Основные 9 правил русского языка. Разделительный твёрдый и мягкий знаки. Проверяемые безударные гласные в корне слова

Уже давно установлено, что электрические заряды не оказывают прямого воздействия друг на друга. В пространстве, окружающем все заряженные тела, наблюдается действие электрического поля. Таким образом, взаимодействие происходит между полями, находящимися вокруг зарядов. Каждое поле имеет определенную силу, с которой оно и воздействует на заряд. Эта способность является основной характеристикой для всех .

Определение параметров электрического поля

Исследование электрического поля, расположенного вокруг заряженного объекта, осуществляется с помощью, так называемого пробного заряда. Как правило, это точечный заряд, величина которого очень незначительна и не может каким-то образом, заметно повлиять на основной, исследуемый заряд.

Для более точного определения количественных параметров электрополя, была установлена специальная величина. Данная силовая характеристика получила наименование в виде напряженности электрического поля.

Напряженность поля представляет собой устойчивую физическую величину. Ее значение равно отношению силы поля, воздействующей на положительный пробный заряд, расположенный в конкретной точке пространства, к величине данного пробного заряда.

Вектор напряженности - основная характеристика

Основной характеристикой напряженности служит вектор напряженности электрического поля. Таким образом, данная характеристика является векторной физической величиной. В любой пространственной точке, вектор напряженности направлен в том же направлении, что и сила, оказывающая воздействие на положительный пробный заряд. Неподвижные заряды, которые не изменяются с течением времени, обладают электростатическим электрическим полем.

В том случае, когда исследуется электрополе, созданное сразу несколькими заряженными телами, его общая сила будет состоять из геометрической суммы сил каждого заряженного тела, воздействующих на пробный заряд.

Следовательно, вектор напряженности электрического поля состоит из общей суммы векторов напряженности всех полей, созданными отдельными зарядами в каждой точке.

Силовые линии электрического поля представляют собой его наглядное графическое изображение. Вектор напряженности в каждой точке направлен в сторону касательной, располагающейся в соотношении с силовыми линиями. Количество силовых линий пропорциональны модулю вектора напряженности электрического поля.

Поток вектора напряженности

12. Диэлектрики в эл.поле. Молекулы полярных и неполярных диэлектриков в эл.поле. Поляризация диэлектриков. Виды поляризации.

1. Полярные диэлектрики.

В отсутствии поля каждый из диполей обладает электрическим моментом, но вектора электрических моментов молекул расположены в пространстве хаотично и сумма проекций электрических моментов на любое направление равна нулю:

Если теперь диэлектрик поместить в электрическое поле (рис. 18), то на каждый диполь начнет действовать пара сил, которая создаст момент под действием которого диполь будет поворачиваться вокруг оси, перпендикулярной плечу, стремясь к конечному положению, когда вектор электрического момента будет параллелен вектору напряженности электрического поля. Последнему будет мешать тепловое движение молекул, внутреннее трение и т.д. и поэтому

электрические моменты диполей будут составлять некоторые углы с направлением вектора внешнего поля, но теперь уже у большего числа молекул будут составляющие проекции электрических моментов на направление, совпадающее, например, с напряженностью поля и сумма проекций всех электрических моментов уже будет отлична от нуля.

Величина, показывающая способность диэлектрика созда-вать большую или меньшую поляризацию, то есть харак-теризующая податливость диэлектрика к поляризации называется диэлектрической восприимчивостью или поляризуемостью диэлектрика ().

16. Поток вектора эл.индукции(однородного и неоднород-ного опля). Поток через замкнутую поверхность. Т.Гаусса для эл. Поля в среде.

Подобно потоку вектора напряженности можно ввести и понятие потока вектора индукции , оставив то же свойство, что и для напряженности-вектор индукции пропорционален числу линий, проходящих через единицу площади поверхности. Можно указать следующие свойства:

1.Поток через плоскую поверхность в однородном поле (рис. 22).В этом случае вектор индукции направлен по полю и поток линии индукции может быть выражен следующим образом:

2. Поток вектора индукции через поверхность в неоднородном поле подсчитывают путем разбиения поверхности на элементы столь малые, чтобы их можно было считать плоскими, а поле вблизи каждого элемента однородным. Полный поток вектора индукции будет равен:

3. Поток вектора индукции через замкнутую поверхность.

Рассмотрим поток вектора индукции пересекающего замкнутую поверхность (рис.23). Условимся направление внешних нормалей считать положительными. Тогда в тех точках поверхности, где вектор индукции направлен по касательной к линии индукции наружу, угол

и поток линий индукции будет положительным, а там, где вектор D индукции будет положительным, а там, где вектор D направлен внутрь поверхности, поток линий индукции будет отрицательным, т.к и .Таким образом общий поток линий индукции пронизывающих замкнутую поверхность насквозь равен нулю.

На основании теоремы Гаусса получаем, что внутри замкнутой поверхности, проведенной в проводнике, некомпенсированные электрические заряды отсутствуют. Это свойство сохраняется и в том случае, когда проводнику сообщен избыточный заряд

На противоположной стороне возникнет равный по величине, но положительный заряд. В результате внутри проводника возникнет индуцированное электрическое поле Е инд , направленное навстречу внешнему полю, которое будет расти до тех пор, пока оно не сравняется с внешним полем и таким образом результирующее поле внутри проводника становится равно нулю. Этот процесс происходит в течение очень короткого времени.

Индуцированные заряды располагаются на поверхности проводника в очень тонком слое.

Потенциал во всех точках проводника остается одинаков, т.е. внешняя поверхность проводника является эквипотенциальной.

Замкнутый полый проводник экранирует только поле внешних зарядов. Если электрические заряды находятся внутри полости, то индукционные заряды возникнут не только на внешней поверхности проводника, но и на внутренней и замкнутая проводящая полость уже не экранирует поле электрических зарядов помещенных внутрь ее.

. Напряженность поля вблизи проводника прямо пропорциональна поверхностной плотности заряда на нем.