся клеточной мембраны лишь для ионов калия.

У возбудимых клеток мембранный потенциал покоя (МПП) способен сильно изменяться и эта способность является основой для возникновения электрических сигналов. Уменьшение мембранного потенциала покоя, например, с -65 до -60 мВ, называется деполяризацией , а увеличение, например, с -65 до -70 мВ, – гиперполяризацией .

Если деполяризация достигнет некоторого критического уровня, например -55 мВ, то проницаемость мембраны для ионов натрия на короткое время становится максимальной, они устремляются в клетку и в связи с этим трансмембранная разность потенциалов стремительно уменьшается до 0, а затем приобретает положительное значение. Это обстоятельство приводит к закрытию натриевых каналов и стремительному выходу из клетки ионов калия через предназначенные только для них каналы: в результате восстанавливается первоначальная величина мембранного потенциала покоя. Эти быстро происходящие изменения мембранного потенциала покоя называются потенциалом действия. Потенциал действия является приводящимся электрическим сигналом, он быстро распространяется по мембране аксона до самого его окончания, причём нигде не меняет свою амплитуду.

Кроме потенциалов действия в нервной клетке, вследствие изменения её мембранной проницаемости, могут возникать местные или локальные сигналы: рецепторный потенциал и постсинаптический потенциал . Их амплитуда значительно меньше, чем у потенциала действия, кроме того, она существенно уменьшается при распространении сигнала. По этой причине местные потенциалы и не могут распространяться по мембране далеко от места своего возникновения.

Работой натрий-калиевого насоса в клетке создаётся высокая концентрация ионов калия, а в клеточной мембране для этих ионов есть открытые каналы. Выходящие из клетки по концентрационному градиенту ионы калия увеличивают количество положительных зарядов на наружной поверхности мембраны. В клетке много крупномолекулярных органических анионов и потому изнутри мембрана оказывается заряженной отрицательно. Все остальные ионы могут проходить через покоящуюся мембрану в очень небольшом количестве, их каналы, в основном, закрыты. Следовательно, потенциал покоя обязан своим происхождением, главным образом, току ионов калия из клетки .


Электрические сигналы: входной, объединённый, проводящийся и выходной

Нейроны вступают в контакты с определёнными клетками-мишенями, причём цитоплазма контактирующих клеток не соединяется и между ними всегда сохраняется синаптическая щель.

Современный вариант нейронной теории связывает определённые части нервной клетки с характером возникающих в них электрических сигналов. В типичном нейроне есть четыре определяемые морфологически области: дендриты, сома, аксон и пресинаптическое окончание аксона. При возбуждении нейрона в нём последовательно появляется четыре разновидности электрических сигналов: входной, объединённый, проводящийся и выходной (рис. 3.3). Каждый из этих сигналов возникает только в определённой морфологической области.

Входными сигналами являются либо рецепторный , либо постсинаптический потенциал . Рецепторный потенциал образуется в окончаниях чувствительного нейрона, когда на них действует определённый стимул: растяжение, давление, свет, химическое вещество и т.п. Действие стимула вызывает открытие определённых ионных каналов мембраны, а последующий ток ионов через эти каналы изменяет первоначальное значение мембранного потенциала покоя; в большинстве случаев происходит деполяризация. Эта деполяризация и является рецепторным потенциалом, её амплитуда пропорциональна силе действующего стимула.

Рецепторный потенциал может распространяться от места действия стимула вдоль мембраны на относительно небольшое расстояние – амплитуда рецепторного потенциала уменьшается по мере удаления от места действия стимула, а затем деполяризующий сдвиг и вовсе исчезнет.

Вторая разновидность входного сигнала – постсинаптический потенциал . Он образуется на постсинаптической клетке после того, как возбуждённая пресинаптическая клетка отправит для неё нейромедиатор. Добравшись путём диффузии до постсинаптической клетки, медиатор присоединяется к специфическим белкам-рецепторам её мембраны, что вызывает открытие ионных каналов. Возникший в связи с этим ток ионов через постсинаптическую мембрану изменяет первоначальное значение мембранного потенциала покоя – этот сдвиг и является постсинаптическим потенциалом.

В одних синапсах такой сдвиг представляет собой деполяризацию и, если она достигнет критического уровня, то постсинаптический нейрон возбуждается. В других синапсах возникает противоположный по направленности сдвиг: постсинаптическая мембрана гиперполяризуется: величина мембранного потенциала становится больше и уменьшить её до критического уровня деполяризации становится труднее. Такую клетку трудно возбудить, она заторможена. Таким образом, деполяризующий постсинаптический потенциал является возбуждающим , а гиперполяризующий – тормозным . Соответственно этому и сами синапсы подразделяются на возбуждающие (вызывающие деполяризацию) и тормозные (вызывающие гиперполяризацию).

Вне зависимости от того, что происходит на постсинаптической мембране: деполяризация или гиперполяризация, величина постсинаптических потенциалов всегда пропорциональна количеству подействовавших молекул медиатора, но обычно их амплитуда невелика. Так же, как и рецепторный потенциал, они распространяются вдоль мембраны на очень небольшое расстояние, т.е. тоже относятся к местным потенциалам.

Таким образом, входные сигналы представлены двумя разновидностями местных потенциалов, рецепторным и постсинаптическим, а возникают эти потенциалы в строго определённых областях нейрона: либо в чувствительных окончаниях, либо в синапсах. Чувствительные окончания принадлежат сенсорным нейронам, где рецепторный потенциал возникает под действием внешних раздражителей. Для интернейронов, а также для эфферентных нейронов входным сигналом может быть только постсинаптический потенциал.



Объединённый сигнал может возникнуть только в таком участке мембраны, где достаточно много ионных каналов для натрия. В этом отношении идеальным объектом является аксонный холмик – место отхождения аксона от тела клетки, поскольку именно здесь самая высокая во всей мембране плотность каналов для натрия. Такие каналы являются потенциалзависимыми, т.е. открываются лишь тогда, когда исходное значение потенциала покоя достигнет критического уровня. Типичное для среднестатистического нейрона значение потенциала покоя составляет приблизительно -65 мВ, а критический уровень деполяризации соответствует примерно -55 мВ. Стало быть, если удастся деполяризовать мембрану аксонного холмика с -65 мВ до -55 мВ, то там возникнет потенциал действия.

Деполяризовать мембрану способны входные сигналы, т.е. либо постсинаптические потенциалы, либо рецепторные. В случае рецепторных потенциалов местом возникновения объединённого сигнала является ближайший к чувствительным окончаниям перехват Ранвье, где наиболее вероятна деполяризация до критического уровня. Каждый чувствительный нейрон имеет множество окончаний, являющихся ветвями одного отростка. И, если в каждом из этих окончаний при действии стимула возникает очень небольшой по амплитуде рецепторный потенциал и распространяется к перехвату Ранвье с уменьшением амплитуды, то он является лишь малой частью общего деполяризующего сдвига. От каждого чувствительного окончания в одно и то же время перемещаются к ближайшему перехвату Ранвье эти небольшие рецепторные потенциалы, а в области перехвата все они суммируются. Если общая сумма деполяризующего сдвига будет достаточной, то в перехвате возникнет потенциал действия.

Постсинаптические потенциалы, возникающие на дендритах, так же невелики, как и рецепторные потенциалы и так же уменьшаются при распространении от синапса до аксонного холмика, где может возникнуть потенциал действия. Кроме того, на пути распространения постсинаптических потенциалов по телу клетки могут оказаться тормозные гиперполяризующие синапсы и потому возможность деполяризации мембраны аксонного холмика на 10 мВ кажется маловероятной. Тем не менее, этот результат регулярно достигается в результате суммации множества небольших постсинаптических потенциалов, возникающих одновременно в многочисленных синапсах, образованных дендритами нейрона с окончаниями аксонов пресинаптических клеток.

Таким образом, объединённый сигнал возникает, как правило, вследствие суммации одновременно образовавшихся многочисленных местных потенциалов. Такая суммация происходит в том месте, где особенно много потенциалзависимых каналов и поэтому легче достигается критический уровень деполяризации. В случае интеграции постсинаптических потенциалов таким местом является аксонный холмик, а суммация рецепторных потенциалов происходит в ближайшем от чувствительных окончаний перехвате Ранвье (или близко расположенным к ним участком немиелинизированного аксона). Область возникновения объединённого сигнала называется интегративной или триггерной.

Накопление небольших деполяризующих сдвигов молниеносно трансформируется в интегративной зоне в потенциал действия, который является максимальным электрическим потенциалом клетки и возникает по принципу "всё или ничего". Это правило надо понимать так, что деполяризация ниже критического уровня не приносит никакого результата, а при достижении этого уровня всегда, независимо от силы стимулов, обнаруживается максимальный ответ: третьего не дано.

Проведение потенциала действия . Амплитуда входных сигналов пропорциональна силе подействовавшего стимула или количеству выделившегося в синапсе нейромедиатора – такие сигналы называют градуальными . Их длительность определяется длительностью стимула или присутствия медиатора в синаптической щели. Амплитуда и длительность потенциала действия от этих факторов не зависят: оба этих параметра всецело определяются свойствами самой клетки. Стало быть, любая комбинация входных сигналов, любой вариант суммации, при единственном условии деполяризации мембраны до критического значения, вызывает один и тот же стандартный образец потенциала действия в триггерной зоне. Он всегда имеет максимальную для данной клетки амплитуду и примерно одинаковую длительность, сколько бы раз ни повторялись вызывающие его условия.

Возникнув в интегративной зоне, потенциал действия быстро распространяется по мембране аксона. Это происходит благодаря появлению локального электрического тока. Поскольку деполяризованный участок мембраны оказывается иначе заряженным, чем соседствующий с ним, между полярно заряженными участками мембраны возникает электрический ток. Под действием этого локального тока деполяризуется до критического уровня соседний участок, что вызывает появление потенциала действия и в нём. В случае миелинизированного аксона таким соседним участком мембраны является ближайший к триггерной зоне перехват Ранвье, затем следующий, и потенциал действия начинает "перепрыгивать" от одного перехвата к другому со скоростью, достигающей 100 м/с.

Разные нейроны могут многим отличаться друг от друга, но возникающие в них потенциалы действия различить очень трудно, чаще невозможно. Это в высшей степени стереотипный сигнал у самых разных клеток: сенсорных, интернейронов, моторных. Эта стереотипия свидетельствует о том, что сам потенциал действия не содержит никаких сведений о природе породившего его стимула. О силе стимула свидетельствует частота возникающих потенциалов действия, а определением природы стимула занимаются специфические рецепторы и хорошо упорядоченные межнейронные связи.

Таким образом, возникший в триггерной зоне потенциал действия быстро распространяется по ходу аксона к его окончанию. Это передвижение связано с образованием локальных электрических токов, под влиянием которых потенциал действия как бы заново возникает в соседнем участке аксона. Параметры потенциала действия при проведении по аксону нисколько не меняются, что позволяет передавать информацию без искажений. Если аксоны нескольких нейронов оказываются в общем пучке волокон, то по каждому из них возбуждение распространяется изолированно.

Выходной сигнал адресуется другой клетке или одновременно нескольким клеткам и в подавляющем большинстве случаев представляет собой выделение химического посредника – медиатора. В пресинаптических окончаниях аксона заранее запасённый медиатор хранится в синаптических пузырьках, которые накапливаются в специальных участках – активных зонах. Когда потенциал действия добирается до пресинаптического окончания, содержимое синаптических пузырьков путём экзоцитоза опорожняется в синаптическую щель.

Химическими посредниками передачи информации могут служить разные вещества: небольшие молекулы, как, например, ацетилхолин или глутамат, либо достаточно крупные молекулы пептидов – все они специально синтезируются в нейроне для передачи сигнала. Попав в синаптическую щель, медиатор диффундирует к постсинаптической мембране и присоединяется к её рецепторам. В результате связи рецепторов с медиатором изменяется ионный ток через каналы постсинаптической мембраны, а это приводит к изменению значения потенциала покоя постсинаптической клетки, т.е. в ней возникает входной сигнал – в данном случае постсинаптический потенциал.

Таким образом, почти в каждом нейроне, независимо от его величины, формы и занимаемой в цепи нейронов позиции, можно обнаружить четыре функциональные области: локальную рецептивную зону, интегративную, зону проведения сигнала и выходную или секреторную зону (рис. 3.3).

Одна из важнейших функций биологической мембраны - генерация и передача биопотенциалов. Это явление лежит в основе возбудимости клеток, регуляции внутриклеточных процессов, работы нервной системы, регуляции мышечного сокращения, рецепции. В медицине на исследование электрических полей, созданных биопотенциалами органов и тканей, основаны диагностические методы: электрокардиография, электроэнцефалография, электромиография и другие. Практикуется и лечебное воздействие на ткани и органы внешними электрическими импульсами при электростимуляции.

В процессе жизнедеятельности в клетках и тканях могут возникать разности электрических потенциалов: Δj

1) окислительно-восстановительные потенциалы - вследствие переноса электронов от одних молекул к другим;

2) мембранные - вследствие градиента концентрации ионов и переноса ионов через мембрану.

Биопотенциалы, регистрируемые в организме, - это в основном мембранные потенциалы.

Мембранным потенциалом называется разность потенциалов между внутренней (цитоплазматической) и наружной поверхностями мембраны:

j м = j нар - j вн. (1)

Прогресс в исследовании биопотенциалов обусловлен:

1) разработкой микроэлектродного метода внутриклеточного измерения потенциалов;

2) созданием специальных усилителей биопотенциалов (УПТ);

3) выбором удачных объектов исследования крупных клеток и среди них гигантского аксона кальмара. Диаметр аксона кальмара достигает 0,5 мм, что в 100 - 1000 больше, чем диаметр аксонов позвоночных животных, в том числе человека. Гигантские размеры аксона имеют большое физиологическое значение -обеспечивают быструю передачу нервного импульса по нервному волокну.

Для биофизики гигантский аксон кальмара послужил великолепным модельным объектом для изучения биопотенциалов. В гигантский аксон кальмара можно ввести микроэлектрод, не нанеся аксону значительных повреждений.

Стеклянный микроэлектрод представляет собой стеклянную микропипетку с оттянутым очень тонким кончиком (рис.5.1).

Металлический электрод такой толщины пластичен и не может проколоть клеточную мембрану, кроме того он поляризуется. Для исключения поляризации электрода используются не­поляризующиеся электроды, например серебряная проволока, покрытая солью AgCl В раствор КС1 или NaCl (желатинизированный агар-агаром), заполняющий микроэлектрод.

Второй электрод - электрод сравнения - располагается в растворе у наружной поверхности клетки. Регистрирующее устройство Р, содержащее усилитель постоянного тока, измеряет мембранный потенциал:

Рис.5.1 - Микроэлектродный метод измерения биопотенциалов

а - стеклянная микропипетка; б - стеклянный микроэлектрод;

в - схема регистрации мембранного потенциала

Микроэлектродный метод дал возможность измерить биопотенциалы не только на гигантском аксоне кальмара, но и на клетках нормальных размеров: нервных волокнах других животных, клетках скелетных мышц, клетках миокарда и других.

Мембранные потенциалы подразделяются на потенциалы покоя и потенциалы действия.

Потенциал покоя - стационарная разность электрических потенциалов, регистрируемая между внутренней и наружной поверхностями мембраны в невозбужденном состоянии.

Потенциал покоя определяется разной концентрацией ионов по разные стороны мембраны и диффузией ионов через мембрану.

Если концентрация какого-либо иона внутри клетки С вн отлична от концентрации этого иона снаружи С нар и мембрана проница­ема для этого иона, возникает поток заряженных частиц через мембрану, вследствие чего нарушается электрическая нейтральность системы, образуется разность потенциалов внутри и снаружи клетки j м = j нар - j вн которая будет препятствовать дальнейшему перемещению ионов через мембрану. При установлении равновесия выравниваются значения электрохимических потенциалов по разные стороны мембраны: m вн = m нар .

Так как m = m 0 + RTlnC + ZFj, то

RTlnC вн + ZFj вн = RTlnC нар + ZFj нар

Отсюдалегко получить формулу Нернста для равновесного мембранного потенциала

j м = j нар - j вн = - RT/ZF´ln(C вн /С нар)

Если мембранный потенциал обусловлен переносом ионов К + ,для которого [К + ] вн > [К + ] нар и Z = +1, равновесный мембранный потенциал

Для ионов Na + : вн < нар, Z = +1,

Если в формуле Нернста перейти от натурального логарифма к десятичному, то для положительного одновалентного иона (Z = +1)

Примем температуру Т=300 К, тогда

Примем в формуле Нернста С вн /С нар ≈100, что по порядку величины соответствуют экспериментальным данным для калия:

lg , и мембранный потенциал

0,06∙2В = 0,12В = 120мВ,

что несколько больше модуля экспериментально измеренных значений потенциала покоя, и, пользуясь формулами электростатики, оценим, какое количество ионов должно перейти из цитоплазмы в неклеточную среду, чтобы создать такую разность потенциалов. Радиус клетки r = 10 мкм = 10 -5 м. Удельная электроемкость мембраны (электроемкость на единицу площади) С уд =10 -2 Ф/м 2 . Площадь мембраны 4πr 2 ≈ 4π∙10 -10 м 2 ≈10 -9 м 2 . Тогда электроемкость мембраны

C=C уд ∙S≈10 -2 ∙10 -9 м 2 .

Абсолютная величина заряда каждого знака на поверхности мембраны, если ее представить себе как конденсатор,

что соответствует

Объем клетки

Изменение концентрации ионов в клетке вследствие выхода из клетки 10 -17 моль ионов составит

Небольшое изменение концентрации по сравнению с изменением концентрации ионов калия внутри клетки, составляет всего 10 -4 % от концентрации калия внутри клетки. Таким образом, чтобы создать равновесный нернстовский мембранный потенциал, через мембрану должно пройти пренебрежимо малое количество ионов по сравнению с общим их количеством в клетке.

Таким образом, потенциал покоя на самом деле ближе к потенциалу, рассчитанному по формуле Нернста для К + .Вместе с тем, обращает на себя внимание значительное расхождение экспериментальных и теоретических значений. Причины расхождения в том, что не учтена проницаемость мембраны для других ионов. Одновременная диффузия через мембрану ионов К + , Na + и С1 - учитывается уравнением Гольдмана.

Уравнение Гольдмана можно вывести из уравнения Нернста-Планка.

Преобразуем это уравнение:

URT=D согласно соотношению Эйнштейна. Примем так называемое приближение постоянного поля Гольдмана. Будем считать напряженность электрического поля в мембране постоянной и равной среднему значению градиента потенциала:

где l – толщина мембраны.

Получим для плотности ионного потока через мембрану:

Обозначим Запишем

Разделим переменные:

Проинтегрируем левую часть дифференциального уравнения в пределах от 0 до 1, а правую от С нар =КС нар до С вн =КС вн (где К – коэффициент распределения)

После потенциирования

Выразим отсюда:

Учитывая, что , получим:

В стационарном случае, когда разность потенциалов - мембранный потенциал - тормозит дальнейший перенос ионов через мембрану, суммарный поток различных ионов становится равным нулю:

j K + + j Na + - j Cl - = 0

Перед j стоит знак минус, учитывающий отрицательный заряд иона хлора. Однако, так как в создании мембранного потенциала участвуют различные ионы, равновесие при этом не наступает, потоки различных ионов не равны нулю по отдельности. Если учесть только потоки j K + и j Na + , то j K+ +j Na+ =0 , или j K = - j Na + и, подставив, получим:

Поскольку,

Если учесть еще и поток ионов С1 - , то, повторив предыдущие рассуждения, можно получить уравнение для мембранного потенциала, созданного потоками через мембрану трех видов ионов, уравнение Гольдмана:

В числителе выражения, стоящего под знаком логарифма, представлены концентрации [К + ] ВН, BH , но [С1 - ] НАР , а в знаменателе - [К + ] НАР, H АР, но [С1 - ] ВН , так как ионы хлора отрицательно заряжены.

В состоянии покоя проницаемость мембраны для ионов К + значительно больше, чем для Na + , и больше, чем для С1 - :

P K >>P Na , P K >P Na .

Для аксона кальмара, например,

P K:P Na:P Cl =1:0,04:0,45.

Переписав уравнение Гольдмана в виде:

в случае, когда проницаемость мембраны для ионов натрия и хлора значительно меньше проницаемости для калия:

P Na << P K , P Cl << P K ,

Таким образом, уравнение Нернста - частный случай уравнения Гольдмана.

Мембранный потенциал, рассчитанный по уравнению Гольдмана, оказался по абсолютной величине меньше мембранного потенциала, рассчитанного по формуле Нернста» ближе к экспериментальным его значениям в крупных клетках. И формула Нернста, и уравнение Гольдмана не учитывают активного транспорта ионов через мембрану, наличия в мембранах электрогенных (вызывающих разделение зарядов, а следовательно и возникновение разности потенциалов) ионных насосов, играющих важную роль в поддержании ионного равновесия в мелких клетках. В цитоплазматической мембране работают К + -Nа + -АТФазы, перекачивающие калий внутрь клетки, а натрий из клетки. С учетом работы электрогенных ионных насосов для мембранного потенциала было получено уравнение Томаса:

где m - отношение количества ионов натрия к количеству ионов калия, перекачиваемых ионными насосами через мембрану. Чаще всего К + -Nа + -АТФаза работает в режиме, когда m = 3/2, m всегда больше 1. (Нет ионных насосов, перекачивающих Сl , поэтому в уравнении Томаса отсутствуют члены Р Сl [Сl - ].)

Коэффициент m > 1 усиливает вклад градиента концентрации калия в создание мембранного потенциала, поэтому мембранный потенциал, рассчитанный по Томасу, больше по абсолютной величине, чем мембранный потенциал, рассчитанный по Гольману, и дает совпадение с экспериментальными значениями для мелких клеток.

Нарушение биоэнергетических процессов в клетке и работы K + -Na + -АТФазы приводит к уменьшению |φ м |, в этом случае мембранный потенциал лучше описывается уравнением Гольдмана.

Повреждение клеточной мембраны приводит к повышению проницаемости клеточных мембран для всех ионов: к повышению и P к, и P Na , и P сl Вследствие уменьшение различия проницаемостей абсолютное значение мембранного потенциала |φ м | снижается.

Для сильно поврежденных клеток |φ м | еще меньше, но сохраняется отрицательный мембранный потенциал |φ м | за счет содержащихся в клетке полианионов - отрицательно заряженных белков, нуклеиновых кислот и других крупных молекул, не могущих проникнуть через мембрану (доннановский потенциал).

Потенциал действия

Посредством электрических нервных импульсов (потенциалов действия) в живом организме передается информация от рецепторов к нейронам мозга и от нейронов мозга к мышцам. Живой организм является полностью электрифицированной системой. Без электричества нет жизни.

Потенциал действия был открыт раньше потенциала покоя. Животное электричество известно давно. Разряды электрического угря (происходящие при напряжении до 600 В, с током около 60 А и длительностью порядка миллисекунды) использовались медициной еще в Древнем Риме для лечения подагры, головной боли, эпилепсии. Электрический нервный импульс открыл Луиджи Гальвани, профессор анатомии в г. Болонья. Результаты его электрофизиологических опытов изложены в книге "Трактат о силах электричества при мышечном движении" (1791 г.). Гальвани открыл, что мышечные сокращения конечностей препарированной лягушки могут вызваться электрическим импульсом и что сама живая система является источником электрического импульса. Великое открытие Гальвани сыграло выдающуюся роль в развитии физики, электротехники, электрохимии, физиологии, биофизикии и медицины. Однако, огромная популярность идей Гальвани привела к их профанациям, следы которых остались до нашего времени (гальванизация трупов, гальванизм прикосновений взглядов и т.д.), что вызывало недоверие к экспериментам Гальвани ученых-физиков. Младший современник Гальвани профессор физики Алессандро Вольта был яростым противником идеи животного электричества (за исключением особых случаев электрических рыб: электрического угря и электрического ската). В своих экспериментах он исключил биологический объект и показал, что электрический ток может быть получен при контакте набора металлов, разделенных электролитом (вольтов столб). Так был открыт химический источник тока (названный, однако, позже, в честь его научного противника гальваническим элементом).

В XIX веке утвердилось примитивное представление о распространении электрических токов по нервам, как по проводам. Однако Гельмгольцем (вторая половина XIX века) было показано, что скорость распространения нервного импульса составляет лишь 1-100 м/с, это значительно меньше, чем скорость распространения электрического импульса по проводам до 3 10 8 м/с. Поэтому к концу XIX века гипотеза электрической природы нервного импульса была отвергнута большинством физиологов. Было выдвинуто предположение о распространении по нервным волокнам химической реакции. На самом деле, как было показано позже, медленное распространение электрического нервного импульса связано с медленной перезарядкой конденсаторов, которые представляют собой клеточные мембраны, через большие сопротивления. Постоянная времени перезарядки мембраны τ= RC велика, так как велики емкость мембраны (С) и сопротивление R нервного волокна.

То, что нервный импульс представляет собой импульс электрического тока, было доказано лишь к середине 20-го века, в основном в работах английского физиолога А. Ходжкина и его сотрудников. В1963 году Ходжкину, Хаксли и Иклсу была присуждена Нобелевская премия по медицине "за оперирование нервных клеток".

Потенциалом действия (ПД) называется электрический импульс, обусловленный изменением ионной проницаемости мембраны и связанный с распространением по нервам и мышцам волны возбуждения.

Опыты по исследованию потенциала действия проведены (в основном Ходжкиным и его сотрудниками) на гигантских аксона кальмара методом микроэлектродов с использованием высокоомных измерителей напряжения, а также методом меченых атомов. На риспоказаны схема опытов и результаты исследований.

В опытах по исследованию потенциала действия использовали два микроэлектрода, введенных в аксон. На первый микроэлектрод подается импульс с амплитудой V от генератора Г прямоугольных импульсов, меняющий мембранный потенциал. Мембранный потенциал измеряется при помощи второго микроэлектрода высокоомным регистратором напряжения Р.

Рис.5.2 - Исследование потенциала действия:

а - схема опыта (Г - генератор импульсов, Р - регистратор напряжения); б - потенциал действия (φ п м - потенциал покоя, φ рев м - потенциал реверсии, φ д м - амплитуда потенциала действия, φ пор м – пороговый потенциал)

Возбуждающий импульс вызывает лишь на короткое время смещение мембранного потенциала, который быстро пропадает и восстанавливается потенциал покоя. В том случае, когда возбуждающий импульс смещается еще дальше в отрицательную сторону, он сопровождается гиперполяризацией мембраны. Также не формируется потенциал действия, когда возбуждающий импульс положительный (деполяризующий), но его амплитуда меньше порогового значения V nop . Однако, если амплитуда положительного, деполяризующего импульса окажется больше значения V nop , φ м становится больше φ пор м и в мембране развивается процесс, в результате которого происходит резкое повышение мембранного потенциала и мембранный потенциал φ м даже меняет свой знак - становится положительным (φ вн >φ нар).

Достигнув некоторого положительного значения φ рев - потенциала реверсии, мембранный потенциал возвращается к значению потенциала покоя φ п м, совершив нечто вроде затухающего колебания. В нервных волокнах и скелетных мышцах длительность потенциала действия около 1 мс (а в сердечной мышце около 300 мс. После снятия возбуждения еще в течение 1 -3 мс в мембране наблюдаются некоторые остаточные явления, во время которых мембрана рефрактерна (невозбудима).

Новый деполяризующий потенциал V > V nop может вызвать образование нового потенциала действия только после полного возвращения мембраны в состояние покоя. Причем амплитуда потенциала действия

не зависит от амплитуды деполяризующего потенциала (если только V > V nop). Если в покое мембрана поляризована (потенциал цитоплазмы отрицателен по отношению к внеклеточной среде), то при возбуждении происходит деполяризация мембраны (потенциал внутри клетки положителен) и после снятия возбуждения происходит реполяризация мембраны.

Характерные свойства потенциала действия:

1) наличие порогового значения деполяризующего потенциала;

2) закон "все или ничего", то есть, если деполяризующий потенциал больше порогового, развивается потенциал действия, амплитуда которого не зависит от амплитуды возбуждающего импульса и нет потенциала действия, если амплитуда деполяризующего потенциала меньше пороговой;

3) есть период рефрактерности, невозбудимости мембраны во время развития потенциала действия и остаточных явлений после снятия возбуждения;

4) в момент возбуждения резко уменьшается сопротивление мембраны (у аксона кальмара от 0,1 Ом м 2 в покое до 0,0025 Ом м 2 при возбуждении).

Если обратиться к данным для значений равновесных нернстовских потенциалов, созданных различными ионами, естественно предположить, что положительный потенциал реверсии имеет натриевую природу, поскольку именно диффузия натрия создает положительную разность потенциалов между внутренней и наружной поверхностями мембраны.

Можно менять амплитуду импульса потенциала действия, изменяя концентрацию натрия в наружной среде. При уменьшении наружной концентрации натрия амплитуда потенциала действия уменьшается, так как меняется потенциал реверсии. Если из окружающей клетку среды полностью удалить натрий, потенциал действия вообще не возникает.

Опыты, проведенные с радиоактивным изотопом натрия, позволили установить, что при возбуждении проницаемость для натрия резко возрастает. Если в состоянии покоя соотношение коэффициентов проницаемости мембраны аксона кальмара для разных ионов:

P K: P Na: P Cl = 1: 0,04: 0,45

то в состоянии возбуждения:

P K: P Na: P Cl = 1: 20: 0,45

то есть, по сравнению с невозбужденным состоянием, при возбуждении коэффициент проницаемости для натрия возрастает в 500 раз.

Расчеты мембранного потенциала реверсии по уравнению Гольдмана, если в него подставить значения проницаемостей мембраны для возбужденного состояния, совпадают с экспериментальными данными.

Возбуждение мембраны описывается уравнениями Ходжкина-Хаксли. Одно из уравнений Ходжкина-Хаксли имеет вид:

где I м - ток через мембрану, С м - емкость мембраны, ∑I i - сумма ионных токов через мембрану.

Электрический ток через мембрану складывается из ионных токов: ионов калия - I k + , натрия - I Na + и других ионов, в том числе Сl, так называемого тока утечки I k , а также емкостного тока. Емкостной ток обусловлен перезарядкой конденсатора, который представляет собой мембрана, перетеканием зарядов с одной ее поверхности на другую. Его величина определяется количеством заряда, перетекающего с одной обкладки на другую за единицу времени dq/dt, а поскольку заряд конденсатоpa q = С м ∆φ = С м φ м, то емкостной ток С М . Полный мембранный ток

Согласно теории Ходжкина-Хаксли, возбуждение элемента мембраны связано с изменениями проводимости мембраны для ионов Na + и К + : g K и g Na .

Проводимости мембраны сложным образом зависят от мембранного потенциала и времени.

Обнаружено, что, если поднять мембранный потенциал (φ м выше порогового, сначала течет ток внутрь клетки, а затем из клетки наружу).

В экспериментах, проведенных Ходжкиным, Хаксли, Бейкером, Шоу, было доказано, что фаза I мембранного тока связана с потоком ионов натрия из окружающей среды (где концентрация натрия больше) в клетку (где она меньше), а фаза II объясняется вытеканием ионов калия из клетки наружу.

В своих опытах Ходжкин и Хаксли изменяли ионный состав окружающего раствора. Было обнаружено, что, если снаружи убирали натрий, первая фаза мембранного тока (ток внутрь клетки) пропадала. Следовательно, на самом деле, первая фаза развития потенциала действия связана с увеличением проницаемости мембраны для ионов натрия. Поток положительных частиц в клетку приводит к деполяризации мембраны - внутренняя ее поверхность заряжается положительно по отношению к наружной.

Во второй фазе резко увеличивается проницаемость мембраны для калия и из клетки наружу выходят положительно заряженные ионы калия, в то время как натриевый ток уменьшается. Ионный механизм развития потенциала действия был окончательно доказан в решающем эксперименте Ходжкина, Бейкера и Шоу, в котором аксоплазму препарированного аксона заменили на наружный раствор, а ионный состав наружного раствора сделали таким же, как у нормальной аксоплазмы. При такой замене ионных составов изменила знак разность потенциалов на мембране. Теперь в покое внутренняя ее поверхность была заряжена положительно по отношению к наружной. А потенциал действия оказался отрицательным.

Выдвинута гипотеза, что селективное (избирательное) изменение ионной проницаемости возбужденной мембраны: сначала для Na + , а потом для К + - объясняется тем, что в мембране имеются специальные ионные каналы. Существуют отдельно натриевые и калиевые каналы, которые открываются и закрываются во время прохождения через данный участок мембраны нервного импульса. В первой фазе - открываются натриевые каналы, во второй фазе - калиевые. Соответственно, сначала закрываются натриевые каналы, а затем калиевые. Открывание и закрывание ионных каналов вызывается изменением мембранного потенциала.

Одно из доказательств наличия в мембране ионных каналов - существование веществ, блокирующих ионные потоки через мембрану. Так, содержащийся в рыбе фугу тетродотоксин блокирует поступление внутрь клетки натрия и, таким образом, нарушает передачу нервного импульса, что может привести к летальному исходу. Доказано, что тетродотоксин не влияет на проницаемость клетки для калия, значит, ионы натрия и калия на самом деле проходят через разные каналы. Из-за своего специфического строения молекулы тетродотоксина, по-видимому, застревают в натриевых каналах. Подсчитав число застрявших в мембране молекул тетродотоксина, удалось определить количество натриевых каналов. В разных нервных волокнах позвоночных оно было разным - от 3 до 75 каналов на один квадратный микрометр площади мембраны (для сравнения количество молекул фосфолипидов ≈ 2 10 6 1/мкм 2).

Был обнаружен и специфический ингибитор калиевых каналов - тетраэтиламмоний . Если обработать мембрану тетродотоксином, блокирующим натриевые каналы, в опытах с фиксацией мембранного потенциала пропадает первая фаза, а тетраэтиламмоний прекращающий перенос через мембрану калия, вызывает исчезновение второй фазы.

Таким образом, установлено, что формирование потенциала действия вызывается ионными потоками через мембрану: сначала ионов натрия внутрь клетки, а затем - ионов калия из клетки в наружный раствор, что связано с изменением проводимости мембраны для ионов калия и натрия.