Метод трассировки лучей в компьютерных играх. Борьба методов визуализации. И как трассировка лучей влияет на качество? Ограничения метода обратной трассировки

Прямая трассировка . В методе прямой трассировки генерируется пучок лучей, выходящих из источника во всевозможных направлениях.

Большинство лучей, испущенных источником, не попадает в приемник, а значит, и не влияет на формируемое в нем изображение. Лишь очень малая часть лучей после всех отражений и преломлений в конце концов попадает в приемник, создавая изображение сцены в его рецепторах. На шероховатых поверхностях возникает множество диффузно отраженных лучей. Все их нужно программно генерировать и отслеживать, что лавинообразно усложняет задачу трассировки.

Прохождение луча в неидеальной среде сопровождается рассеянием и поглощением световой энергии на ее микрочастицах. Эти физические процессы чрезвычайно трудно адекватно моделировать на ЭВМ с ее конечными вычислительными ресурсами. На практике ограничиваются применением коэффициента затухания энергии луча на единицу пройденного им расстояния. Аналогично вводятся коэффициенты уменьшения энергии луча при его отражении и преломлении на поверхности раздела сред. С учетом этих коэффициентов отслеживается уменьшение энергии всех первичных и вторичных лучей в процессе их блуждания в пространстве сцены. Как только энергия некоторого луча становится меньше заданного абсолютного уровня или уменьшается в заданное число раз, трассировка данного луча прекращается.

Таким образом, главными недостатками метода прямой трассировки являются его большая трудоемкость и малая эффективность. При реализации метода большая часть работы по расчету пересечений лучей с объектами оказывается проделанной впустую.

Обратная трассировка. Метод обратной трассировки разработан в 80-х годах. Основополагающими считаются работы Уиттеда и Кея.

Для отсекания лучей, не попавших в приемник, достаточно рассматривать наблюдателя в качестве источника обратных лучей. Первичным лучом будет считаться луч V от наблюдателя к какой-либо точке на поверхности объекта.

По рассмотренным выше методикам рассчитываются вторичные, третичные и т.д. лучи. В результате для каждого первичного луча строится дерево трассировки, ветви которого составляют вторичные лучи. Ветвление трассы заканчивается, если:

● луч выходит за пределы сцены,

● луч встречается с непрозрачным телом, поглощающим свет,

● луч попадает в источник света,

● интенсивность луча падает ниже порога чувствительности,

● число расщеплений первичного луча становится слишком большим для имеющихся машинных ресурсов.

Результирующая прямая световая энергия (цвет и интенсивность), попавшая в приемник из направления V , слагается из энергий терминальных вершин дерева с учетом их потерь при распространении в оптических средах.


Метод обратной трассировки фактически аккумулирует все лучи, в действительности приходящие в приемник из определенного направления независимо от их начала. Это позволяет видеть и изображать на экране:

● непрозрачные объекты, поглощающие обратные лучи;

● прозрачные объекты, через которые благодаря преломлению наблюдателю видны другие объекты;

● отражения объектов на зеркальных поверхностях, в том числе и блики, соответствующие попаданию обратных лучей в источник света;

● тени, образующиеся в точках поверхности, заслоненных от источника другими объектами;

● другие разнообразные оптические эффекты.

Количество "зондирующих" обратных лучей, подвергаемых трассировке, ограничено числом точек на поверхностях объектов сцены, видимых из точки расположения наблюдателя и перебираемых с конечным шагом, зависящим от разрешения экрана. Благодаря этому объем вычислительных затрат в методе обратной трассировки существенно уменьшается по сравнению с методом прямой трассировки. Возможно комбинирование обоих методов для оптимизации алгоритмов и снижения их трудоемкости.

Алгоритмы трассировки носят характер рекурсивной процедуры, которая вызывает саму себя при появлении вторичного луча (анализируемый луч отражается или преломляется). Большая часть вычислений при реализации методов трассировки приходится на расчет пересечений лучей с поверхностями, в связи с чем они применяются для изображения оптических эффектов в сценах с небольшим числом объектов.

При практической реализации метода обратной трассировки вводят нижеприведенные ограничения. Некоторые из них необходимы, чтобы можно было в принципе решить задачу синтеза изображения, а некоторые ограничения позволяют значительно повысить быстродействие трассировки.

Ограничения метода обратной трассировки:

1. Среди всех типов объектов выделим источники света. Они могут только излучать свет, но не могут его отражать или преломлять. Обычно рассматриваются точечные источники.

2. Свойства отражающих поверхностей описываются суммой двух компонентов: диффузного и зеркального.

3. Зеркальность, в свою очередь, также описывается двумя составляющими. Первая (reflection) учитывает отражение от других объектов, не являющихся источниками света. Строится только один зеркально отраженный луч r для дальнейшей трассировки. Вторая компонента (specular) означает световые блики от источников света. Для этого направляются лучи на все источники определяются углы, образуемые этими лучами с зеркально отраженным лучом обратной трассировки (r ). При зеркальном отражении цвет точки поверхности определяется цветом того, что отражается. В простейшем случае зеркало не имеет собственного цвета поверхности.

4. При диффузном отражении учитываются только лучи от источников света. Лучи от зеркально отражающих поверхностей игнорируются. Если луч, направленный на данный источник света, закрывается другим объектом, значит, данная точка объекта находится в тени. При диффузном отражении цвет освещенной точки поверхности определяется собственным цветом поверхности и цветом источников света.

5. Для прозрачных (transparent) объектов обычно не учитывается зависимость коэффициента преломления от длины волны. Иногда прозрачность вообще моделируют без преломления, т.е. направление преломленного луча t совпадает с направлением падающего луча.

6. Для учета освещенности объектов светом, рассеиваемым другими объектами, вводится фоновая составляющая (ambient).

7. Для завершения трассировки вводят некоторое пороговое значение освещенности, которое уже не должно вносить вклад в результирующий цвет, либо ограничивают число итераций.

Положительные черты метода обратной трассировки:

● универсальность, применимость для синтеза изображений достаточно сложных пространственных сцен. Воплощает многие законы оптики. Просто реализуются разнообразные проекции;

● даже усеченные варианты данного метода позволяют получить достаточно реалистичные изображения. Например, если ограничиться только первичными лучами (из точки проецирования), то это дает удаление невидимых точек. Трассировка уже одного-двух вторичных лучей дает тени, зеркальность, прозрачность;

● все преобразования координат (если таковые есть) линейны, поэтому достаточно просто работать с текстурами;

● для одного пиксела растрового изображения можно трассировать несколько близко расположенных лучей, а потом усреднять их цвет для устранения эффекта ступенчатости;

● поскольку расчет отдельной точки изображения выполняется независимо от других точек, то это может быть эффективно использовано при реализации данного метода в параллельных вычислительных системах, в которых лучи могут трассироваться одновременно.

Недостатки метода обратной трассировки:

● проблемы с моделированием диффузного отражения и преломления;

● для каждой точки изображения необходимо выполнять много вычислительных операций. Трассировка лучей относится к числу самых медленных алгоритмов синтеза изображений.

Методы трассировки лучей на сегодняшний день считаются наиболее мощными методами создания реалистических изображений. Универсальность методов трассировки в значительной степени обусловлена тем, что в их основе лежат простые и ясные понятия, отражающие наш опыт восприятия окружающего мира.

Рассмотрим, как формируется изображение. Изображение получается из-за того, что свет попадает в камеру. Выпустим из источников света множество лучей. Назовем их первичными лучами. Часть этих лучей улетит в свободное пространство, а часть попадет на объекты. На них лучи могут преломиться, отразится. При этом часть энергии луча поглотится. Преломленные и отраженные лучи образуют множество вторичных лучей. Далее эти лучи опять же преломятся и отразятся и образуют новое поколение лучей. В конечном итоге часть лучей попадет в камеру и сформирует изображение.

Существуют алгоритмы, работающие по такому алгоритму. Но они крайне неэффективны, так как большинство лучей, исходящих из источника, не попадают в камеру. А приемлемая картинка получается, если трассировать большое число лучей, что займет очень много времени. Данный алгоритм называется прямой трассировкой лучей.

Метод обратной трассировки лучей позволяет значительно сократить перебор световых лучей. Этот метод разработали в 80-х годах Уиттед и Кэй. В этом методе отслеживаются лучи не от источников, а из камеры. Таким образом, трассируется определенное число лучей, равное разрешению картинки.

Предположим, что у нас есть камера и экран, находящийся на расстоянии h от нее. Разобьем экран на квадратики. Дальше будем по очереди проводить лучи из камеры в центр каждого квадратика (первичные лучи). Найдем пересечение каждого такого луча с объектами сцены и выберем среди всех пересечений самое близкое к камере. Далее, применив нужную модель освещения, можно получить изображение сцены. Это самый простой метод трассировки лучей. Он позволяет лишь отсечь невидимые грани.

Но можно пойти дальше. Если мы хотим смоделировать такие явления, как отражение, преломление, нам необходимо из самого близкого пересечения пустить вторичные лучи. Например, если поверхность отражает свет и она идеально ровная, то необходимо отразить первичный луч от поверхности и пустить по этому направлению вторичный луч. Если же поверхность неровная, то необходимо пустить множество вторичных лучей. В программе это не делается, так как это сильно замедлит трассировку.

Если объект прозрачный, то необходимо построить вторичный луч такой, чтобы при преломлении он давал исходный луч. Некоторые тела могут, обладать свойством диффузного преломления. При этом образуется не один, а множество преломленных лучей. Как и в случае отражения, я этим пренебрегаю.

Таким образом, первичный луч, найдя пересечение с объектом, делится в общем случае на два луча (отраженный и преломленный). Далее эти два луча делятся еще на два и так далее.

Главной процедурой обратной трассировки лучей в моей программе является процедура Ray. Она имеет следующую структуру:

Если поколение луча равно максимальной глубине рекурсии, то возвращаем среднюю яркость по всем составляющим. Если нет, то идем дальше

Определяем ближайший треугольник, с которым пересекается луч.

Если такого треугольника нет, возвращаем цвет фона, если есть, идем дальше.

Если поверхность, с которой было найдено пересечение, отражает, то формируем отраженный луч и вызываем рекурсивно процедуру Ray с поколением луча, увеличенным на 1.

Если поверхность, с которой было найдено пересечение, преломляет, то формируем преломленный луч и вызываем рекурсивно процедуру Ray с поколением луча, увеличенным на 1.

Определяем итоговую освещенность пиксела, учитывая расположение источников, свойства материала, а так же интенсивности отраженного и преломленного луча.

Я уже рассмотрели ряд ограничений метода трассировки, когда говорили о диффузном преломлении и о неровном зеркале. Рассмотрим и некоторые другие.

Освещать сцену могут только специальные объекты - источники света. Они точечные и не могут поглощать, преломлять и отражать свет.

Свойства отражающей поверхности состоят из двух компонент - диффузной и зеркальной.

При диффузном отражении учитываются только лучи от источников света. Если источник освещает точку, через зеркало (зайчиком), то считается, что точка не освещена.

Зеркальность тоже делится на две составляющие.

reflection - учитывает отражение от других объектов (не источников света)

specular - учитывает блики от источников света

В трассировке не учитываются зависимости от длины волны света:

коэффициента преломления

коэффициента поглощения

коэффициента отражения

Так как я не моделирую диффузное отражение и преломление, то не смогу получить фоновую подсветку. Поэтому вводим минимальную фоновую освещенность. Часто она позволяет просто значительно улучшить качество изображения.

Алгоритм трассировки позволяет рисовать очень качественные тени. Это не потребует большой переделки алгоритма. В него придется кое-что добавить. При расчете освещенности точки необходимо пустить в каждый из источников света "Теневой фронт". "Теневой фронт" - это луч, с помощью которого проверяется, лежит ли что-нибудь между точкой и источником. Если между ними лежит непрозрачный объект, то точка находится в тени. Это значит, что данный источник, не делает свой вклад в итоговую освещенность точки. Если лежит прозрачный объект, то интенсивность источника уменьшается. Прорисовка теней является очень затратной по времени. Так что, в некоторых ситуациях их отключают.

В моей программе есть возможность включить сглаживание изображения. Сглаживание заключается в том, что для определения цвета пиксела. пускается не один луч, а четыре и определяется среднее значение цвета у этих лучей. Если необходимо найти цвет пиксела (i,j), то пускаются 4 луча в точки экранной плоскости с координатами (i-0.25,j-0.25), (i-0.25,j+0.25), (i+0.25,j-0.25), (i+0.25,j+0.25).

Министерство образования Российской Федерации

Московский Государственный Институт Электроники и Математики

(Технический Университет)

Кафедра Информационно-коммуникационных

технологий

Курсовая работа на тему:

«Анализ перспективности использования метода трассировки лучей в 3D моделировании»

Выполнили :

Гулиян Борис

Подзоров Иван

Группа С -35

Москва 2010

1. 3D-графика. Введение

3. Алгоритмы трассировки лучей

4. Основные достоинства и недостатки трассировки лучей

5. Применение метода трассировки лучей

6. Эксперимент.

Задача: "Анализ перспективности использования метода трассировки лучей в 3D моделировании"

Постановка задачи

Ознакомиться с методом трассировки лучей и его использованием в области 3D графики, поставить эксперимент с использованием одного из алгоритмов трассировки лучей.

В нашем эксперименте мы рассматриваем:
1)производительность алгоритма трассировки лучей в зависимости от числа полигонов модели(в качестве модели берутся 3 шара: матовый, прозрачный и зеркальный).

2)Анализ полученых изображений с применением трассировки лучей и без нее.

В Качестве среды для проведения эксперимента используется ПО Blender.

3D-графика. Введение.

Трёхмерная графика раздел компьютерной графики, совокупность приемов и средств, предназначенных для изображения объёмных объектов. Больше всего применяется для создания изображений на плоскости экрана или листа печатной продукции в архитектурной визуализации , индустрии развлечений, печатной продукции, а также в науке, промышленности и в технологии дополненой реальности.

Любое 3D изображение определяется следующими параметрами и объектами:

· Геометрия (построенная медели)

· Материалы (информация о визуальных свойствах модели)

· Источники света (настройки направления, мощности, спектра освещения)

· Виртуальные камеры (выбор точки и угла построения проекции)

· Силы и воздействия (настройки динамических искажений объектов, применяется в основном в анимации)

· Дополнительные эффекты (объекты, имитирующие атмосферные явления: свет в тумане, облака, пламя и пр.)

Задача трёхмерного моделирования - описать эти объекты и разместить их на сцене с помощью геометрических преобразований в соответствии с требованиями к будущему изображению.

Основной проблемой 3D графики и моделировния является получение максимально фотореалистичной картинки с минимальными затратами ресурсов компьютера и времени на обработку сцены. Так как в различных областях существую различные потребности - создаются различные идеи и алгоритмы для решения конкретно поставленной задачи. Одной из таких идей является трассировка лучей, которую мы рассмотрим в нашей работе.

Прямая и обратная трассировка лучей

Трассировка лучей - это метод обработки 3D моделей с получением фотореалистичного изображения, в котором учитывается взаимное расположение объектов, а также такие физические свойства объектов как отражающая и преломляющая способность.

Существует 2 метода трассировки лучей: прямой и обратный

При прямой трассировке лучей рассматриваются все лучи от источников освещения, попадающие на объекты и в итоге приходящие в глаз наблюдателя. Но такой метод не рационален с точки зрения производительности, потому что приходится обрабатывать все лучи окружения(исходящие и преломляющиеся) во всех направлениях, в том числе и те, которые не попадают на сцену, видимую наблюдателем.

При обратной трассировке лучей все лучи исходят из глаза наблюдателя, тем самым определяя сцену с объектами, для которых в дальнейшем будет произведена обработка. Данный метод позволяет не обрабатывать объекты, не попадающие в видимую область, что значительно уменьшает объем необходимых вычислений.

Все алгоритмы трассировки лучей основаны на методе обратной трассировки лучей.

Алгоритмы трассировки лучей

Рассмотрим принципиальный алгоритм трассировки(Рис. 1). Объектом возьмем сферу.

1. Для каждого пиксела на экране из глаза наблюдателя выпускается луч.

2. После пересечения лучом объекта определяется:

· Прозрачность/непрозрачность объекта. Если объект прозрачный, то из пересечения испускается луч преломления, если непрозрачный - не испускается.

· Освещенность/тень. Из точки пересечения лучом сферы испускаются луч к источнику света (или поочередно для каждого источника света, если их несколько). Если этот луч не пересекает другие непрозрачные объекты или поверхности, значит, источник света непосредственно влияет на освещенность данной точки. Если имеется несколько источников света, то по влиянию всех лучей вычисляется результат, определенный RGB-значением данной точки.

· Отражающая способность. Если объект способен отражать лучи, то из точки пересечения лучом сферы испускается отраженный луч к объектам, которые будут отражены в сфере.

В итоге мы получаем несколько типов лучей. Первичные лучи используются для определения видимости объекта, а вторичные лучи разделяются на следующие:

· лучи преломления;

· лучи тени/освещения;

· лучи отражения.

Рис. 1 Схема алгоритма трассировки лучей


Все остальные алгоритмы основаны на алгоритме, показанном выше, и призваны оптимизировать вычисления.

kd-дерево

Алгоритм построения kd-дерева можно представить следующим образом (будем называть прямоугольный параллелепипед англоязычным словом "бокс" (box)).

1. "Добавить" все примитивы в ограничивающий бокс. Т. е построить ограничивающий все примитивы бокс, который будет соответствовать корневому узлу дерева.

2. Если примитивов в узле мало или достигнут предел глубины дерева, завершить построение.

3. Выбрать плоскость разбиения, которая делит данный узел на два дочерних . Будем называть их правым и левым узлами дерева.

4. Добавить примитивы, пересекающиеся с боксом левого узла в левый узел, примитивы, пересекающиеся с боксом правого узла в правый.

5. Для каждого из узлов рекурсивно выполнить данный алгоритм начиная с шага 2.

Regular grid

Все 3D пространство разбивается на мелкую регулярную сетку, состоящую из N*N*N кубиков. Идея заключается в том, что можно пробегать только по тем по кубикам, через которые пошел луч.

Метод не используется на практике.

Д остоинства и недостатки

Помимо того, что метод трассировки лучей дает максимально фотореалистичную картинку, он имеет ряд и других достоинств:

1. Возможность рендеринга гладких объектов без интерполяции их полигональными поверхностями (например, треугольниками).

2. Вычислительная сложность метода слабо зависит от сложности сцены.

3. Высокая алгоритмическая распараллеливаемость вычислений - можно параллельно и независимо трассировать два и более лучей.

4. При методе трассировки лучей отражения отображаются идеально (рис.2), причём без сложных алгоритмов, поскольку всё просчитывается основным алгоритмом рендеринга.

font-size:14.0pt"> Рис. 2 Отражения двух зеркальных шаров друг в друге

У метода трассировки лучей имеются недостатки, наблюдаемые во всех алгоритмах которые определяют сферу использования данного метода.

1. Основным недостатком данного алгоритма рендеринга является его медлительность. Однако алгоритм трассировки лучей хорошо распараллеливается, а число ядер процессора увеличивается каждый год, поэтому мы должны увидеть линейный рост производительности трассировки лучей. Но такой подход не учитывает вторичные лучи (отражения, преломления и определения затенения), а рендеринг с первичными лучами практически не дает улучшения качества изображения по сравнению с классическим алгоритмом.

2. Проблема вторичных лучей заключается в том, что у них абсолютно отсутствует когерентность (сонаправленность). При переходе от одного пикселя к другому нужно рассчитывать совершенно разные данные, что сводит на нет все обычные техники кэширования, очень важные для хорошей производительности. Это означает, что расчёт вторичных лучей очень сильно зависит от задержек памяти.

3. Отсутствие аппаратной поддержки метода (все GPU специализируются на растеризации).

4. Ещё одна характерная проблема метода трассировки лучей касается сглаживания (AA). Лучи проводятся в виде простой математической абстракции , и реального размера они не учитывают. Проверка на пересечение с треугольником является простой логической функцией, которая даёт ответ "да" или "нет", но не даёт таких деталей, как "луч на 40% пересекает треугольник". Прямым следствием такого эффекта будет появление "лесенок"(Рис.3).

Рис. 3 сглаживание теней

И единственной технологией, которая может дать хорошие результаты, является расчёт большего числа лучей, чем есть пикселей, то есть суперсэмплинг(Oversampling или Anti-Aliasing) (рендеринг при большем разрешении).

Также следует помнить, что скорость рендеринга и его качество методом трассировки лучей сильно зависит от оптимизации кода.

Применение метода трассировки лучей

Из-за своих особенностей(фотореалистичное изображение, медлительность вычислений) данный метод применяется в областях, где важно качество картинки, а не время ее рендеринга (при этом чаще всего используются комбинированный методы рендеринга, что позволяет повысить производительность). К Таким областям относятся:

· 3D мультипликация;

· Спецэффекты киноиндустрии;

· Реалистичный рендеринг фотоизображения;

· Cad - системы.

Специальные термины:

Полигональная сетка-совокупность вершин и полигонов, которая определяет форму отображаемого объекта.

Рендеринг (Render) - (англ. rendering - «визуализация») - процесс получения изображения по модели.

Здесь модель - это описание любых объектов или явлений на строго определённом языке или в виде структуры данных. Такое описание может содержать геометрические данные, положение точки наблюдателя, информацию об освещении, степени наличия какого-то вещества и пр.


Рис 4. полигональная сетка

Эксперимент.

В качестве ПО для проведения эксперемента мы выбрали 3D - редактор Blender.

Он достаточно легок в освоении и содержит в себе все не обходимые функции:

· Рендеринг изображения с возможность подключения и отключения трассировщика.

· Oversampling(anti-aliasing или сглаживание )

Мы замеряли время, необходимое на рендеринг 3-х различных сфер(стеклянной, зеркальной и матовой) на различных Уравных Multeris (каждый уровень повышает число полигонов в 4 раза). При повышении уровня время считали от 0.

0 " style="margin-left:48.35pt;border-collapse:collapse">

Ур. Multeris

Время рендеринга каждого ур. с 0

Без RayT [c]

С RayT [c]

0,53

3,36

0,46

0,54

2,84

0,55

3,02

0,61

3,85

0,96

5,96

10,64

29,12

43,9

Таблица 1.

Рендеринг производился с максимальными параметрами, чтобы увеличить разницу в скорости обработки.

В результате видим, что время на обработку трех сфер с уровнем 4 (по 256 полигонов на каждой сфере) меньше, чем время, потраченное на обработку сфер с уровнем 2 (по 16 полигонов).


Рис 5. полигональные сетки для различных уровней

Итог

Из проведенного эксперимента видно, что время, затраченное на рендеринг 3-х шаров с использованием трассировки существенно больше, чем время, затраченное на рендеринг без использования трассировки лучей. Но в процессе эксперемента было замечено интересное наблюдение: время на обработку 3, 4 и 5 уровневых моделей меньше времени обработи двухуровневой модели.

Анализ полученый изображений:
1)На картинке, полученной без использования трассировки (далее А), видно, что прозрачная сфера не дает эффект линзы (применение альфа-канала), в то время как на картинке, с использованием трассировки лучей (далее Б) прозрачный шар увеличивает объекты за ним(рис. 6).

Рис. 6 прозрачные сферы (слева alpha-канал, справа трассировка лучей)


2)На картинке А нет зеркального шара, т. к получение отражения на нем основано на трассировке лучей(рис. 7).

Рис 7. модель эксперимента (сверху alpha-канал, снизу трассировка лучей).


3)На рисунке 8 видно, что при рендеренге без использывания трассировки лучей, происходит освещение внутренних полостей, куда, по логике, свет проникать не должен.


Рис.8 Падения света на впадены в шаре(слева А, справа Б)

Из данного анализа видно, что качество изображений с использованием трассировки лучей существенно лучше, чем изображений полученных без нее, что оправдывает использование данного метода в областях, где важно качество полученного изображения, а не время его обработки.

Я знаю, это немного разочаровывает. Где отражения, тени и красивый внешний вид? Мы всё это получим, ведь мы пока только начали. Но это хорошее начало - сферы выглядят как круги, а это лучше, чем если бы они выглядели как кошки. Они не выглядят как сферы потому, что мы упустили важный компонент, позволяющий человеку определять форму объекта - то, как он взаимодействует со светом.

Освещение

Первым шагом для добавления «реализма» нашему рендерингу сцены будет симуляция освещения. Освещение - это безумно сложная тема, поэтому я представлю очень упрощённую модель, достаточную для наших целей. Некоторые части этой модели даже не являются приближением к физическим моделям, они просто быстры и хорошо выглядят.

Мы начнём с некоторых упрощающих допущений, которые облегчат нам жизнь.

Во-первых, мы объявим, что всё освещение имеет белый цвет. Это позволит нам охарактеризовать любой источник освещения единственным действительным числом i, называемым яркостью освещения. Симуляция цветного освещения не так сложна (необходимо только три значения яркости, по одному на канал, и вычисление всех цветов и освещения поканально), но чтобы сделать нашу работу проще, я не буду его делать.

Во-вторых, мы избавимся от атмосферы. Это значит, что освещение не становятся менее яркими, независимо от их дальности. Затухание яркости света в зависимости от расстояния реализовать тоже не слишком сложно, но для ясности мы пока его пропустим.

Источники освещения

Свет должен откуда-то поступать. В этом разделе мы зададим три различных типа источников освещения.

Точечные источники

Точечный источник испускает свет из фиксированной точки в пространстве, называемой его позицией . Свет испускается равномерно во всех направлениях; именно поэтому его также называют всенаправленным освещением . Следовательно, точечный источник полностью характеризуется его позицией и яркостью.

Лампа накаливания - хороший пример из реального мира того, приближением чего является точечный источник освещения. Хотя лампа накаливания не испускает свет из одной точки и он не является совершенно всенаправленным, но приближение достаточно хорошее.

Давайте зададим вектор как направление из точки P в сцене к источнику освещения Q. Этот вектор, называемый световым вектором , просто равен . Заметьте, что поскольку Q фиксирована, а P может быть любой точкой сцены, то в общем случае будет разным для каждой точки сцены.

Направленные источники

Если точечный источник является хорошей аппроксимацией лампы накаливания, то что может служить аппроксимацией Солнца?

Это хитрый вопрос, и ответ зависит от того, что вы хотите отрендерить.

В масштабах Солнечной системы Солнце можно приблизительно считать точечным источником. В конце концов, оно испускает свет из точки (хотя и довольно большой) и испускает его во всех направлениях, то есть подходит под оба требования.

Однако если в вашей сцене действие происходит на Земле, то это не слишком хорошее приближение. Солнце находится так далеко, что каждый луч света будет на самом деле иметь одинаковое направление (Примечание: эта аппроксимация сохраняется в масштабе города, но не на более дальних расстояниях - на самом деле. древние греки смогли с удивительной точностью вычислить радиус Земли на основании разных направлений солнечного света в различных местах.). Хотя это можно аппроксимировать это с помощью точечного источника, сильно удалённого от сцены, это расстояние и расстояние между объектами в сцене настолько отличаются по величине, что могут появиться ошибки точности чисел.

Для таких случаев мы зададим направленные источники освещения . Как и точечные источники, направленный источник имеет яркость, но в отличие от них, у него нет позиции. Вместо неё у него есть направление . Можно воспринимать его как бесконечно удалённый точечный источник, светящий в определённом направлении.

В случае точечных источников нам нужно вычислять новый световой вектор для каждой точки P сцены, но в этом случае задан. В сцене с Солнцем и Землёй будет равен .

Окружающее освещение

Можно ли смоделировать любое освещение реального мира как точечный или направленный источник? Почти всегда да (Примечание: но это необязательно будет просто; зональное освещение (представьте источник за рассеивателем) можно аппроксимировать множеством точечных источников на его поверхности, но это сложно, более затратно по вычислениям, а результаты оказываются неидеальными.). Достаточно ли этих двух типов источников для наших целей? К сожалению, нет.

Представьте, что происходит на Луне. Единственным значимым источником освещения поблизости является Солнце. То есть «передняя половина» Луны относительно Солнца получает всё освещение, а «задняя половина» находится в полной темноте. Мы видим это с разных углов на Земле, и этот эффект создаёт то, что мы называем «фазами» Луны.

Однако ситуация на Земле немного отличается. Даже точки, не получающие освещения непосредственно от источника освещения, не находятся полностью в темноте (просто посмотрите на пол под столом). Как лучи света достигают этих точек, если «обзор» на источники освещения чем-то перекрыт?

Как я упомянул в разделе Цветовые модели , когда свет падает на объект, часть его поглощается, но остальная часть рассеивается в сцене. Это значит, что свет может поступать не только от источников освещения, но и от других объектов, получающих его от источников освещения и рассеивающих его обратно. Но зачем останавливаться на этом? Рассеянное освещение в свою очередь падает на какой-нибудь другой объект, часть его поглощается, а часть снова рассеивается в сцене. При каждом отражении свет теряет часть своей яркости, но теоретически можно продолжать ad infinitum (Примечание: на самом деле нет, потому что свет имеет квантовую природу, но достаточно близко к этому.).

Это значит, что нужно считать источником освещения каждый объект . Как можно представить, это сильно увеличивает сложность нашей модели, поэтому мы не пойдём таким путём (Примечание: но вы можете хотя бы загуглить Global Illumination и посмотреть на прекрасные изображения.).

Но мы всё равно не хотим, чтобы каждый объект был или освещён напрямую, или был полностью тёмным (если только мы не рендерим модель Солнечной системы). Чтобы преодолеть эту преграду, мы зададим третий тип источников освещения, называемый окружающим освещением , которое характеризуется только яркостью. Считается, что оно носит безусловный вклад освещения в каждую точку сцены. Это очень сильное упрощение чрезвычайно сложного взаимодействия между источниками освещения и поверхностями сцены, но оно работает.

Освещённость одной точки

В общем случае, в сцене будет один источник окружающего освещения (потому что окружающее освещение имеет только значение яркости, и любое их количество будет тривиально сочетаться в единый источник окружающего освещения) и произвольное количество точечных и направленных источников.

Для вычисления освещённости точки нам просто нужно вычислить количество света, вносимое каждым источником и сложить их, чтобы получить одно число, представляющее общее количество полученного точкой освещения. Затем мы можем умножить цвет поверхности в этой точке на это число, чтобы получить правильно освещённый цвет.

Итак, что произойдёт, когда луч света с направлением из направленного или точечного источника падает на точку P какого-нибудь объекта в нашей сцене?

Интуитивно мы можем разбить объекты на два общих класса, в зависимости от того, как они ведут себя со светом: «матовые» и «блестящие». Поскольку большинство окружающих нас предметов можно считать «матовыми», то с них мы и начнём.

Диффузное рассеяние

Когда луч света падает на матовый объект, то из-за неровности его поверхности на микроскопическом уровне, он отражает луч в сцену равномерно во всех направлениях, то есть получается «рассеянное» («диффузное») отражение.

Чтобы убедиться в этом, внимательно посмотрите на какой-нибудь матовый объект, например, на стену: если двигаться вдоль стены, её цвет не меняется. То есть, видимый вами свет, отражённый от объекта, одинаков вне зависимости от того, в какое место объекта вы смотрите.

С другой стороны, количество отражённого света зависит от угла между лучом света и поверхностью. Интуитивно это понятно - энергия, переносимая лучом, в зависимости от угла должна распределиться по меньшей или большей поверхности, то есть энергия на единицу площади, отражённая в сцену, будет соответственно выше или ниже:

Чтобы выразить это математически, давайте охарактеризуем ориентацию поверхности по её вектору нормали . Вектор нормали, или просто «нормаль» - это вектор, перпендикулярный поверхности в какой-то точке. Также он является единичным вектором, то есть его длина равна 1. Мы будем называть этот вектор .

Моделирование диффузного отражения

Итак, луч света с направлением и яркостью падает на поверхность с нормалью . Какая часть отражается обратно сцену как функция от , и ?

Для геометрической аналогии давайте представим яркость света как «ширину» луча. Его энергия распределяется по поверхности размером . Когда и имеют одно направление, то есть луч перпендикулярен поверхности, , а это значит, что энергия, отражённая на единицу площади равна падающей энергии на единицу площади; < . С другой стороны, когда угол между и приближается к , приближается к , то есть энергия на единицу площади приближается к 0; . Но что происходит в промежутках?

Ситуация отображена на схеме ниже. Мы знаем , и ; я добавил углы и , а также точки , и , чтобы сделать связанные с этой схемой записи проще.

Поскольку технически луч света не имеет ширины, поэтому мы будем считать, что всё происходит на бесконечно малом плоском участке поверхности. Даже если это поверхность сферы, то рассматриваемая область настолько бесконечно мала, что она почти плоская относительно размера сферы, так же как Земля выглядит плоской при малых масштабах.

Луч света с шириной падает на поверхность в точке под углом . Нормаль в точке равна , а энергия, переносимая лучом, распределяется по . Нам нужно вычислить .

Один из углов равен , а другой - . Тогда третий угол равен . Но нужно заметить, что и тоже образуют прямой угол, то есть тоже должны быть . Следовательно, :

Давайте рассмотрим треугольник . Его углы равны , и . Сторона равна , а сторона равна .

И теперь… тригонометрия спешит на помощь! По определению ; заменяем на , а на , и получаем


что преобразуется в
Мы почти закончили. - это угол между и , то есть можно выразить как
И наконец
Итак, мы получили очень простое уравнение, связывающее отражённую часть света с углом между нормалью к поверхности и направлением света.

Заметьте, что при углах больше значение становится отрицательным. Если мы не задумываясь используем это значение, то в результате получим источники света, вычитающие свет. Это не имеет никакого физического смысла; угол больше просто означает, что свет на самом деле достигает задней части поверхности, и не вносит свой вклад в освещение освещаемой точки. То есть если становится отрицательным, то мы считаем его равным .

Уравнение диффузного отражения

Теперь мы можем сформулировать уравнение для вычисления полного количества света, полученного точкой с нормалью в сцене с окружающим освещением яркостью и точечных или направленных источников света с яркостью и световыми векторами или известными (для направленных источников), или вычисленными для P (для точечных источников):
Стоит снова повторить, что члены, в которых не должны прибавляться к освещённости точки.

Нормали сферы

Здесь только отсутствует единственная мелочь: откуда берутся нормали?

Этот вопрос намного хитрее, чем кажется, как мы увидим во второй части статьи. К счастью, для разбираемого нами случая есть очень простое решение: вектор нормали любой точки сферы лежит на прямой, проходящей через центр сферы. То есть если центр сферы - это , то направление нормали в точки равно :

Почему я написал «направление нормали», а не «нормаль»? Кроме перпендикулярности к поверхности, нормаль должна быть единичным вектором; это было бы справедливо, если бы радиус сферы был равен , что не всегда верно. Для вычисления самой нормали нам нужно разделить вектор на его длину, получив таким образом длину :


Это представляет в основном теоретический интерес, потому что записанное выше уравнение освещения содержит деление на , но хорошим подходом будет создание «истинных» нормалей; это упростит нам работу в дальнейшем.

Рендеринг с диффузным отражением

Давайте переведём всё это в псевдокод. Во-первых, давайте добавим в сцену пару источников освещения:

Light { type = ambient intensity = 0.2 } light { type = point intensity = 0.6 position = (2, 1, 0) } light { type = directional intensity = 0.2 direction = (1, 4, 4) }
Заметьте, что яркость удобно суммируется в , потому что из уравнения освещения следует, что никакая точка не может иметь яркость света выше, чем единица. Это значит, что у нас не получатся области со «слишком большой выдержкой».

Уравнение освещения довольно просто преобразовать в псевдокод:

ComputeLighting(P, N) { i = 0.0 for light in scene.Lights { if light.type == ambient { i += light.intensity } else { if light.type == point L = light.position - P else L = light.direction n_dot_l = dot(N, L) if n_dot_l > 0 i += light.intensity*n_dot_l/(length(N)*length(L)) } } return i }
И единственное, что осталось - использовать ComputeLighting в TraceRay . Мы заменим строку, возвращающую цвет сферы

Return closest_sphere.color
на этот фрагмент:

P = O + closest_t*D # вычисление пересечения N = P - closest_sphere.center # вычисление нормали сферы в точке пересечения N = N / length(N) return closest_sphere.color*ComputeLighting(P, N)
Просто ради интереса давайте добавим большую жёлтую сферу:

Sphere { color = (255, 255, 0) # Yellow center = (0, -5001, 0) radius = 5000 }
Мы запускаем рендерер, и узрите - сферы наконец начали выглядеть как сферы!

Но постойте, как большая жёлтая сфера превратилась в плоский жёлтый пол?

Этого и не было, просто она настолько велика относительно других трёх, а камера настолько к ней близка, что она выглядит плоской. Так же, как наша планета выглядит плоской, когда мы стоим на её поверхности.

Отражение от гладкой поверхности

Теперь мы обратим своё внимание на «блестящие» объекты. В отличие от «матовых» объектов, «блестящие» меняют свой внешний вид, когда смотришь на них под разными углами.

Возьмём бильярдный шар или только что вымытый автомобиль. В таких объектах проявляется особый шаблон распространения света, обычно с яркими областями, которые как будто движутся, когда вы ходите вокруг них. В отличие от матовых объектов, то, как вы воспринимаете поверхность этих объектов, на самом деле зависит от точки обзора.

Заметьте, что красные бильярдные шары остаются красными, если вы отойдёте на пару шагов назад, но яркое белое пятно, дающее им «блестящий» вид, похоже, двигается. Это значит, что новый эффект не заменяет диффузное отражение, а дополняет его.

Почему это происходит? Мы можем начать с того, почему это не происходит на матовых объектах. Как мы видели в предыдущем разделе, когда луч света падает на поверхнось матового объекта, он равномерно рассеивается назад в сцену во всех направлениях. Интуитивно понятно, что так происходит из-за неровности поверхности объекта, то есть на микроскопическом уровне она похожа на множество мелких поверхностей, направленных в случайных направлениях:

Но что будет, если поверхность не настолько неровная? Давайте возьмём другую крайность - идеально отполированное зеркало. Когда луч света падает на зеркало, он отражается в единственном направлении, которое симметрично углу падения относительно нормали зеркала. Если мы назовём направление отражённого света и условимся, что указывает на источник света, то получим такую ситуацию:

В зависимости от степени «отполированности» поверхности, она более или менее похожа на зеркало; то есть мы получаем «зеркальное» отражение (specular reflection, от латинского «speculum», то есть «зеркало»).

Для идеально отполированного зеркала падающий луч света отражается в единственном направлении . Именно это позволяет нам чётко видеть объекты в зеркале: для каждого падающего луча есть единственный отражённый луч . Но не каждый объект отполирован идеально; хотя бОльшая часть света отражается в направлении , часть его отражается в направлениях, близких к ; чем ближе к , тем больше света отражается в этом направлении. «Блеск» объекта определяет то, насколько быстро отражённый свет уменьшается при отдалении от :

Нас интересует то, как выяснить, какое количество света от отражается обратно в направлении нашей точки обзора (потому что это свет, который мы используем для определения цвета каждой точки). Если - это «вектор обзора», указывающий из в камеру, а - угол между и , то вот, что мы имеем:

При отражается весь свет. При свет не отражается. Как и в случае с диффузным отражением, нам нужно математическое выражение для определения того, что происходит при промежуточных значениях .

Моделирование «зеркального» отражения

Помните, как ранее я упоминал о том, что не все модели основаны на физических моделях? Ну, вот один из примеров этого. Представленная ниже модель является произвольной, но её используют, потмоу что она проста в вычислении и хорошо выглядит.

Давайте возьмём . У него есть хорошие свойства: , , а значения постепенно уменьшаются от до по очень красивой кривой:

Соответствует всем требованиям к функции «зеркального» отражения, так почему бы не использовать его?

Но нам не хватает ещё одной детали. В такой формулировке все объекты блестят одинаково. Как изменить уравнение для получения различных степеней блеска?

Не забывайте, что этот блеск - мера того, насколько быстро функция отражения уменьшается при увеличении . Очень простой способ получения различных кривых блеска заключается в вычислении степени некоего положительного показателя . Поскольку , то очевидно, что ; то есть ведёт себя точкно так же, как , только «уже». Вот для разных значений :

Чем больше значение , тем «уже» становится функция в окрестностях , и тем более блестящим выглядит объект.

Обычно называют показателем отражения , и он является свойством поверхности. Поскольку модель не основана на физической реальности, значения можно определить только методом проб и ошибок, то есть настраивая значения до тех пор, пока они не начнут выглядеть «естественно» (Примечание: для использования модели на основе физики см. двулучевую функцию отражательной способности (ДФОС)).

Давайте объединим всё вместе. Луч падает на поверхность в точке , где нормаль равна , а показатель отражения - . Какое количество света отразится в направлении обзора ?

Мы уже решили, что это значение равно , где - это угол между и , который в свою очередь является , отражённым относительно . То есть первым шагом будет вычисление из и .

Мы можем разложить на два вектора и , таких, что , где параллелен , а перпендикулярен :

Это проекция на ; по свойствам скалярного произведения и исходя из того, что , длина этой проекции равна . Мы определили, что будет параллелен , поэтому .

Поскольку , мы можем сразу получить .

Теперь посмотрим на ; поскольку он симметричен относительно , его компонент, параллельный , тот же, что и у , а перпендикулярный компонент противоположен компоненту ; то есть :

Подставляя полученные ранее выражения, мы получим


и немного упростив, получаем

Значение «зеркального» отражения

Теперь мы готовы записать уравнение «зеркального» отражения:

Как и в случае диффузного освещения, может быть отрицательным, и мы снова должны это игнорировать. Кроме того, не каждый объект должен быть блестящим; для таких объектов (который мы будем представлять через ) значение «зеркальности» вообще не будет вычисляться.

Рендеринг с «зеркальными» отражениями

Давайте добавим в сцену «зеркальные» отражения, над которыми мы сейчас работали. Во-первых, внесём некоторые изменения в саму сцену:

Sphere { center = (0, -1, 3) radius = 1 color = (255, 0, 0) # Красный specular = 500 # Блестящий } sphere { center = (-2, 1, 3) radius = 1 color = (0, 0, 255) # Синий specular = 500 # Блестящий } sphere { center = (2, 1, 3) radius = 1 color = (0, 255, 0) # Зелёный specular = 10 # Немного блестящий } sphere { color = (255, 255, 0) # Жёлтый center = (0, -5001, 0) radius = 5000 specular = 1000 # Очень блестящий }
В коде нам нужно изменить ComputeLighting , чтобы он при необходимости вычислял значение «зеркальности» и прибавлял его к общему освещению. Заметьте, что теперь ему требуются и :

ComputeLighting(P, N, V, s) { i = 0.0 for light in scene.Lights { if light.type == ambient { i += light.intensity } else { if light.type == point L = light.position - P else L = light.direction # Диффузность n_dot_l = dot(N, L) if n_dot_l > 0 i += light.intensity*n_dot_l/(length(N)*length(L)) # Зеркальность if s != -1 { R = 2*N*dot(N, L) - L r_dot_v = dot(R, V) if r_dot_v >
И наконец нам нужно изменить TraceRay , чтобы он передавал новые параметры ComputeLighting . очевиден; он берётся из данных сферы. Но как насчёт ? - это вектор, указывающий от объекта в камеру. К счастью, в TraceRay у нас уже есть вектор, направленный из камеры к объекту - это , направление трассируемого луча! То есть - это просто .

Вот новый код TraceRay с «зеркальным» отражением:

TraceRay(O, D, t_min, t_max) { closest_t = inf closest_sphere = NULL for sphere in scene.Spheres { t1, t2 = IntersectRaySphere(O, D, sphere) if t1 in and t1 < closest_t closest_t = t1 closest_sphere = sphere if t2 in and t2 < closest_t closest_t = t2 closest_sphere = sphere } if closest_sphere == NULL return BACKGROUND_COLOR P = O + closest_t*D # Вычисление пересечения N = P - closest_sphere.center # Вычисление нормали сферы в точке пересечения N = N / length(N) return closest_sphere.color*ComputeLighting(P, N, -D, sphere.specular) }
И вот наша награда за всё это жонглирование векторами:

Тени

Там, где есть свет и объекты, должны быть и тени. Так где же наши тени?

Давайте начнём с более фундаментального вопроса. Почему должны быть тени? Тени появляются там, где есть свет, но его лучи не могут достичь объекта, потому что на их пути есть другой объект.

Вы заметите, что в предыдущем разделе нас интересовали углы и вектора, но мы рассматривали только источник света и точку, которую нам нужно раскрасить, и полностью игнорировали всё остальное, что происходит в сцене - например, попавшийся на пути объект.

Вместо этого нам нужно добавить немного логики, говорящей "если между точкой и источником есть объект, то не нужно добавлять освещение, поступающее от этого источника ".

Мы хотим выделить два следующих случая:

Похоже, что у нас есть все необходимые для этого инструменты.

Давайте начнём с направленного источника. Мы знаем ; это точка, которая нас интересует. Мы знаем ; это часть определения источника освещения. Имея и , мы можем задать луч, а именно , который проходит из точки до бесконечно отдалённого источника освещения. Пересекает ли этот луч другой объект? Если нет, то между точкой и источником ничего нет, то есть мы можем вычислить освещённость от этого источника и прибавить его к общей освещённости. Если пересекает, то мы игнорируем этот источник.

Мы уже знаем, как вычислить ближайшее пересечение между лучом и сферой; мы используем его для трассировки лучей от камеры. Мы снова можем использовать его для вычисления ближайшего пересечения между лучом света и остальной сценой.

Однако параметры немного отличаются. Вместо того, чтобы начинаться с камеры, лучи испускаются из . Направление равно не , а . И нас интересуют пересечения со всем после на бесконечное расстояние; это значит, что и .

Мы можем обрабатывать точечные источники очень похожим образом, но с двумя исключениями. Во-первых, не задан , но его очень просто вычислить из позиции источника и . Во-вторых, нас интересуют любые пересечения, начиная с , но только до (в противном случае, объекты за источником освещения могли бы создавать тени!); то есть в этом случае и .

Существует один пограничный случай, который нам нужно рассмотреть. Возьмём луч . Если мы будем искать пересечения, начиная с , то мы, вероятнее всего, найдём саму при , потому что действительно находится на сфере, и ; другими словами, каждый объект будет отбрасывать тени на самого себя (Примечание: если точнее, то мы хотим избежать ситуации, при которой точка, а не весь объект, отбрасывает тень на саму себя; объект с более сложной чем сфера формой (а именно любой вогнутый объект) может отбрасывать истинные тени на самого себя!

Простейший способ справиться с этим - использовать в качестве нижней границы значений вместо малое значение . Геометрически, мы хотим сделать так, чтобы луч начинается немного вдали от поверхности, то есть рядом с , но не точно в . То есть для направленных источников интервал будет , а для точечных - .

Рендеринг с тенями

Давайте превратим это в псевдокод.

В предыдущей версии TraceRay вычислял ближайшее пересечение луч-сфера, а затем вычислял освещение в пересечении. Нам нужно извлечь код ближайшего пересечения, поскольку мы хотим использовать его снова для вычисления теней:

ClosestIntersection(O, D, t_min, t_max) { closest_t = inf closest_sphere = NULL for sphere in scene.Spheres { t1, t2 = IntersectRaySphere(O, D, sphere) if t1 in and t1 < closest_t closest_t = t1 closest_sphere = sphere if t2 in and t2 < closest_t closest_t = t2 closest_sphere = sphere } return closest_sphere, closest_t }
В результате TraceRay получается гораздо проще:

TraceRay(O, D, t_min, t_max) { closest_sphere, closest_t = ClosestIntersection(O, D, t_min, t_max) if closest_sphere == NULL return BACKGROUND_COLOR P = O + closest_t*D # Compute intersection N = P - closest_sphere.center # Compute sphere normal at intersection N = N / length(N) return closest_sphere.color*ComputeLighting(P, N, -D, sphere.specular) }
Теперь нам нужно добавить в ComputeLighting проверку тени:

ComputeLighting(P, N, V, s) { i = 0.0 for light in scene.Lights { if light.type == ambient { i += light.intensity } else { if light.type == point { L = light.position - P t_max = 1 } else { L = light.direction t_max = inf } # Проверка тени shadow_sphere, shadow_t = ClosestIntersection(P, L, 0.001, t_max) if shadow_sphere != NULL continue # Диффузность n_dot_l = dot(N, L) if n_dot_l > 0 i += light.intensity*n_dot_l/(length(N)*length(L)) # Зеркальность if s != -1 { R = 2*N*dot(N, L) - L r_dot_v = dot(R, V) if r_dot_v > 0 i += light.intensity*pow(r_dot_v/(length(R)*length(V)), s) } } } return i }
Вот как будет выглядеть наша заново отрендеренная сцена:


Исходный код и рабочее демо >>

Теперь у нас уже что-то получается.

Отражение

У нас появились блестящие объекты. Но можно ли создать объекты, которые на самом деле ведут себя как зеркала? Конечно, и на самом деле их реализация в трассировщике лучей очень проста, но поначалу может показаться запутанной.

Давайте посмотрим, как работают зеркала. Когда мы смотрим в зеркало, то видим лучи света, отражающиеся от зеркала. Лучи света отражаются симметрично относительно нормали поверхности:

Допустим, мы трассируем луч и ближайшим пересечением оказывается зеркало. Какой цвет имеет луч света? Очевидно, то не цвет зеркала, а любой цвет, который имеет отражённый луч. Всё, что нам нужно - вычислить направление отражённого луча и выяснить, каким был цвет света, падающего из этого направления. Вот бы у нас была функция, возвращающая для заданного луча цвет света, падающего из этого направления…

О, постойте, у нас же она есть: она называется TraceRay .

Итак, мы начинаем с основного цикла TraceRay , чтобы увидеть, что «видит» луч, испущенный из камеры. Если TraceRay определяет, что луч видит отражающий объект, то он просто должен вычислить направление отражённого луча и вызвать… сам себя.

На этом этапе, я предлагаю вам перечитать последние три параграфа, пока вы их не поймёте. Если вы впервые читаете о рекурсивной трассировке лучей, то возможно вам понадобится перечитать пару раз, и немного подумать, прежде чем вы действительно поймёте .

Не торопитесь, я подожду.

Теперь, когда эйфория от этого прекрасного момента эврика! немного спала, давайте немного это формализируем.

Самое важное во всех рекурсивных алгоритмах - предотвратить бесконечный цикл. В этом алгоритме есть очевидное условие выхода: когда луч или падает на неотражающий объект, или когда он ни на что не падает. Но есть простой случай, в котором мы можем угодить в бесконечный цикл: эффект бесконечного коридора . Он проявляется, когда вы ставите зеркало напротив другого зеркала и видите в них бесконечные копии самого себя!

Есть множество способов предотвращения этой проблемы. Мы введём предел рекурсии алгоритма; он будет контролировать «глубину», на которую он сможет уйти. Давайте назовём его . При , то видим объекты, но без отражений. При мы видим некоторые объекты и отражения некоторых объектов. При мы видим некоторые объекты, отражения некоторых объектов и отражения некоторых отражений некоторых объектов . И так далее. В общем случае, нет особого смысла уходить вглубь больше чем на 2-3 уровня, потому что на этом этапе разница уже едва заметна.

Мы создадим ещё одно разграничение. «Отражаемость» не должна иметь значение «есть или нет» - объекты могут быть частично отражающими и частично цветными. Мы назначим каждой поверхности число от до , определяющее её отражаемость. После чего мы будем смешивать локально освещённый цвет и отражённый цвет пропорционально этому числу.

И наконец, нужно решить, какие параметры должен получать рекурсивный вызов TraceRay ? Луч начинается с поверхности объекта, точки . Направление луча - это направление света, отразившегося от ; в TraceRay у нас есть , то есть направление от камеры к , противоположное движению света, то есть направление отражённого луча будет , отражённый относительно . Аналогично тому, что происходит с тенями, мы не хотим, чтобы объекты отражали сами себя, поэтому . Мы хотим видеть объекты отражёнными вне зависимости от того, насколько они отдалены, поэтому . И последнее - предел рекурсии на единицу меньше, чем предел рекурсии, в котором мы находимся в текущий момент.

Рендеринг с отражением

Давайте добавим к коду трассировщика лучей отражение.

Как и ранее, в первую очередь мы изменяем сцену:

Sphere { center = (0, -1, 3) radius = 1 color = (255, 0, 0) # Красный specular = 500 # Блестящий reflective = 0.2 # Немного отражающий } sphere { center = (-2, 1, 3) radius = 1 color = (0, 0, 255) # Синий specular = 500 # Блестящий reflective = 0.3 # Немного более отражающий } sphere { center = (2, 1, 3) radius = 1 color = (0, 255, 0) # Зелёный specular = 10 # Немного блестящий reflective = 0.4 # Ещё более отражающий } sphere { color = (255, 255, 0) # Жёлтый center = (0, -5001, 0) radius = 5000 specular = 1000 # Очень блестящий reflective = 0.5 # Наполовину отражающий }
Мы используем формулу «луча отражения» в паре мест, поэтому может избавиться от неё. Она получает луч и нормаль , возвращая , отражённый относительно :

ReflectRay(R, N) { return 2*N*dot(N, R) - R; }
Единственным изменением в ComputeLighting является замена уравнения отражения на вызов этого нового ReflectRay .

В основной метод внесено небольшое изменение - нам нужно передать TraceRay верхнего уровня предел рекурсии:

Color = TraceRay(O, D, 1, inf, recursion_depth)
Константе recursion_depth можно задать разумное значение, например, 3 или 5.

Единственные важные изменения происходят ближе к концу TraceRay , где мы рекурсивно вычисляем отражения:

TraceRay(O, D, t_min, t_max, depth) { closest_sphere, closest_t = ClosestIntersection(O, D, t_min, t_max) if closest_sphere == NULL return BACKGROUND_COLOR # Вычисление локального цвета P = O + closest_t*D # Вычисление точки пересечения N = P - closest_sphere.center # Вычисление нормали к сфере в точке пересечения N = N / length(N) local_color = closest_sphere.color*ComputeLighting(P, N, -D, sphere.specular) # Если мы достигли предела рекурсии или объект не отражающий, то мы закончили r = closest_sphere.reflective if depth <= 0 or r <= 0: return local_color # Вычисление отражённого цвета R = ReflectRay(-D, N) reflected_color = TraceRay(P, R, 0.001, inf, depth - 1) return local_color*(1 - r) + reflected_color*r }
Пусть результаты говорят сами за себя:

Чтобы лучше понять предел глубины рекурсии, давайте ближе рассмотрим рендер с :

А вот тот же увеличенный вид той же сцены, на этот раз отрендеренный с :

Как вы видите, разница заключается в том, видим ли мы отражения отражений отражений объектов, или только отражения объектов.

Произвольная камера

В самом начале обсуждения трассировки лучей мы сделали два важных допущения: камера фиксирована в и направлена в , а направлением «вверх» является . В этом разделе мы избавимся от этих ограничений, чтобы можно было располагать камеру в любом месте сцены и направлять её в любом направлении.

Давайте начнём с положения. Вы наверно заметили, что используется во всём псевдокоде только один раз: в качестве начальной точки лучей, исходящих из камеры в методе верхнего уровня. Если мы хотим поменять положение камеры. то единственное , что нужно сделать - это использовать другое значение для .

Влияет ли изменение положения на направление лучей? Ни в коей мере. Направление лучей - это вектор, проходящий из камеры на плоскость проекции. Когда мы перемещаем камеру, плоскость проекции двигается вместе с камерой, то есть их относительные положения не изменяются.

Давайте теперь обратим внимание на направление. Допустим, у нас есть матрица поворота, которая поворачивает в нужном направлении обзора, а - в нужное направление «вверх» (и поскольку это матрица поворота, то по определению она должна делать требуемое для ). Положение камеры не меняется, если вы просто вращаете камеру вокруг. Но направление меняется, оно просто подвергается тому же повороту, что и вся камера. То есть если у нас есть направление и матрица поворота , то повёрнутый - это просто .

Меняется только функция верхнего уровня:

For x in [-Cw/2, Cw/2] { for y in [-Ch/2, Ch/2] { D = camera.rotation * CanvasToViewport(x, y) color = TraceRay(camera.position, D, 1, inf) canvas.PutPixel(x, y, color) } }
Вот как выглядит наша сцена при наблюдении из другого положения и при другой ориентации:

Куда двигаться дальше

Мы закончим первую часть работы кратким обзором некоторых интересных тем, которые мы не исследовали.

Оптимизация

Как сказано во введении, мы рассматривали наиболее понятный способ объяснения и реализации различных возможностей. Поэтому трассировщик лучей полностью функционален, но не особо быстр. Вот некоторые идеи, которые можно изучить самостоятельно для ускорения работы трассировщика. Просто ради интереса попробуйте замерить время выполнения до и после их реализации. Вы очень удивитесь!

Параллелизация

Наиболее очевидный способ ускорения работы трассировщика лучей - трассировать несколько лучей одновременно. Поскольку каждый луч, исходящий из камеры, независим от всех остальных, а большинство структур предназначено только для чтения, мы можем трассировать по одному лучу на каждое ядро центрального процессора без особых затруднений и сложностей из-за проблем с синхронизацией.

На самом деле, трассировщики лучей относятся к классу алгоритмов, называемому чрезвычайно параллелизуемым именно потому что, сама их природа позволяет очень просто их распараллеливать.

Кэширование значений

Рассмотрим значения, вычисляемые IntersectRaySphere , на который трассировщик лучей обычно тратит большинство времени:

K1 = dot(D, D) k2 = 2*dot(OC, D) k3 = dot(OC, OC) - r*r
Некоторые из этих значений постоянны для всей сцены - как только вы узнаете, как расположены сферы, r*r и dot(OC, OC) больше не меняются. Можно вычислить их один раз во время загрузки сцены и хранить их в самих сферах; вам просто нужно будет пересчитать их, если сферы должны переместиться в следующем кадре. dot(D, D) - это константа для заданного луча, поэтому можно вычислить его в ClosestIntersection и передать в IntersectRaySphere .

Оптимизации теней

Если точка объекта находится в тени относительно источника освещения, потому что на пути обнаружен другой объект, то высока вероятность того, что соседняя с ней точка из-за того же объекта тоже находится в тени относительно источника освещения (это называется согласованностью теней ):

То есть когда мы ищем объекты между точкой и источником освещения, можно сначала проверить, не накладывает ли на текущую точку тень последний объект, накладывавший тень на предыдущую точку относительно того же источника освещения. Если это так, то мы можем закончить; если нет, то просто продолжаем обычным способом проверять остальные объекты.

Аналогично, при вычислении пересечения между лучом света и объектами в сцене на самом деле нам не нужно ближайшее пересечение - достаточно знать, что существует по крайней мере одно пересечение. Можно использовать специальную версию ClosestIntersection , которая возвращает результат, как только найдёт первое пересечение (и для этого нам нужно вычислять и возвращать не closest_t , а просто булево значение).

Пространственные структуры

Вычисление пересечения луча с каждой сферой - довольно большая лишняя трата ресурсов. Существует множество структур данных, позволяющих одним махом отбрасывать целые группы объектов без необходимости вычисления отдельных пересечений.

Подробное рассмотрение таких структур не относится к тематике нашей статьи, но общая идея такова: предположим, что у нас есть несколько близких друг к другу сфер. Можно вычислить центр и радиус наименьшей сферы, содержащей все эти сферы. Если луч не пересекает эту граничную сферу, то можно быть уверенным, что он не пересекает ни одну содержащуюся в нём сферу, и сделать это можно за одну проверку пересечения. Разумеется, если он пересекает сферу, то нам всё равно нужно проверять, пересекает ли он какую-нибудь из содержащихся в ней сфер.

Подробнее об этом можно узнать, прочитав о иерархии ограничивающих объёмов .

Субдискретизация

Вот простой способ сделать трассировщик лучей в раз быстрее: вычислять в раз пикселей меньше!

Предположим, мы трассируем лучи для пикселей и , и они падают на один объект. Можно логически предположить, что луч для пикселя тоже будет падать на тот же объект, пропустить начальный поиск пересечений со всей сценой и перейти непосредственно к вычислению цвета в этой точке.

Если сделать так в горизонтальном и вертикальном направлениях, то можно выполнять максимум на 75% меньшей первичных вычислений пересечений луч-сцена.

Разумеется, так можно запросто пропустить очень тонкий объект: в отличие от рассмотренных ранее, это «неправильная» оптимизация, потому что результаты её использования не идентичны тому, что бы мы получили без неё; в каком-то смысле, мы «жульничаем» на этой экономии. Хитрость в том, как догадаться сэкономить правильно, обеспечив удовлетворительные результаты.

Другие примитивы

В предыдущих разделах мы использовали в качестве примитивов сферы, потому что ими удобно манипулировать с математической точки зрения. Но добившись этого, можно достаточно просто добавить и другие примитивы.

Заметьте, что с точки зрения TraceRay может подойти любой объект, пока для него нужно вычислять только два значения: значение для ближайшего пересечения между лучом и объектом, и нормаль в точке пересечения. Всё остальное в трассировщике лучей не зависит от типа объекта.

Хорошим выбором будут треугольники. Сначала нужно вычислить пересечение между лучом и плоскостью, содержащей треугольник, и если пересечение есть, то определить, находится ли точка внутри треугольника.

Конструктивная блочная геометрия

Есть очень интересный тип объектов, который реализовать относительно просто: булева операция между другими объектами. Например, пересечение двух сфер может создать что-то похожее на линзу, а при вычитании маленькой сферы из большей сферы можно получить что-то напоминающее Звезду Смерти.

Как это работает? Для каждого объекта можно вычислить места, где луч входит и выходит из объекта; например, в случае сферы луч входит в и выходит в . Предположим, что нам нужно вычислить пересечение двух сфер; луч находится внутри пересечения, когда находится внутри обеих сфер, и снаружи в противоположном случае. В случае вычитания луч находится внутри, когда он находится внутри первого объекта, но не внутри второго.

В более общем виде, если мы хотим вычислить пересечение между лучом и (где - любой булевый оператор), то сначала нужно по отдельности вычислить пересечение луч- и луч- , что даёт нам «внутренний» интервал каждого объекта и . Затем мы вычисляем , который находится во «внутреннем» интервале . Нам нужно просто найти первое значение , которое находится и во «внутреннем» интервале и в интервале , которые нас интересуют:

Нормаль в точке пересечения является или нормалью объекта, создающего пересечение, или её противоположностью, в зависимости от того, глядим ли мы «снаружи» или «изнутри» исходного объекта.

Разумеется, и не обязаны быть примитивами; они сами могут быть результатами булевых операций! Если реализовать это чисто, то нам даже не потребуется знать, чем они являются, пока мы можем получить из них пересечения и нормали. Таким образом, можно взять три сферы и вычислить, например, .

Прозрачность

Не все объекты обязаны быть непрозрачными, некоторые могут быть частично прозрачными.

Реализация прозрачности очень похожа на реализацию отражения. Когда луч падает на частично прозрачную поверхность, мы, как и ранее, вычисляем локальный и отражённый цвет, но ещё и вычисляем дополнительный цвет - цвет света, проходящего сквозь объект, полученный ещё одним вызовом TraceRay . Затем нужно смешать этот цвет с локальным и отражённым цветами с учётом прозрачности объекта, и на этом всё.

Преломление

В реальной жизни, когда луч света проходит через прозрачный объект, он меняет направление (поэтому при погружении соломинки в стакан с водой она выглядит «сломанной»). Смена направления зависит от коэффициента преломления каждого материала в соответствии со следующим уравнением:
Где и - это углы между лучом и нормалью до и после пересечения поверхности, а и - коэффициенты преломления материала снаружи и внутри объектов.

Например, приблизительно равен , а приблизительно равен . То есть для луча, входящего в воду под углом получаем




Остановитесь на мгновение и осознайте: если реализовать конструктивную блочную геометрию и прозрачность, то можно смоделировать увеличительное стекло (пересечение двух сфер), которое будет вести себя как физически правильное увеличительное стекло!

Суперсэмплинг

Суперсэмплинг является приблизительной противоположностью субдискретизации, когда мы стремимся к точности вместо скорости. Предположим, что лучи, соответствующие двум соседним пикселям, падают на два различных объекта. Нам нужно раскрасить каждый пиксель в соответствующий цвет.

Однако не забывайте об аналогии, с которой мы начинали: каждый луч должен задавать «определяющий» цвет каждого квадрата «сетки», через которую мы смотрим. Используя по одному лучу на писель, мы условно решаем, что цвет луча света, проходящего через середину квадрата, определяет весь квадрат, но это может быть и не так.

Решить эту проблему можно трассированием нескольких лучей на пиксель - 4, 9, 16, и так далее, а затем усредняя их, чтобы получить цвет пикселя.

Разумеется, при этом трассировщик лучей становится в 4, 9 или 16 раз медленнее, по той же причине, по которой субдискретизация делает его в раз быстрее. К счастью, существует компромисс. Мы можем предположить, что свойства объекта вдоль его поверхности меняются плавно, то есть испускание 4 лучей на пиксель, которые падают на один объект в немного отличающихся точках, не слишком улучшит вид сцены. Поэтому мы можем начать с одного луча на пиксель и сравнивать соседние лучи: если они падают на другие объекты или их цвет отличается больше, чем на переделённое пороговое значение, то применяем к обоим подразделение пикселей.

Псевдокод трассировщика лучей

Ниже представлена полная версия псевдокода, созданного нами в главах о трассировке лучей:

CanvasToViewport(x, y) { return (x*Vw/Cw, y*Vh/Ch, d) } ReflectRay(R, N) { return 2*N*dot(N, R) - R; } ComputeLighting(P, N, V, s) { i = 0.0 for light in scene.Lights { if light.type == ambient { i += light.intensity } else { if light.type == point { L = light.position - P t_max = 1 } else { L = light.direction t_max = inf } # Проверка теней shadow_sphere, shadow_t = ClosestIntersection(P, L, 0.001, t_max) if shadow_sphere != NULL continue # Диффузность n_dot_l = dot(N, L) if n_dot_l > 0 i += light.intensity*n_dot_l/(length(N)*length(L)) # Блеск if s != -1 { R = ReflectRay(L, N) r_dot_v = dot(R, V) if r_dot_v > 0 i += light.intensity*pow(r_dot_v/(length(R)*length(V)), s) } } } return i } ClosestIntersection(O, D, t_min, t_max) { closest_t = inf closest_sphere = NULL for sphere in scene.Spheres { t1, t2 = IntersectRaySphere(O, D, sphere) if t1 in and t1 < closest_t closest_t = t1 closest_sphere = sphere if t2 in and t2 < closest_t closest_t = t2 closest_sphere = sphere } return closest_sphere, closest_t } TraceRay(O, D, t_min, t_max, depth) { closest_sphere, closest_t = ClosestIntersection(O, D, t_min, t_max) if closest_sphere == NULL return BACKGROUND_COLOR # Вычисление локального цвета P = O + closest_t*D # Вычисление точки пересечения N = P - closest_sphere.center # Вычисление нормали сферы в точке пересечения N = N / length(N) local_color = closest_sphere.color*ComputeLighting(P, N, -D, sphere.specular) # Если мы достигли предела рекурсии или объект не отражающий, то мы закончили r = closest_sphere.reflective if depth <= 0 or r <= 0: return local_color # Вычисление отражённого цвета R = ReflectRay(-D, N) reflected_color = TraceRay(P, R, 0.001, inf, depth - 1) return local_color*(1 - r) + reflected_color*r } for x in [-Cw/2, Cw/2] { for y in [-Ch/2, Ch/2] { D = camera.rotation * CanvasToViewport(x, y) color = TraceRay(camera.position, D, 1, inf) canvas.PutPixel(x, y, color) } }
А вот сцена, использованная для рендеринга примеров:

Viewport_size = 1 x 1 projection_plane_d = 1 sphere { center = (0, -1, 3) radius = 1 color = (255, 0, 0) # Красный specular = 500 # Блестящий reflective = 0.2 # Немного отражающий } sphere { center = (-2, 1, 3) radius = 1 color = (0, 0, 255) # Синий specular = 500 # Блестящий reflective = 0.3 # Немного более отражающий } sphere { center = (2, 1, 3) radius = 1 color = (0, 255, 0) # Зелёный specular = 10 # Немного блестящий reflective = 0.4 # Ещё более отражающий } sphere { color = (255, 255, 0) # Жёлтый center = (0, -5001, 0) radius = 5000 specular = 1000 # Очень блестящий reflective = 0.5 # Наполовину отражающий } light { type = ambient intensity = 0.2 } light { type = point intensity = 0.6 position = (2, 1, 0) } light { type = directional intensity = 0.2 direction = (1, 4, 4) }

Теги: Добавить метки

Не так давно 4A Games, создатель удивительно реалистичных игр Metro, выпустила видеоролик с использованием технологии RTX от Nvidia на примере METRO: EXODUS. Это графическое нововведение является большим и уверенным шагом вперед в вопросах трассировки лучей. Но что это все это значит?

За завесой тайны

Начнем с самого начала. Во-первых, рендеринг-трассировка лучей – это один из базовых видов визуализации, который применяется в фильмах и разных видах дизайна: от промышленности до архитектуры. То есть то, что вы видите на сайтах в качестве фотографий техники – это именно 3d рендер.

Суть технологии сводится к тому, что компьютер моделирует физическое поведение света путем расчета траектории условно отдельных фотонов света, то есть если луч падает на какой-то объект, то он либо в нем преломляется, либо от него отражается под тем или иным углом. В итоге получается некая трасса этого луча света, отсюда и название «трассировка луча».

Это компьютерное изображение, созданное Enrico Cerica с использованием OctaneRender, показывает лучи, тени и отражения на сложной поверхности пола

Проблема только в том, что лучей необходимо очень много и для каждого из них нужно многократно рассчитывать каждое соударение луча с препятствиями. Это, по сути, несложная математическая задача. Вначале нужно посчитать, в каком месте луч ударяется об уже имеющийся объект, то есть посчитать коллизию, далее на основе заданных свойств надо произвести дальнейшие математические преобразования.


Упрощенная схема трассировки лучей

Например, имеется матовая поверхность с определенной заданной условной шероховатостью, но при этом не абсолютно шероховатая, и от нее луч с определенной вероятностью отклоняется на некоторый угол, отличный от угла падения. Надо учитывать, что если объект имеет свойство бесконечно гладкого, то угол падения равен углу отражения. Если же свойства поверхности говорят о матовости, то математически это реализуется отклонением угла отражения от угла падения.

В жизни это так и есть, поверхность почти всегда не абсолютно гладкая. Поэтому, когда свет попадает в ту или иную точку, он отражается относительно места поверхности, которое может быть так или иначе повернуто относительно плоскости, кажущейся нам ровной, а соседний луч отражается уже в совершенно другую сторону. Таким образом, становится совершенно ясно, что нет никакого смысла делать модели объектов сверх полигональными, поэтому неровности задаются свойствами поверхности. Результат при этом аналогичен реальному рассеиванию света от матовых поверхностей.

Сейчас в играх используют объект, который выглядит обмазанным чем-то вроде глазури. Несомненно, все встречали в играх странные стены и полы, выглядящие так, будто измазаны какой-то слизью. Так вот, с трассировкой лучей так делать не надо – поверхности могут рассеивать свет совершенно естественно. Это отлично показано в деморолике, здесь расположен ряд площадок от максимально зеркальных до максимально матовых.

Особенно заметно, что в матовых площадках отражение сильно зависит от близости объекта к поверхности. То есть, чем объект дальше от поверхности, тем он сильнее становится размытым. Это важное свойство, которое в жизни мы даже не замечаем, хотя оно есть.

Но самое важное – это тени. Нет ничего более некачественного, чем тени в любых играх.

Это, как правило, просто проекции объектов, имеющие резкие неестественные края. Однако есть более качественные, по игровым меркам, тени. Это мягкие варианты с линией перехода, то есть тень и полутень.


Чтобы создать мягкие тени или диффузные отражения (например, те, которые вы видите в матовом металле, например), необходимы более совершенные методы трассировки лучей

Проблема только в том, что в жизни это так не работает. Если источник света не точечный и не бесконечно удаленный, то величина полутени зависит от соотношения удаления источника света от объекта и удаления объекта от его тени. То есть окантовка полутени в разных ее местах может быть шире или уже, особенно когда речь идет о крупных источниках света.

Например, свет от окна в пасмурную погоду дает настолько мягкие тени, что если в двух метрах от этого окна поставить объект размером существенно меньше, то на его основании можно увидеть четкую тень и полутень, а от верхней части объекта тени может и вовсе не быть, а полутень не будет иметь четких границ. В играх с традиционной растеризацией такого не встречается.

Трассировка лучей – дело несложное, но лучей очень много, и, к сожалению, на текущий момент сделать все в режиме реального времени не получается. Дело в том, что в жизни лучи расходятся в совершенно разных направлениях. Идеально было бы, чтобы падающий луч разделялся на бесконечное количество лучей, суммарная яркость которых была бы зависима от свойства отражающего объекта и начальной яркости падающего луча.

Для уменьшения нагрузки можно ограничивать число лучей, число соударений, но эти ограничения приводят к тому, что на картинке получаются куцые куски тени и неестественно яркие пятна от источников света. То есть, недостаточный объем данных приводит к появлению шума, и вся сложность состоит в том, что нельзя один раз просчитать сцену и дальше менять в ней только то, что изменяется от кадра к кадру, так как любой движущийся объект изменяет все маршруты всех лучей. От каждого движения камеры и объектов нужно “пересобирать” всю сцену заново, поэтому фильмы и создаются рендер-фермами и многочисленными серверами, которые непрерывно, по несколько месяцев, рендерят графику. Но, к сожалению, в реальном времени в играх такое сделать пока невозможно.

Поэтому встает вопрос, как же Nvidia и партнеры выкрутились из данной ситуации: чем они пожертвовали, чтобы добиться трассировки в реальном времени?

Две половинки одного целого

Если внимательно проследить, как поэтапно рендерится картинка, то можно увидеть, что где-то после пятой интеграции сами тени и свет уже едва заметно меняются. Становится понятно, где, что и как будет выглядеть в финальном виде. Для этого в принципе и нужен в софте real-time, чтобы можно было покрутить источники света, понять где будут какие-то блики и затем запустить финальную отрисовку. Остается узнать, как по мутной картинке можно понять финальный кадр. На самом деле компьютер сначала моделирует исходную зашумленную картинку, затем анализирует ее и на основе полученных данных рисует уже другую – итоговую. Как показала практика, такой подход проще в плане ресурсных затрат.

По сути, прогрессивный скачок в развитии трассировки в реальном времени – это создание алгоритмов, позволяющих оценить картинку по зашумленному состоянию и дорисовать его до нормального. Это и есть ключевое новшество. Все остальное широко использовалось и раньше. Для многих визуализаторов есть плагины для GPU отрисовки и OpenGL, поддерживаемые любой видеокартой, совместимой с OpenGL.

Сегодня утверждается, что подобная техника убирания шумов работает только на тендерных ядрах в будущих картах от Nvidia. Но на самом деле эту технологию массово показали только сейчас, а появилась она, судя по всему, в прошлом году, так как в октябре, на одном из мероприятий, Unity показала эту самую технологию по удалению шума в трассировке в реальном времени.

Хитрость в том, что далеко не все объекты участвуют в трассировке лучей так, как должны. В связи с этим затронем тему глобального освещения – самый ресурсозатратный механизм трассировки. В жизни любой предмет, на который падает свет, отражает часть этого света. Например, если направить источник света на зеленую стену, то все освещение станет зеленым, потому что зеленая стена плохо поглощает свет.


Отражение лучей света от поверхности

В деморолике такого эффекта не было. Вместо светоотражения и изменения световой картины кадра в зависимости от источника света, все пространство заполнили яркими картинками, от чего свет и кажется динамичным. На самом же деле разработчики не применяли трассировку лучей на такие детали как дымка и языки пламени.

Дело в том, что лучи света нужно просчитывать независимо от того, попадут они на объекты или нет. То есть, добавление большого количества источников света – это довольно сложная задача для расчетов трассировки. Кроме того, еще ни в одном техно-демо не встречаются объекты, которые имитировали бы прозрачные предметы.

Когда мы увидим выгоду?

Исходя из описанных выше критериев (мутность картинки и трассировка не всех объектов), можно сказать, что графика в играх еще не может выглядеть так детально и реалистично, как в кино.

Однако, прогресс несомненно есть. Во-первых, отражения теперь делать проще, не нужно создавать карты тени и света – все это решается трассировкой. Во-вторых, появилось хоть какое-то подобие рассеянных отражений. В-третьих, освещение и тени объектов значительно улучшились. Все вместе позволяет утверждать, что это можно считать ключевой технологией в играх, которая не сдаст своих позиций в ближайшие десять лет.

Текст: Алексей Харитонов, QA, Bytex