Пособие по русскому языку 11. Современная альтернатива учебникам и библиотекам. Онлайн просмотр доступен в любое время

Приборы для определения направления и скорости движения воздуха

Флюгер Вильде (рисунок 19). Данный прибор предназначен для использования на метеорологических станциях с целью многолетних постоянных наблюдений в различных регионах за направлениями и скорости ветров. Следует учитывать, что фиксируемые данные на метеорологических станциях, расположенных в различных местностях, должны быть сравнимыми. Это условие предполагает использование только серийно выпускаемых флюгеров, имеющих строго однотипное устройство.

Рис. 19. Флюгер Вильде Устройство серийного флюгера представлено на рисунке. Как видно из рисунка, направление движения воздушных потоков определяется с помощью флюгарки – пластинки клиновидной формы с противовесом. Направление ветра фиксируется с помощью муфты с жестко закрепленными прутиками (штифтиками) – указателями румбов. При вращении флюгарки доска для определения скорости ветра всегда принимает положение, перпендикулярное направлению ветра, и под давлением последнего отклоняется от отвесного положения на тот или иной угол. По положению отклонения доски, пользуясь отградуированными штифтиками-указателями, определяют скорость ветра. В приборе имеются две доски: легкая (200 г) для измерения скоростей, не превышающих 20 м/с и тяжелая (800 г) для скоростей до 40 м/с. Приближенную скорость ветра можно определить, помножив размер штифтика на 2 (при пользовании легкой доской) или на 4 (при пользовании тяжелой доской). Флюгер для наблюдений устанавливают в открытом месте на столбе высотой 8 – 10 м. штифтик с буквой С (N) должен быть установлен на север по компасу или полуденной линии, то есть по меридиану данного места. На основании многолетних наблюдений выводятся закономерности направлений и скоростей воздушных потоков, составляющие особенности климато-погодных условий в той или иной местности. Эти справочные данные широко используются для различных, частью указанных выше целей, в том числе и в гигиенической практике, в частности, когда имеет место необходимость гигиенического контроля за планировкой и застройкой населенных мест.

Анемометры. В санитарно-гигиенической практике наиболее широко используются портативные анемометры – чашечный анемометр и крыльчатый анемометр (рисунок 20). Воспринимающая часть чашечного анемометра представляет собой вертушку из 4 полых полушарий (чашечек), закрепленную на металлической оси, нижний конец которой связан со счетным механизмом (тахометром). Стрелки на циферблате прибора показывают число оборотов полушарий вокруг оси: большая – число единиц и десятков, а две маленькие – число сотен и тысяч. Для включения и выключения счетчика оборотов на коробке прибора имеются рычаг и два кольца. В случае, если имеет место необходимость измерение движения воздуха на какой-либо высоте, прибор можно закрепить на шесте с помощью винта в нижней части. При этом для дистанционного включения и выключения счетчика на рычаге включения жестко закрепляется шнур и пропускается через кольца. Пометив концы шнура, можно включать и выключать счетчик.

Порядок измерения скорости движения воздуха (ветра). Записывают показания всех стрелок (на малых циферблатах учитывают только целые деления). Устанавливают прибор на шесте или держат в вытянутых руках в зависимости от конкретных задач. При этом прибор должен находиться в строго вертикальном положении. Далее, выжидают 1 – 2 минуты, пока не наступит полное вращение вертушки, после чего шнуром или непосредственно ручками включают одновременно счетчик прибора и секундомер. Наблюдение ведется в течение 10 минут. После данной экспозиции включают счетчик и секундомер и вновь записывают показания стрелок счетчика. Затем вычисляют разность между двумя показаниями счетчика, делят эту величину на время наблюдения, выраженное в секундах, и получают число оборотов в 1 секунду. Рис. 20. Анемометры чашечный (а ) и крыльчатый (б )

Эта величина приблизительно соответствует искомой скорости движения воздушного потока. Для получения более точной величины пользуются таблицей или графиком перевода числа оборотов в скорость. Таблица или график прилагаются к прибору.

Чашечный анемометр служит для определения средних скоростей ветра в пределах 1,0 – 2,0 м/с. с помощью данного прибора можно производить не только метеорологические наблюдения в открытой атмосфере, но и определять скорость движения воздушных потоков в вентиляционных системах, в частности, с целью гигиенической оценки эффективности вентиляции в помещениях и устройствах различного назначения.

Крыльчатый анемометр по принципу работы идентичен предыдущему прибору. Однако в данном приборе имеются некоторые конструктивные особенности, повышающие его чувствительность и нижние пределы определения скорости движения воздушных потоков. Воспринимающей частью в крыльчатом анемометре служит мельничка (крыльчатка) из легких металлических лопастей, посаженных на соединенную со счетчиком оборотов горизонтальную ось.

При работе прибор ориентируется по потоку так, чтобы счетный механизм был позади потока относительно крыльчатки. Для преодоления инерции сопротивления прибора крыльчатке достаточно вращаться в холостую всего 0,5 минуты. Продолжительность наблюдения ограничивается 2 минутами. Порядок расчета скорости потока воздуха такой же, как у чашечного анемометра. С помощью крыльчатого анемометра представляется возможность измерять скорость воздушных потоков от 0,3 до 5,0 м/с.

Пример определения скорости движения воздуха чашечного анемометра. На открытой рабочей площадке с целью изучения условий труда рабочих-строителей проведено одно из исследований скорости ветра в ряду намеченных программой многочисленных регулярных наблюдений. Снимаем исходные показания счетчика прибора. При этом стрелка, указывающая тысячи, находилась между цифрами 3 и 4 соответствующего циферблата. То есть, в данном случае записываем число целых тысяч – 3. Стрелка, показывающая сотни, находилась между цифрами соответствующего циферблата 5 и 6. Записываем за цифрой 3 следующую цифру, обозначающую число целых сотен, - 5. Большая стрелка показывала 76 делений. Записываем вслед за предыдущими двумя цифрами цифру 76, показывающую число отдельных оборотов оси прибора. Таким образом, исходная величина на счетчике составила 3576.

Далее в течение 10 минут производилось определение скорости ветра с одновременным включением счетчика прибора и секундомера. Через указанное время счетчик и секундомер были выключены. С помощью указанной выше методики снимаем новые показания прибора, которые составили 6123. время наблюдения в секундах – 10´60 = 600 с. таким образом, за 600 секунд ось прибора сделала 6123 оборота. Для определения количества оборотов за 1 с делим разность показаний счетчика на 600: (6123 – 3576) : 600 = 2547: 600 = 4,245 об./с. Если в исследованиях нет необходимости в чрезвычайной точности исследования, что имеет место в большинстве случаев, то найденную величину принимают за скорость движения воздуха в м/с. То есть, скорость движения воздуха в данном примере была равной 4,245 м/с. Если же, появилась необходимость в очень точном исследовании, то переводят по графику или таблице, прилагаемых к прибору, об./с. м/с.



Кататермометр. Данный прибор представляет собой особый спиртовый термометр со шкалой 35-38°С или 33-40°С. Поначалу кататермометр был сконструирован для измерения охлаждающего влияния температуры воздуха на тело человека. В дальнейшем было показано, что кататермометр не производит потери тепла с поверхности кожи человека, не учитывает влияния теплового излучения, которое оказывает значительное действие на тепловой обмен организма. В настоящее время применяется практически исключительно для измерения малых скоростей движения воздуха, хотя, пользуясь кататермометром, можно ориентировочно определить, с какими его показаниями при различных условиях производственной деятельности совпадает оптимальное самочувствие людей, и оценить охлаждающую способность метеорологических факторов (температуры и скорости движения воздуха).

Рис. 21. Кататермометры шаровой (а ) и цилиндрический (кататермометр Хилла) (б ) В зависимости от конструкции кататермометры бывают цилиндрические (кататермометр Хилла) или шаровые (рисунок 21), представляют собой термометр, в котором верхний конец капиллярной трубки имеет расширение, которое частично заполняется спиртом при нагревании. Принцип того и другого кататермометров заключается в том, что скорость снижения температуры приборов зависит кроме температуры воздуха от скорости его движения. При работе с цилиндрическим кататермометром измеряют время снижения температуры с 38 до 35°С, с шаровым – с 38 до 35°С, 39 до 34°С, 40 до 38°С. причем нетрудно заметить, что средне значение указанных температурных перепадов всегда равно 36,5°С, то есть средней температуре человека. Это позволяло при первоначальном назначении приборов в какой-то степени имитировать охлаждающее воздействие воздуха на организм человека («охлаждающая способность воздуха»). В процессе охлаждения с 1 см 2 поверхности резервуара кататермометров теряется постоянное количество тепла. Эта величина (катафактор) является константой (постоянной величиной) прибора и обозначается на каждом кататермометре в виде его постоянного фактора, выраженного в мкал/см 2 . Порядок работы с кататермометрами. Перед измерением кататермометр опускают в воду при температуре 65–80°С и держат, пока спирт заполнит не менее половины расширения капилляра. После этого кататермометр тщательно вытирают, вешают на штатив в точке измерения и по секундомеру устанавливают время охлаждения в указанных выше интервалах температур. Очень важно, чтобы кататермометр в период наблюдения находился в неподвижном состоянии, в противном случае будет имитироваться дополнительное движение воздуха. Измерения в одной точке повторяют несколько раз, отбрасывают первый результат, а из последующих выводят среднее значение величины охлаждения (Н ). Вычисление величины охлаждения по цилиндрическому кататермометру производит по формуле:

Н

F – катафактор, мкал/см 2 ;

а – число секунд, в течение которых столбик спирта опустился с 38 до 35°С.

При работе с шаровым кататермометром, если наблюдения проводятся в температурном интервале 38-35°С, вычисление величины Н производят по той же формуле, что и для цилиндрического кататермометра. При наблюдениях в других интервалах для вычисления Н пользуются формулой:

где (7)

Н – искомая величина охлаждения, мкал;

– константа, мкал/см 2 ´град.);

Т 1 – Т 2 – интервалы температур в °С (40-33 или 39-34);

а – число секунд, в течение которых столбик спирта опустился в соответствующих температурных интервалах. с 38 до 35°С.

По величине охлаждения (Н ) и значению температуры воздуха в период исследования скорость движения воздуха вычисляют по формулам:

для скорости движения воздуха < 1 м/с ( до 0,6)

(8)

для скорости движения воздуха > 1 м/с ( > 0,6)

(9)

В приведенных формулах приняты следующие условные обозначения:

V – искомая скорость движения воздуха, м/с;

Н – величина охлаждения сухого кататермометра, мкал;

Q – разность между средней температурой тела (36,5°С) и температурой окружающего воздуха, °С;

0,20 и 0,40; 0,13 и 0,47 – эмпирические коэффициенты.

Пример определения скорости движения воздуха с помощью шарового кататермометра. Исследователем проводилось определение скорости движения воздуха в учебной аудитории №2 кафедры гигиены ГОУ ВПО «ВГМУ Росздрава» с помощью шарового кататермометра при температуре воздуха в период наблюдения 20°С. катафактор (F ) прибора – 573 мкал/см 2 . Первый результат измерения времени падения температуры прибора с 40 до 33°С, как указывалось выше, был отброшен. Последующие три измерения показали соответственно время 210, 221 и 205 секунд. При расчете среднего времени получается результат: (210 + 221 + 205) : 3 = 636: 3 = 212 с.

мкал.

Находим величину , которая будет равна:

Скорость движения воздуха в учебной аудитории < 1 м/с, так как H/Q < 0,6. Подставляем найденные величины в соответствующую, указанную выше формулу, и рассчитываем скорость движения воздуха:

Для ускоренных и приближенных расчетов скорости движения воздуха можно пользоваться специальными таблицами (таблицы 10 и 11). Если исследования проводились в условиях, представленных в предыдущем примере, где величина H/Q была равной 0,38, то на пересечении горизонтальной прямой, соответствующей указанной величине, с колонкой, соответствующей 20°С, находим результат по таблице – 0,239 м/с.

  • Некоторые признаки, характеризующие периоды (стадии) тепловой адаптации человека к высокой тепловой нагрузке
  • 4.2. Охлаждение организма
  • 4.3. Прогнозирование состояния здоровья людей в зависимости от температуры наружного воздуха
  • Поправка коэффициента рк значению температуры воздуха
  • 5. Методы измерения температуры воздуха и оценки температурных условий
  • 5.2. Изучение температурных условий
  • Результаты изучения температурных условий в учебной аудитории
  • 6. Гигиеническое значение, методы измерения и оценки влажности воздуха
  • 6.1. Гигиеническое значение и оценка влажности воздуха
  • Максимальное напряжение водяных паров при разных температурах воздуха,
  • Максимальное напряжение водяных паров надо льдом при температурах ниже 0о,
  • 6.2. Измерение влажности воздуха
  • Величины психрометрических коэффициентов а в зависимости от скорости движения воздуха
  • (При скорости движения воздуха 0,2 м/с)
  • 7. Гигиеническое значение, методы измерения и оценки направления и скорости движения воздуха
  • 7.1. Гигиеническое значение движения воздуха
  • 7.2. Приборы для определения направления и скорости движения воздуха
  • Скорость движения воздуха (при условии скорости менее 1 м/с) с учетом поправок на температуру воздуха при определении с помощью кататермометра
  • Скорость движения воздуха (при условии скорости более 1 м/с) при определении с помощью кататермометра
  • Шкала скорости движения воздуха в баллах
  • 8. Гигиеническое значение, методы измерения и оценки теплового (инфракрасного) излучения
  • 8.1. Гигиеническое значение теплового (инфракрасного) излучения
  • Соотношение прямой и рассеянной солнечной радиации, %
  • Пределы переносимости человеком тепловой радиации
  • 8.2. Приборы для измерения и методы оценки лучистой энергии
  • Относительная степень черноты некоторых материалов, в долях единицы
  • 9. Методы комплексной оценки метеорологических условий и микроклимата помещений различного назначения
  • 9.1. Методы комплексной оценки метеорологических условий и микроклимата при положительных температурах
  • Различные сочетания температуры, влажности и подвижности воздуха, соответствующие эффективной температуре 18,8
  • Результирующей температур по основной шкале
  • Результирующей температур по нормальной шкале
  • 9.2. Методы комплексной оценки метеорологических условий и микроклимата при отрицательных температурах
  • Вспомогательная таблица для определения теплового самочувствия (условной температуры) методом, рекомендуемым для населения
  • Ветрохолодовой индекс (вхи)
  • 10. Методы физиолого-гигиенической оценки теплового состояния организма человека
  • Тепловое самочувствие военнослужащих до и после проведения коррекции рационов питания с целью повышения резистентности организма к холодовому воздействию
  • Потери воды организмом человека потоотделением (г/ч) при различных температурах и относительной влажности воздуха
  • 11. Физиолого-гигиеническая оценка атмосферного давления
  • 11.1. Общие гигиенические аспекты значения атмосферного давления
  • Характеристика форм декомпрессионной болезни по тяжести заболевания
  • Зоны высоты над уровнем моря в зависимости от реакции организма человека
  • 11.2. Единицы измерения и приборы для измерения атмосферного давления
  • Единицы измерения атмосферного давления
  • Соотношение единиц измерения барометрического давления
  • Приборы для измерения атмосферного давления.
  • 12. Гигиеническое значение, методы измерения интенсивности ультрафиолетового излучения и выбор доз искусственного облучения
  • 12.1. Гигиеническое значение ультрафиолетовой радиации
  • 12.2. Методы определения интенсивности ультрафиолетовой радиации и ее биодозы при профилактическом и лечебном облучении
  • Основные характеристики приборов серии «Аргус»
  • 13. Аэроионизация; ее гигиеническое значение и методы измерения
  • 14. Приборы для измерения показателей метеорологических и микроклиматических условий с совмещенными функциями
  • Режимы работы прибора ивтм -7
  • Требования к измерительным приборам
  • 15. Нормирование некоторых физических факторов среды обитания в различных условиях жизнедеятельности человека
  • Характеристика отдельных категорий работ
  • Допустимые величины интенсивности теплового облучения поверхности тела
  • Критерии допустимого теплового состояния человека (верхняя граница)*
  • Критерии допустимого теплового состояния человека (нижняя граница)*
  • Критерии предельно допустимого теплового состояния человека (верхняя граница)* для продолжительности не более трех часов за рабочую смену
  • Критерии предельно допустимого теплового состояния человека (верхняя граница)* для продолжительности не более одного часа за рабочую смену
  • Допустимая продолжительность пребывания работающих в охлаждающей среде при теплоизоляции одежды 1 кло*
  • Гигиенические требования к теплозащитным показателям
  • (Суммарное тепловое сопротивление) головных уборов, рукавиц и обуви
  • Применительно к метеорологическим условиям различных климатических регионов
  • (Физическая работа категории iIа, время непрерывного пребывания на холоде – 2 часа)
  • Значения тнс-индекса (оС), характеризующие микроклимат как допустимый в теплый период года при соответствующей регламентации продолжительности пребывания
  • Рекомендуемые величины интегрального показателя тепловой нагрузки среды
  • Классы условий труда по показателям микроклимата для рабочих помещений
  • Охлаждающим микроклиматом
  • Классы условий труда по показателю температуры воздуха, °с (нижняя граница), для открытых территорий в зимний период года применительно к категории работ Iб
  • Классы условий труда по показателю температуры воздуха, °с (нижняя граница), для открытых территорий в зимний период года применительно к категории работ iIа-iIб
  • Классы условий труда по показателю температуры воздуха, °с (нижняя граница) для неотапливаемых помещений применительно к категории работ Iб
  • Классы условий труда по показателю температуры воздуха, °с (нижняя граница) для неотапливаемых помещений применительно к категории работ Па-Пб
  • Взаимосвязь между средневзвешенной температуры кожи человека, его физиологическим состоянием и типом погоды и оценка типов погоды для отдыха, лечения и туризма
  • Характеристика классов погоды момента при положительной температуре воздуха
  • Характеристика классов погоды момента при отрицательной температуре воздуха
  • Физиолого-климатическая типизация погод теплого времени года
  • Журнал регистрации сведений о погодных условиях в______________
  • Оптимальные и допустимые нормы температуры, относительной влажности и скорости движения воздуха в помещениях жилых зданий
  • Гигиенические требования к параметрам микроклимата основных помещений закрытых плавательных бассейнов
  • Уровни уф-а излучения (400-315 нм)
  • 2.2.4. Гигиена труда. Физические факторы
  • 2. Нормируемые показатели аэроионного состава воздуха
  • 3. Требования к проведению контроля аэроионного состава воздуха
  • 4. Требования к способам и средствам нормализации аэроионного состава воздуха
  • Термины и определения
  • Библиографические данные
  • Классификация условий труда по аэроионному составу воздуха
  • 16. Ситуационные задачи
  • 16.1. Ситуационные задачи по расчету прогноза состояния здоровья людей в зависимости от температуры наружного воздуха
  • Ультрафиолетового облучения с помощью биодозиметра
  • 16.5. Ситуационные задачи по определению регламентов облучения ультрафиолетовым излучением в фотариях
  • 17. Литература, нормативные и методические материалы
  • 17.1. Библиография
  • 17.2. Нормативные и методические документы
  • Гигиенические требования к аэроионному составу воздуха производственных и общественных помещений: СанПиН 2.2.4.1294-03
  • Гигиенические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров: СанПиН 2.1.3.1375-03.
  • Психрометрическая будка (будка Вильде) с закрытой психрометрической цинковой клеткой
  • Психрометрическая будка (будка Вильде, английская будка)
  • Вспомогательная величина а при определении средней радиационной температуры табличным методом в.В. Шиба
  • Вспомогательная величина в при определении средней радиационной температуры табличным методом в.В. Шиба
  • Нормальная шкала эффективных температур
  • 7.2. Приборы для определения направления и скорости движения воздуха

    Флюгер Вильде (рисунок 19). Данный прибор предназначен для использования на метеорологических станциях с целью многолетних постоянных наблюдений в различных регионах за направлениями и скорости ветров. Следует учитывать, что фиксируемые данные на метеорологических станциях, расположенных в различных местностях, должны быть сравнимыми. Это условие предполагает использование только серийно выпускаемых флюгеров, имеющих строго однотипное устройство.

    Рис. 19. Флюгер Вильде

    Устройство серийного флюгера представлено на рисунке. Как видно из рисунка, направление движения воздушных потоков определяется с помощью флюгарки – пластинки клиновидной формы с противовесом. Направление ветра фиксируется с помощью муфты с жестко закрепленными прутиками (штифтиками) – указателями румбов.

    При вращении флюгарки доска для определения скорости ветра всегда принимает положение, перпендикулярное направлению ветра, и под давлением последнего отклоняется от отвесного положения на тот или иной угол. По положению отклонения доски, пользуясь отградуированными штифтиками-указателями, определяют скорость ветра. В приборе имеются две доски: легкая (200 г) для измерения скоростей, не превышающих 20 м/с и тяжелая (800 г) для скоростей до 40 м/с. Приближенную скорость ветра можно определить, помножив размер штифтика на 2 (при пользовании легкой доской) или на 4 (при пользовании тяжелой доской). Флюгер для наблюдений устанавливают в открытом месте на столбе высотой 8 – 10 м. штифтик с буквой С (N) должен быть установлен на север по компасу или полуденной линии, то есть по меридиану данного места.

    На основании многолетних наблюдений выводятся закономерности направлений и скоростей воздушных потоков, составляющие особенности климато-погодных условий в той или иной местности. Эти справочные данные широко используются для различных, частью указанных выше целей, в том числе и в гигиенической практике, в частности, когда имеет место необходимость гигиенического контроля за планировкой и застройкой населенных мест.

    Анемометры. В санитарно-гигиенической практике наиболее широко используются портативные анемометры –чашечный анемометр икрыльчатый анемометр (рисунок 20). Воспринимающая часть чашечного анемометра представляет собой вертушку из 4 полых полушарий (чашечек), закрепленную на металлической оси, нижний конец которой связан со счетным механизмом (тахометром). Стрелки на циферблате прибора показывают число оборотов полушарий вокруг оси: большая – число единиц и десятков, а две маленькие – число сотен и тысяч. Для включения и выключения счетчика оборотов на коробке прибора имеются рычаг и два кольца. В случае, если имеет место необходимость измерение движения воздуха на какой-либо высоте, прибор можно закрепить на шесте с помощью винта в нижней части. При этом для дистанционного включения и выключения счетчика на рычаге включения жестко закрепляется шнур и пропускается через кольца. Пометив концы шнура, можно включать и выключать счетчик.

    Порядок измерения скорости движения воздуха (ветра). Записывают показания всех стрелок (на малых циферблатах учитывают только целые деления). Устанавливают прибор на шесте или держат в вытянутых руках в зависимости от конкретных задач. При этом прибор должен находиться в строго вертикальном положении. Далее, выжидают 1 – 2 минуты, пока не наступит полное вращение вертушки, после чего шнуром или непосредственно ручками включают одновременно счетчик прибора и секундомер.

    Наблюдение ведется в течение 10 минут. После данной экспозиции включают счетчик и секундомер и вновь записывают показания стрелок счетчика. Затем вычисляют разность между двумя показаниями счетчика, делят эту величину на время наблюдения, выраженное в секундах, и получают число оборотов в 1 секунду.

    Рис. 20. Анемометры чашечный (а ) и

    крыльчатый (б )

    Эта величина приблизительно соответствует искомой скорости движения воздушного потока. Для получения более точной величины пользуются таблицей или графиком перевода числа оборотов в скорость. Таблица или график прилагаются к прибору.

    Чашечный анемометр служит для определения средних скоростей ветра в пределах 1,0 – 2,0 м/с. с помощью данного прибора можно производить не только метеорологические наблюдения в открытой атмосфере, но и определять скорость движения воздушных потоков в вентиляционных системах, в частности, с целью гигиенической оценки эффективности вентиляции в помещениях и устройствах различного назначения.

    Крыльчатый анемометр по принципу работы идентичен предыдущему прибору. Однако в данном приборе имеются некоторые конструктивные особенности, повышающие его чувствительность и нижние пределы определения скорости движения воздушных потоков. Воспринимающей частью в крыльчатом анемометре служит мельничка (крыльчатка) из легких металлических лопастей, посаженных на соединенную со счетчиком оборотов горизонтальную ось.

    При работе прибор ориентируется по потоку так, чтобы счетный механизм был позади потока относительно крыльчатки. Для преодоления инерции сопротивления прибора крыльчатке достаточно вращаться в холостую всего 0,5 минуты. Продолжительность наблюдения ограничивается 2 минутами. Порядок расчета скорости потока воздуха такой же, как у чашечного анемометра. С помощью крыльчатого анемометра представляется возможность измерять скорость воздушных потоков от 0,3 до 5,0 м/с.

    Пример определения скорости движения воздуха чашечного анемометра. На открытой рабочей площадке с целью изучения условий труда рабочих-строителей проведено одно из исследований скорости ветра в ряду намеченных программой многочисленных регулярных наблюдений. Снимаем исходные показания счетчика прибора. При этом стрелка, указывающая тысячи, находилась между цифрами 3 и 4 соответствующего циферблата. То есть, в данном случае записываем число целых тысяч – 3. Стрелка, показывающая сотни, находилась между цифрами соответствующего циферблата 5 и 6. Записываем за цифрой 3 следующую цифру, обозначающую число целых сотен, - 5. Большая стрелка показывала 76 делений. Записываем вслед за предыдущими двумя цифрами цифру 76, показывающую число отдельных оборотов оси прибора. Таким образом, исходная величина на счетчике составила 3576.

    Далее в течение 10 минут производилось определение скорости ветра с одновременным включением счетчика прибора и секундомера. Через указанное время счетчик и секундомер были выключены. С помощью указанной выше методики снимаем новые показания прибора, которые составили 6123. время наблюдения в секундах – 1060 = 600 с. таким образом, за 600 секунд ось прибора сделала 6123 оборота. Для определения количества оборотов за 1 с делим разность показаний счетчика на 600: (6123 – 3576) : 600 = 2547: 600 = 4,245 об./с. Если в исследованиях нет необходимости в чрезвычайной точности исследования, что имеет место в большинстве случаев, то найденную величину принимают за скорость движения воздуха в м/с. То есть, скорость движения воздуха в данном примере была равной 4,245 м/с. Если же, появилась необходимость в очень точном исследовании, то переводят по графику или таблице, прилагаемых к прибору, об./с. м/с.

    Кататермометр. Данный прибор представляет собой особый спиртовый термометр со шкалой 35-38С или 33-40С. Поначалу кататермометр был сконструирован для измерения охлаждающего влияния температуры воздуха на тело человека. В дальнейшем было показано, что кататермометр не производит потери тепла с поверхности кожи человека, не учитывает влияния теплового излучения, которое оказывает значительное действие на тепловой обмен организма. В настоящее время применяется практически исключительно для измерения малых скоростей движения воздуха, хотя, пользуясь кататермометром, можно ориентировочно определить, с какими его показаниями при различных условиях производственной деятельности совпадает оптимальное самочувствие людей, и оценить охлаждающую способность метеорологических факторов (температуры и скорости движения воздуха).

    Рис. 21. Кататермометры шаровой (а ) и цилиндрический (кататермометр Хилла) (б )

    В зависимости от конструкции кататермометры бывают цилиндрические (кататермометр Хилла) или шаровые (рисунок 21), представляют собой термометр, в котором верхний конец капиллярной трубки имеет расширение, которое частично заполняется спиртом при нагревании. Принцип того и другого кататермометров заключается в том, что скорость снижения температуры приборов зависит кроме температуры воздуха от скорости его движения. При работе с цилиндрическим кататермометром измеряют время снижения температуры с 38 до 35С, с шаровым – с 38 до 35С, 39 до 34С, 40 до 38С. причем нетрудно заметить, что средне значение указанных температурных перепадов всегда равно 36,5С, то есть средней температуре человека. Это позволяло при первоначальном назначении приборов в какой-то степени имитировать охлаждающее воздействие воздуха на организм человека («охлаждающая способность воздуха»). В процессе охлаждения с 1 см 2 поверхности резервуара кататермометров теряется постоянное количество тепла. Эта величина (катафактор) является константой (постоянной величиной) прибора и обозначается на каждом кататермометре в виде его постоянного фактора, выраженного в мкал/см 2 .

    Порядок работы с кататермометрами. Перед измерением кататермометр опускают в воду при температуре 65–80С и держат, пока спирт заполнит не менее половины расширения капилляра. После этого кататермометр тщательно вытирают, вешают на штатив в точке измерения и по секундомеру устанавливают время охлаждения в указанных выше интервалах температур. Очень важно, чтобы кататермометр в период наблюдения находился в неподвижном состоянии, в противном случае будет имитироваться дополнительное движение воздуха. Измерения в одной точке повторяют несколько раз, отбрасывают первый результат, а из последующих выводят среднее значение величины охлаждения (Н ). Вычисление величины охлаждения по цилиндрическому кататермометру производит по формуле:

    Н

    F – катафактор, мкал/см 2 ;

    а – число секунд, в течение которых столбик спирта опустился с 38 до 35С.

    При работе с шаровым кататермометром, если наблюдения проводятся в температурном интервале 38-35С, вычисление величиныН производят по той же формуле, что и для цилиндрического кататермометра. При наблюдениях в других интервалах для вычисленияН пользуются формулой:

    Н – искомая величина охлаждения, мкал;

    – константа, мкал/см 2 град.);

    Т 1 –Т 2 – интервалы температур вС (40-33 или 39-34);

    а – число секунд, в течение которых столбик спирта опустился в соответствующих температурных интервалах. с 38 до 35С.

    По величине охлаждения (Н ) и значению температуры воздуха в период исследования скорость движения воздуха вычисляют по формулам:

    для скорости движения воздуха < 1 м/с (до 0,6)

    для скорости движения воздуха > 1 м/с (> 0,6)

    В приведенных формулах приняты следующие условные обозначения:

    V – искомая скорость движения воздуха, м/с;

    Н – величина охлаждения сухого кататермометра, мкал;

    Q – разность между средней температурой тела (36,5С) и температурой окружающего воздуха,С;

    0,20 и 0,40; 0,13 и 0,47 – эмпирические коэффициенты.

    Пример определения скорости движения воздуха с помощью шарового кататермометра. Исследователем проводилось определение скорости движения воздуха в учебной аудитории №2 кафедры гигиены ГОУ ВПО «ВГМУ Росздрава» с помощью шарового кататермометра при температуре воздуха в период наблюдения 20С. катафактор (F ) прибора – 573 мкал/см 2 . Первый результат измерения времени падения температуры прибора с 40 до 33С, как указывалось выше, был отброшен. Последующие три измерения показали соответственно время 210, 221 и 205 секунд. При расчете среднего времени получается результат: (210 + 221 + 205) : 3 = 636: 3 = 212 с.

    мкал.

    Находим величину , которая будет равна:

    Скорость движения воздуха в учебной аудитории < 1 м/с, так как H/Q< 0,6. Подставляем найденные величины в соответствующую, указанную выше формулу, и рассчитываем скорость движения воздуха:

    Для ускоренных и приближенных расчетов скорости движения воздуха можно пользоваться специальными таблицами (таблицы 10 и 11). Если исследования проводились в условиях, представленных в предыдущем примере, где величина H / Q была равной 0,38, то на пересечении горизонтальной прямой, соответствующей указанной величине, с колонкой, соответствующей 20С, находим результат по таблице – 0,239 м/с.

    Таблица 10

    «Атмосферное давление» - Стандартное давление. Изменчивость и влияние на погоду. Барометр. Барометр-анероид. Торричелли. Нормальное давление. Барическая ступень. Изменения атмосферного давления. Атмосферное давление. История. Тяжесть столба воздуха. Атмосфера. Приведение к уровню моря. Луна. Что произошло бы на Земле, если бы воздушная атмосфера вдруг исчезла.

    «Движение воздуха» - Теплый легкий воздух, поднимается наверх. Как движется воздух по вертикали в центре циклона? Какая погода связана с антициклоном? Влияние соседних территорий на климат России. Как происходит круговое движение воздуха в антициклоне? Азорский максимум. Ливни, грозы. Медленное потепление. Атмосферный вихрь с низким давлением в центре.

    «Смерчи и торнадо» - Центробежные силы отгоняют к перефирии воронки тяжелые капли воды и града. Форма смерчей может быть многообразной - колонна, конус, бокал, бочка, бичеподобная веревка. Могут быть разрушены дома, фермы, могут погибнуть люди. Смерч - сильнейший атмосферный вихрь в центральной части циклона. Смерчи имеют форму вращающегося хобота, трубы или воронки, свисающей из материнского облака.

    «Атмосферные фронты» - Антициклон – это вихрь с высоким давлением в центре. Сравнительная характеристика циклона и антициклона. На гребне волны масса теплого воздуха окружена холодным. Гроза. Зимнее расположение атмосферных фронтов. Арктический АФ. Циклон – это вихрь с низким давлением в центре. Теплый фронт. Антарктические ВМ.

    «Атмосферное давление география» - Задачи: Еванджелиста Торричелли. Сколько весит воздух? Оборудование: Письменная проверочная работа. С высоты 2000м на 150 м подъема -10мм рт.ст.; 6000 м на 200 м подъема – 10 мм.рт.ст. Где содержится 80% массы воздуха? ПОВТОРЕНИЕ РАНЕЕ ИЗУЧЕННОГО МАТЕРИАЛА (фронтальный опрос). Подведение итогов. На 100 м подъема давление падает на 10 мм рт.ст.

    «Урок Ветер» - Приборы. Скорость. Роза ветров. Характеристика ветра. Муссон. Засвистит- по речке дрожь. «Женатый» -на оз. Флюгер –прибор для определения направления. Анемометр –прибор для определения силы ветра. Налетит- деревья гнёт. Штормовой ветер дует со скоростью 19- 22 м/с. По полю рыщет, Поёт да свищет, Деревья ломает, К земле приклоняет.

    Всего в теме 12 презентаций