Какие точки экстремума имеет функция. Возрастание и убывание функции на интервале, экстремумы. Точки экстремума, экстремумы функции

Урок на тему: "Нахождение точек экстремумов функций. Примеры"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Решаем задачи по геометрии. Интерактивные задания на построение для 7-10 классов
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:
1. Введение.
2. Точки минимума и максимума.

4. Как вычислять экстремумы?
5. Примеры.

Введение в экстремумы функций

Ребята, давайте посмотрим на график некоторой функции:

Заметит, что поведение нашей функции y=f (x) во многом определяется двумя точками x1 и x2. Давайте внимательно посмотрим на график функции в этих точках и около них. До точки x2 функция возрастает, в точке x2 происходит перегиб, и сразу после этой точки функция убывает до точки x1. В точке x1 функция опять перегибается, и после этого - опять возрастает. Точки x1 и x2 пока так и будем называть точками перегиба. Давайте проведем касательные в этих точках:


Касательные в наших точках параллельны оси абсцисс, а значит, угловой коэффициент касательной равен нулю. Это значит, что и производная нашей функции в этих точках равна нулю.

Посмотрим на график вот такой функции:


Касательные в точках x2 и x1 провести невозможно. Значит, производной в этих точках не существует. Теперь посмотрим опять на наши точки на двух графиках. Точка x2 - это точка, в которой функция достигает наибольшего значения в некоторой области (рядом с точкой x2). Точка x1 - это точка, в которой функция достигает своего наименьшего значения в некоторой области (рядом с точкой x1).

Точки минимума и максимума

Определение: Точку x= x0 называют точкой минимума функции y=f(x), если существует окрестность точки x0, в которой выполняется неравенство: f(x) ≥ f(x0).

Определение: Точку x=x0 называют точкой максимума функции y=f(x), если существует окрестность точки x0, в которой выполняется неравенство: f(x) ≤ f(x0).

Ребята, а что такое окрестность?

Определение: Окрестность точки - множество точек, содержащее нашу точку, и близкие к ней.

Окрестность мы можем задавать сами. Например, для точки x=2, мы можем определить окрестность в виде точек 1 и 3.

Вернемся к нашим графикам, посмотрим на точку x2, она больше всех других точек из некоторой окрестности, тогда по определению - это точка максимума. Теперь посмотрим на точку x1, она меньше всех других точек из некоторой окрестности, тогда по определению - это точка минимума.

Ребята, давайте введем обозначения:

Y min - точка минимума,
y max - точка максимума.

Важно! Ребята, не путайте точки максимума и минимума с наименьшим и наибольшим значение функции. Наименьшее и наибольшее значения ищутся на всей области определения заданной функции, а точки минимума и максимума в некоторой окрестности.

Экстремумы функции

Для точек минимума и максимума есть общей термин – точки экстремума.

Экстремум (лат. extremum – крайний) – максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума.

Соответственно, если достигается минимум – точка экстремума называется точкой минимума, а если максимум – точкой максимума.

Как же искать экстремумы функции?

Давайте вернемся к нашим графикам. В наших точках производная либо обращается в нуль (на первом графике), либо не существует (на втором графике).

Тогда можно сделать важное утверждение: Если функция y= f(x) имеет экстремум в точке x=x0, то в этой точке производная функции либо равна нулю, либо не существует.

Точки, в которых производная равна нулю называются стационарными.

Точки, в которых производной функции не существует, называются критическими.

Как вычислять экстремумы?

Ребята, давайте опять вернемся к первому графику функции:


Анализируя этот график, мы говорили: до точки x2 функция возрастает, в точке x2 происходит перегиб, и после этой точки функция убывает до точки x1. В точке x1 у функции опять перегибается, и после этого функция опять возрастает.

На основании таких рассуждений, можно сделать вывод, что функция в точках экстремума меняет характер монотонности, а значит и производная функция меняет знак. Вспомним: если функция убывает, то производная меньше либо равно нулю, а если функция возрастает, то производная больше либо равна нулю.

Обобщим полученные знания утверждением:

Теорема: Достаточное условие экстремума: пусть функция y=f(x) непрерывна на некотором промежутке Х и имеет внутри промежутка стационарную или критическую точку x= x0. Тогда:

  • Если у этой точки существует такая окрестность, в которой при x x0 выполняется f’(x)>0, то точка x0 – точка минимума функции y= f(x).
  • Если у этой точки существует такая окрестность, в которой при x 0, а при x> x0 выполняется f’(x) Если у этой точки существует такая окрестность, в которой и слева и справа от точки x0 знаки производной одинаковы, то в точке x0 экстремума нет.

Для решении задач запомните такие правила: Если знаки производных определены то:


Алгоритм исследования непрерывной функции y= f(x) на монотонность и экстремумы:

  • Найти производную y’.
  • Найти стационарные(производная равна нулю) и критические точки (производная не существует).
  • Отметить стационарные и критические точки на числовой прямой и определить знаки производной на получившихся промежутках.
  • По указанным выше утверждениям сделать вывод о характере точек экстремума.

Примеры нахождения точки экстремумов

1) Найти точки экстремума функции и определить их характер: y= 7+ 12*x - x 3

Решение: Наша функция непрерывна, тогда воспользуемся нашим алгоритмом:
а) y"= 12 - 3x 2 ,
б) y"= 0, при x= ±2,

Точка x= -2 - точка минимума функции, точка x= 2 - точка максимума функции.
Ответ: x= -2 - точка минимума функции, x= 2 - точка максимума функции.

2) Найти точки экстремума функции и определить их характер.

Решение: Наша функция непрерывна. Воспользуемся нашим алгоритмом:
а) б) в точке x= 2 производная не существует, т.к. на нуль делить нельзя, Область определения функции: , в этой точки экстремума нет, т.к. окрестность точки не определена. Найдем значения, в которой производная равна нулю: в) Отметим стационарные точки на числовой прямой и определим знаки производной: г) посмотрим на наш рисунок, где изображены правила определения экстремумов.
Точка x= 3 - точка минимума функции.
Ответ: x= 3 - точка минимума функции.

3) Найти точки экстремума функции y= x - 2cos(x) и определить их характер, при -π ≤ x ≤ π.

Решение: Наша функция непрерывна, воспользуемся нашим алгоритмом:
а) y"= 1 + 2sin(x),
б) найдем значения в которой производная равна нулю: 1 + 2sin(x)= 0, sin(x)= -1/2,
т.к. -π ≤ x ≤ π, то: x= -π/6, -5π/6,
в) отметим стационарные точки на числовой прямой и определим знаки производной: г) посмотрим на наш рисунок, где изображены правила определения экстремумов.
Точка x= -5π/6 - точка максимума функции.
Точка x= -π/6 - точка минимума функции.
Ответ: x= -5π/6 - точка максимума функции, x= -π/6 - точка минимума функции.

4) Найти точки экстремума функции и определить их характер:

Решение: Наша функция имеет разрыв только в одной точке x= 0. Воспользуемся алгоритмом:
а)
б) найдем значения в которой производная равна нулю: y"= 0 при x= ±2,
в) отметим стационарные точки на числовой прямой и определим знаки производной:
г) посмотрим на наш рисунок, где изображены правила определения экстремумов.
Точка x= -2 точка минимума функции.
Точка x= 2 - точка минимума функции.
В точке x= 0 функция не существует.
Ответ: x= ±2 - точки минимума функции.

Задачи для самостоятельного решения

а) Найти точки экстремума функции и определить их характер: y= 5x 3 - 15x - 5.
б) Найти точки экстремума функции и определить их характер:
в) Найти точки экстремума функции и определить их характер: y= 2sin(x) - x при π ≤ x ≤ 3π.
г) Найти точки экстремума функции и определить их характер:

Чтобы определить характер функции и говорить о ее поведении, необходимо находить промежутки возрастания и убывания. Этот процесс получил название исследования функции и построения графика. Точка экстремума используется при нахождении наибольшего и наименьшего значения функции, так как в них происходит возрастание или убывание функции из интервала.

Данная статья раскрывает определения, формулируем достаточный признак возрастания и убывания на интервале и условие существования экстремума. Это применимо к решению примеров и задач. Следует повторить раздел дифференцирования функций, потому как при решении необходимо будет использовать нахождение производной.

Определение 1

Функция y = f (x) будет возрастать на интервале x , когда при любых x 1 ∈ X и x 2 ∈ X , x 2 > x 1 неравенство f (x 2) > f (x 1) будет выполнимо. Иначе говоря, большему значению аргумента соответствует большее значение функции.

Определение 2

Функция y = f (x) считается убывающей на интервале x , когда при любых x 1 ∈ X , x 2 ∈ X , x 2 > x 1 равенство f (x 2) > f (x 1) считается выполнимым. Иначе говоря, большему значению функции соответствует меньшее значение аргумента. Рассмотрим рисунок, приведенный ниже.

Замечание: Когда функция определенная и непрерывная в концах интервала возрастания и убывания, то есть (a ; b) , где х = а, х = b , точки включены в промежуток возрастания и убывания. Определению это не противоречит, значит, имеет место быть на промежутке x .

Основные свойства элементарных функций типа y = sin x – определенность и непрерывность при действительных значениях аргументах. Отсюда получаем, что возрастание синуса происходит на интервале - π 2 ; π 2 , тогда возрастание на отрезке имеет вид - π 2 ; π 2 .

Определение 3

Точка х 0 называется точкой максимума для функции y = f (x) , когда для всех значений x неравенство f (x 0) ≥ f (x) является справедливым. Максимум функции – это значение функции в точке, причем обозначается y m a x .

Точка х 0 называется точкой минимума для функции y = f (x) , когда для всех значений x неравенство f (x 0) ≤ f (x) является справедливым. Минимум функции – это значение функции в точке, причем имеет обозначение вида y m i n .

Окрестностями точки х 0 считаются точки экстремума, а значение функции, которое соответствует точкам экстремума. Рассмотрим рисунок, приведенный ниже.

Экстремумы функции с набольшим и с наименьшим значением функции. Рассмотрим рисунок, приведенный ниже.

Первый рисунок говорит о том, что необходимо найти наибольшее значение функции из отрезка [ a ; b ] . Оно находится при помощи точек максимума и равняется максимальному значению функции, а второй рисунок больше походит на поиск точки максимума при х = b .

Достаточные условия возрастания и убывания функции

Чтобы найти максимумы и минимумы функции, необходимо применять признаки экстремума в том случае, когда функция удовлетворяет этим условиям. Самым часто используемым считается первый признак.

Первое достаточное условие экстремума

Определение 4

Пусть задана функция y = f (x) , которая дифференцируема в ε окрестности точки x 0 , причем имеет непрерывность в заданной точке x 0 . Отсюда получаем, что

  • когда f " (x) > 0 с x ∈ (x 0 - ε ; x 0) и f " (x) < 0 при x ∈ (x 0 ; x 0 + ε) , тогда x 0 является точкой максимума;
  • когда f " (x) < 0 с x ∈ (x 0 - ε ; x 0) и f " (x) > 0 при x ∈ (x 0 ; x 0 + ε) , тогда x 0 является точкой минимума.

Иначе говоря, получим их условия постановки знака:

  • когда функция непрерывна в точке x 0 , тогда имеет производную с меняющимся знаком, то есть с + на - , значит, точка называется максимумом;
  • когда функция непрерывна в точке x 0 , тогда имеет производную с меняющимся знаком с - на + , значит, точка называется минимумом.

Чтобы верно определить точки максимума и минимума функции, необходимо следовать алгоритму их нахождения:

  • найти область определения;
  • найти производную функции на этой области;
  • определить нули и точки, где функция не существует;
  • определение знака производной на интервалах;
  • выбрать точки, где функция меняет знак.

Рассмотрим алгоритм на примере решения нескольких примеров на нахождение экстремумов функции.

Пример 1

Найти точки максимума и минимума заданной функции y = 2 (x + 1) 2 x - 2 .

Решение

Область определения данной функции – это все действительные числа кроме х = 2 . Для начала найдем производную функции и получим:

y " = 2 x + 1 2 x - 2 " = 2 · x + 1 2 " · (x - 2) - (x + 1) 2 · (x - 2) " (x - 2) 2 = = 2 · 2 · (x + 1) · (x + 1) " · (x - 2) - (x + 1) 2 · 1 (x - 2) 2 = 2 · 2 · (x + 1) · (x - 2) - (x + 2) 2 (x - 2) 2 = = 2 · (x + 1) · (x - 5) (x - 2) 2

Отсюда видим, что нули функции – это х = - 1 , х = 5 , х = 2 , то есть каждую скобку необходимо приравнять к нулю. Отметим на числовой оси и получим:

Теперь определим знаки производной из каждого интервала. Необходимо выбрать точку, входящую в интервал, подставить в выражение. Например, точки х = - 2 , х = 0 , х = 3 , х = 6 .

Получаем, что

y " (- 2) = 2 · (x + 1) · (x - 5) (x - 2) 2 x = - 2 = 2 · (- 2 + 1) · (- 2 - 5) (- 2 - 2) 2 = 2 · 7 16 = 7 8 > 0 , значит, интервал - ∞ ; - 1 имеет положительную производную. Аналогичным образом получаем, что

y " (0) = 2 · (0 + 1) · 0 - 5 0 - 2 2 = 2 · - 5 4 = - 5 2 < 0 y " (3) = 2 · (3 + 1) · (3 - 5) (3 - 2) 2 = 2 · - 8 1 = - 16 < 0 y " (6) = 2 · (6 + 1) · (6 - 5) (6 - 2) 2 = 2 · 7 16 = 7 8 > 0

Так как второй интервал получился меньше нуля, значит, производная на отрезке будет отрицательной. Третий с минусом, четвертый с плюсом. Для определения непрерывности необходимо обратить внимание на знак производной, если он меняется, тогда это точка экстремума.

Получим, что в точке х = - 1 функция будет непрерывна, значит, производная изменит знак с + на - . По первому признаку имеем, что х = - 1 является точкой максимума, значит получаем

y m a x = y (- 1) = 2 · (x + 1) 2 x - 2 x = - 1 = 2 · (- 1 + 1) 2 - 1 - 2 = 0

Точка х = 5 указывает на то, что функция является непрерывной, а производная поменяет знак с – на +. Значит, х=-1 является точкой минимума, причем ее нахождение имеет вид

y m i n = y (5) = 2 · (x + 1) 2 x - 2 x = 5 = 2 · (5 + 1) 2 5 - 2 = 24

Графическое изображение

Ответ: y m a x = y (- 1) = 0 , y m i n = y (5) = 24 .

Стоит обратить внимание на то, что использование первого достаточного признака экстремума не требует дифференцируемости функции с точке x 0 , этим и упрощает вычисление.

Пример 2

Найти точки максимума и минимума функции y = 1 6 x 3 = 2 x 2 + 22 3 x - 8 .

Решение.

Область определения функции – это все действительные числа. Это можно записать в виде системы уравнений вида:

1 6 x 3 - 2 x 2 - 22 3 x - 8 , x < 0 1 6 x 3 - 2 x 2 + 22 3 x - 8 , x ≥ 0

После чего необходимо найти производную:

y " = 1 6 x 3 - 2 x 2 - 22 3 x - 8 " , x < 0 1 6 x 3 - 2 x 2 + 22 3 x - 8 " , x > 0 y " = - 1 2 x 2 - 4 x - 22 3 , x < 0 1 2 x 2 - 4 x + 22 3 , x > 0

Точка х = 0 не имеет производной, потому как значения односторонних пределов разные. Получим, что:

lim y " x → 0 - 0 = lim y x → 0 - 0 - 1 2 x 2 - 4 x - 22 3 = - 1 2 · (0 - 0) 2 - 4 · (0 - 0) - 22 3 = - 22 3 lim y " x → 0 + 0 = lim y x → 0 - 0 1 2 x 2 - 4 x + 22 3 = 1 2 · (0 + 0) 2 - 4 · (0 + 0) + 22 3 = + 22 3

Отсюда следует, что функция непрерывна в точке х = 0 , тогда вычисляем

lim y x → 0 - 0 = lim x → 0 - 0 - 1 6 x 3 - 2 x 2 - 22 3 x - 8 = = - 1 6 · (0 - 0) 3 - 2 · (0 - 0) 2 - 22 3 · (0 - 0) - 8 = - 8 lim y x → 0 + 0 = lim x → 0 - 0 1 6 x 3 - 2 x 2 + 22 3 x - 8 = = 1 6 · (0 + 0) 3 - 2 · (0 + 0) 2 + 22 3 · (0 + 0) - 8 = - 8 y (0) = 1 6 x 3 - 2 x 2 + 22 3 x - 8 x = 0 = 1 6 · 0 3 - 2 · 0 2 + 22 3 · 0 - 8 = - 8

Необходимо произвести вычисления для нахождения значения аргумента, когда производная становится равной нулю:

1 2 x 2 - 4 x - 22 3 , x < 0 D = (- 4) 2 - 4 · - 1 2 · - 22 3 = 4 3 x 1 = 4 + 4 3 2 · - 1 2 = - 4 - 2 3 3 < 0 x 2 = 4 - 4 3 2 · - 1 2 = - 4 + 2 3 3 < 0

1 2 x 2 - 4 x + 22 3 , x > 0 D = (- 4) 2 - 4 · 1 2 · 22 3 = 4 3 x 3 = 4 + 4 3 2 · 1 2 = 4 + 2 3 3 > 0 x 4 = 4 - 4 3 2 · 1 2 = 4 - 2 3 3 > 0

Все полученные точки нужно отметить на прямой для определения знака каждого интервала. Поэтому необходимо вычислить производную в произвольных точках у каждого интервала. Например, у нас можно взять точки со значениями x = - 6 , x = - 4 , x = - 1 , x = 1 , x = 4 , x = 6 . Получим, что

y " (- 6) = - 1 2 x 2 - 4 x - 22 3 x = - 6 = - 1 2 · - 6 2 - 4 · (- 6) - 22 3 = - 4 3 < 0 y " (- 4) = - 1 2 x 2 - 4 x - 22 3 x = - 4 = - 1 2 · (- 4) 2 - 4 · (- 4) - 22 3 = 2 3 > 0 y " (- 1) = - 1 2 x 2 - 4 x - 22 3 x = - 1 = - 1 2 · (- 1) 2 - 4 · (- 1) - 22 3 = 23 6 < 0 y " (1) = 1 2 x 2 - 4 x + 22 3 x = 1 = 1 2 · 1 2 - 4 · 1 + 22 3 = 23 6 > 0 y " (4) = 1 2 x 2 - 4 x + 22 3 x = 4 = 1 2 · 4 2 - 4 · 4 + 22 3 = - 2 3 < 0 y " (6) = 1 2 x 2 - 4 x + 22 3 x = 6 = 1 2 · 6 2 - 4 · 6 + 22 3 = 4 3 > 0

Изображение на прямой имеет вид

Значит, приходим к тому, что необходимо прибегнуть к первому признаку экстремума. Вычислим и получим, что

x = - 4 - 2 3 3 , x = 0 , x = 4 + 2 3 3 , тогда отсюда точки максимума имеют значени x = - 4 + 2 3 3 , x = 4 - 2 3 3

Перейдем к вычислению минимумов:

y m i n = y - 4 - 2 3 3 = 1 6 x 3 - 2 2 + 22 3 x - 8 x = - 4 - 2 3 3 = - 8 27 3 y m i n = y (0) = 1 6 x 3 - 2 2 + 22 3 x - 8 x = 0 = - 8 y m i n = y 4 + 2 3 3 = 1 6 x 3 - 2 2 + 22 3 x - 8 x = 4 + 2 3 3 = - 8 27 3

Произведем вычисления максимумов функции. Получим, что

y m a x = y - 4 + 2 3 3 = 1 6 x 3 - 2 2 + 22 3 x - 8 x = - 4 + 2 3 3 = 8 27 3 y m a x = y 4 - 2 3 3 = 1 6 x 3 - 2 2 + 22 3 x - 8 x = 4 - 2 3 3 = 8 27 3

Графическое изображение

Ответ:

y m i n = y - 4 - 2 3 3 = - 8 27 3 y m i n = y (0) = - 8 y m i n = y 4 + 2 3 3 = - 8 27 3 y m a x = y - 4 + 2 3 3 = 8 27 3 y m a x = y 4 - 2 3 3 = 8 27 3

Если задана функция f " (x 0) = 0 , тогда при ее f "" (x 0) > 0 получаем, что x 0 является точкой минимума, если f "" (x 0) < 0 , то точкой максимума. Признак связан с нахождением производной в точке x 0 .

Пример 3

Найти максимумы и минимумы функции y = 8 x x + 1 .

Решение

Для начала находим область определения. Получаем, что

D (y) : x ≥ 0 x ≠ - 1 ⇔ x ≥ 0

Необходимо продифференцировать функцию, после чего получим

y " = 8 x x + 1 " = 8 · x " · (x + 1) - x · (x + 1) " (x + 1) 2 = = 8 · 1 2 x · (x + 1) - x · 1 (x + 1) 2 = 4 · x + 1 - 2 x (x + 1) 2 · x = 4 · - x + 1 (x + 1) 2 · x

При х = 1 производная становится равной нулю, значит, точка является возможным экстремумом. Для уточнения необходимо найти вторую производную и вычислить значение при х = 1 . Получаем:

y "" = 4 · - x + 1 (x + 1) 2 · x " = = 4 · (- x + 1) " · (x + 1) 2 · x - (- x + 1) · x + 1 2 · x " (x + 1) 4 · x = = 4 · (- 1) · (x + 1) 2 · x - (- x + 1) · x + 1 2 " · x + (x + 1) 2 · x " (x + 1) 4 · x = = 4 · - (x + 1) 2 x - (- x + 1) · 2 x + 1 (x + 1) " x + (x + 1) 2 2 x (x + 1) 4 · x = = - (x + 1) 2 x - (- x + 1) · x + 1 · 2 x + x + 1 2 x (x + 1) 4 · x = = 2 · 3 x 2 - 6 x - 1 x + 1 3 · x 3 ⇒ y "" (1) = 2 · 3 · 1 2 - 6 · 1 - 1 (1 + 1) 3 · (1) 3 = 2 · - 4 8 = - 1 < 0

Значит, использовав 2 достаточное условие экстремума, получаем, что х = 1 является точкой максимума. Иначе запись имеет вид y m a x = y (1) = 8 1 1 + 1 = 4 .

Графическое изображение

Ответ: y m a x = y (1) = 4 ..

Определение 5

Функция y = f (x) имеет ее производную до n -го порядка в ε окрестности заданной точки x 0 и производную до n + 1 -го порядка в точке x 0 . Тогда f " (x 0) = f "" (x 0) = f " " " (x 0) = . . . = f n (x 0) = 0 .

Отсюда следует, что когда n является четным числом, то x 0 считается точкой перегиба, когда n является нечетным числом, то x 0 точка экстремума, причем f (n + 1) (x 0) > 0 , тогда x 0 является точкой минимума, f (n + 1) (x 0) < 0 , тогда x 0 является точкой максимума.

Пример 4

Найти точки максимума и минимума функции y y = 1 16 (x + 1) 3 (x - 3) 4 .

Решение

Исходная функция – целая рациональная, отсюда следует, что область определения – все действительные числа. Необходимо продифференцировать функцию. Получим, что

y " = 1 16 x + 1 3 " (x - 3) 4 + (x + 1) 3 x - 3 4 " = = 1 16 (3 (x + 1) 2 (x - 3) 4 + (x + 1) 3 4 (x - 3) 3) = = 1 16 (x + 1) 2 (x - 3) 3 (3 x - 9 + 4 x + 4) = 1 16 (x + 1) 2 (x - 3) 3 (7 x - 5)

Данная производная обратится в ноль при x 1 = - 1 , x 2 = 5 7 , x 3 = 3 . То есть точки могут быть точками возможного экстремума. Необходимо применить третье достаточное условие экстремума. Нахождение второй производной позволяет в точности определить наличие максимума и минимума функции. Вычисление второй производной производится в точках ее возможного экстремума. Получаем, что

y "" = 1 16 x + 1 2 (x - 3) 3 (7 x - 5) " = 1 8 (x + 1) (x - 3) 2 (21 x 2 - 30 x - 3) y "" (- 1) = 0 y "" 5 7 = - 36864 2401 < 0 y "" (3) = 0

Значит, что x 2 = 5 7 является точкой максимума. Применив 3 достаточный признак, получаем, что при n = 1 и f (n + 1) 5 7 < 0 .

Необходимо определить характер точек x 1 = - 1 , x 3 = 3 . Для этого необходимо найти третью производную, вычислить значения в этих точках. Получаем, что

y " " " = 1 8 (x + 1) (x - 3) 2 (21 x 2 - 30 x - 3) " = = 1 8 (x - 3) (105 x 3 - 225 x 2 - 45 x + 93) y " " " (- 1) = 96 ≠ 0 y " " " (3) = 0

Значит, x 1 = - 1 является точкой перегиба функции, так как при n = 2 и f (n + 1) (- 1) ≠ 0 . Необходимо исследовать точку x 3 = 3 . Для этого находим 4 производную и производим вычисления в этой точке:

y (4) = 1 8 (x - 3) (105 x 3 - 225 x 2 - 45 x + 93) " = = 1 2 (105 x 3 - 405 x 2 + 315 x + 57) y (4) (3) = 96 > 0

Из выше решенного делаем вывод, что x 3 = 3 является точкой минимума функции.

Графическое изображение

Ответ: x 2 = 5 7 является точкой максимума, x 3 = 3 - точкой минимума заданной функции.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


Очень важную информацию о поведении функции предоставляют промежутки возрастания и убывания. Их нахождение является частью процесса исследования функции и построения графика . К тому же точкам экстремума, в которых происходит смена с возрастания на убывание или с убывания на возрастание, уделяется особое внимание при нахождении наибольшего и наименьшего значения функции на некотором интервале.

В этой статье дадим необходимые определения, сформулируем достаточный признак возрастания и убывания функции на интервале и достаточные условия существования экстремума, применим всю эту теорию к решению примеров и задач.

Навигация по странице.

Возрастание и убывание функции на интервале.

Определение возрастающей функции.

Функция y=f(x) возрастает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Определение убывающей функции.

Функция y=f(x) убывает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.


ЗАМЕЧАНИЕ: если функция определена и непрерывна в концах интервала возрастания или убывания (a;b) , то есть при x=a и x=b , то эти точки включаются в промежуток возрастания или убывания. Это не противоречит определениям возрастающей и убывающей функции на промежутке X .

К примеру, из свойств основных элементарных функций мы знаем, что y=sinx определена и непрерывна для всех действительных значений аргумента. Поэтому, из возрастания функции синуса на интервале мы можем утверждать о возрастании на отрезке .

Точки экстремума, экстремумы функции.

Точку называют точкой максимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называют максимумом функции и обозначают .

Точку называют точкой минимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .

Под окрестностью точки понимают интервал , где - достаточно малое положительное число.

Точки минимума и максимума называют точками экстремума , а значения функции, соответствующие точкам экстремума, называют экстремумами функции .

Не путайте экстремумы функции с наибольшим и наименьшим значением функции.


На первом рисунке наибольшее значение функции на отрезке достигается в точке максимума и равно максимуму функции, а на втором рисунке – наибольшее значение функции достигается в точке x=b , которая не является точкой максимума.

Достаточные условия возрастания и убывания функции.

На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции.

Вот формулировки признаков возрастания и убывания функции на интервале:

  • если производная функции y=f(x) положительна для любого x из интервала X , то функция возрастает на X ;
  • если производная функции y=f(x) отрицательна для любого x из интервала X , то функция убывает на X .

Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:

Рассмотрим пример нахождения промежутков возрастания и убывания функции для разъяснения алгоритма.

Пример.

Найти промежутки возрастания и убывания функции .

Решение.

На первом шаге нужно найти область определения функции . В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно, .

Переходим к нахождению производной функции:

Для определения промежутков возрастания и убывания функции по достаточному признаку решаем неравенства и на области определения. Воспользуемся обобщением метода интервалов. Единственным действительным корнем числителя является x = 2 , а знаменатель обращается в ноль при x=0 . Эти точки разбивают область определения на интервалы, в которых производная функции сохраняет знак. Отметим эти точки на числовой прямой. Плюсами и минусами условно обозначим интервалы, на которых производная положительна или отрицательна. Стрелочки снизу схематично показывают возрастание или убывание функции на соответствующем интервале.

Таким образом, и .

В точке x=2 функция определена и непрерывна, поэтому ее следует добавить и к промежутку возрастания и к промежутку убывания. В точке x=0 функция не определена, поэтому эту точку не включаем в искомые интервалы.

Приводим график функции для сопоставления с ним полученных результатов.

Ответ:

Функция возрастает при , убывает на интервале (0;2] .

Достаточные условия экстремума функции.

Для нахождения максимумов и минимумов функции можно пользоваться любым из трех признаков экстремума, конечно, если функция удовлетворяет их условиям. Самым распространенным и удобным является первый из них.

Первое достаточное условие экстремума.

Пусть функция y=f(x) дифференцируема в -окрестности точки , а в самой точке непрерывна.

Другими словами:

Алгоритм нахождения точек экстремума по первому признаку экстремума функции.

  • Находим область определения функции.
  • Находим производную функции на области определения.
  • Определяем нули числителя, нули знаменателя производной и точки области определения, в которых производная не существует (все перечисленные точки называют точками возможного экстремума , проходя через эти точки, производная как раз может изменять свой знак).
  • Эти точки разбивают область определения функции на промежутки, в которых производная сохраняет знак. Определяем знаки производной на каждом из интервалов (например, вычисляя значение производной функции в любой точке отдельно взятого интервала).
  • Выбираем точки, в которых функция непрерывна и, проходя через которые, производная меняет знак - они и являются точками экстремума.

Слишком много слов, рассмотрим лучше несколько примеров нахождения точек экстремума и экстремумов функции с помощью первого достаточного условия экстремума функции.

Пример.

Найти экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел, кроме x=2 .

Находим производную:

Нулями числителя являются точки x=-1 и x=5 , знаменатель обращается в ноль при x=2 . Отмечаем эти точки на числовой оси

Определяем знаки производной на каждом интервале, для этого вычислим значение производной в любой из точек каждого интервала, например, в точках x=-2, x=0, x=3 и x=6 .

Следовательно, на интервале производная положительна (на рисунке ставим знак плюс над этим интервалом). Аналогично

Поэтому над вторым интервалом ставим минус, над третьим – минус, над четвертым – плюс.

Осталось выбрать точки, в которых функция непрерывна и ее производная меняет знак. Это и есть точки экстремума.

В точке x=-1 функция непрерывна и производная меняет знак с плюса на минус, следовательно, по первому признаку экстремума, x=-1 – точка максимума, ей соответствуем максимум функции .

В точке x=5 функция непрерывна и производная меняет знак с минуса на плюс, следовательно, x=-1 – точка минимума, ей соответствуем минимум функции .

Графическая иллюстрация.

Ответ:

ОБРАТИТЕ ВНИМАНИЕ: первый достаточный признак экстремума не требует дифференцируемости функции в самой точке .

Пример.

Найдите точки экстремума и экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел. Саму функцию можно записать в виде:

Найдем производную функции:

В точке x=0 производная не существует, так как значения односторонних пределов при стремлении аргумента к нулю не совпадают:

В это же время, исходная функция является непрерывной в точке x=0 (смотрите раздел исследование функции на непрерывность):

Найдем значения аргумента, при котором производная обращается в ноль:

Отметим все полученные точки на числовой прямой и определим знак производной на каждом из интервалов. Для этого вычислим значения производной в произвольных точках каждого интервала, к примеру, при x=-6, x=-4, x=-1, x=1, x=4, x=6 .

То есть,

Таким образом, по первому признаку экстремума, точками минимума являются , точками максимума являются .

Вычисляем соответствующие минимумы функции

Вычисляем соответствующие максимумы функции

Графическая иллюстрация.

Ответ:

.

Второй признак экстремума функции.

Как видите, этот признак экстремума функции требует существования производной как минимум до второго порядка в точке .

Обратимся к графику функции у = х 3 – 3х 2 . Рассмотрим окрестность точки х = 0, т.е. некоторый интервал, содержащий эту точку. Логично, что существует такая окрестность точки х = 0, что наибольшее значение функция у = х 3 – 3х 2 в этой окрестности принимает в точке х = 0. Например, на интервале (-1; 1) наибольшее значение, равное 0, функция принимает в точке х = 0. Точку х = 0 называют точкой максимума этой функции.

Аналогично, точка х = 2 называется точкой минимума функции х 3 – 3х 2 , так как в этой точке значение функции не больше ее значения в иной точке окрестности точки х = 2, например, окрестности (1,5; 2,5).

Таким образом, точкой максимума функции f(х) называется точка х 0 , если существует окрестность точки х 0 – такая, что выполняется неравенство f(х) ≤ f(х 0) для всех х из этой окрестности.

Например, точка х 0 = 0 – это точка максимума функции f(х) = 1 – х 2 , так как f(0) = 1 и верно неравенство f(х) ≤ 1 при всех значениях х.

Точкой минимума функции f(х) называется точка х 0 , если существует такая окрестность точки х 0 , что выполняется неравенство f(х) ≥ f(х 0) для всех х из этой окрестности.

Например, точка х 0 = 2 – это точка минимума функции f(х) = 3 + (х – 2) 2 , так как f(2) = 3 и f(х) ≥ 3 при всех х.

Точками экстремума называются точки минимума и точки максимума.

Обратимся к функции f(х), которая определена в некоторой окрестности точки х 0 и имеет в этой точке производную.

Если х 0 – точка экстремума дифференцируемой функции f(х), то f "(х 0) = 0. Это утверждение называют теоремой Ферма.

Теорема Ферма имеет наглядный геометрический смысл: в точке экстремума касательная параллельна оси абсцисс и поэтому ее угловой коэффициент
f "(х 0) равен нулю.

Например, функция f(х) = 1 – 3х 2 имеет в точке х 0 = 0 максимум, ее производная f "(х) = -2х, f "(0) = 0.

Функция f(х) = (х – 2) 2 + 3 имеет минимум в точке х 0 = 2, f "(х) = 2(х – 2), f "(2) = 0.

Отметим, что если f "(х 0) = 0, то этого недостаточно, чтобы утверждать, что х 0 – это обязательно точка экстремума функции f(х).

Например, если f(х) = х 3 , то f "(0) = 0. Однако точкой экстремума точка х = 0 не является, так как на всей числовой оси функция х 3 возрастает.

Итак, точки экстремума дифференцируемой функции необходимо искать лишь среди корней уравнения
f "(х) = 0, но корень этого уравнения не всегда является точкой экстремума.

Стационарными точками называют точки, в которых производная функции равна нулю.

Таким образом, для того, чтобы точка х 0 была точкой экстремума, необходимо, чтобы она была стационарной точкой.

Рассмотрим достаточные условия того, что стационарная точка является точкой экстремума, т.е. условия, при выполнении которых стационарная точка является точкой минимума или максимума функции.

Если производная левее стационарной точки положительна, а правее – отрицательна, т.е. производная меняет знак «+» на знак «–» при переходе через эту точку, то эта стационарная точка – это точка максимума.

Действительно, в данном случае левее стационарной точки функция возрастает, а правее – убывает, т.е. данная точка – это точка максимума.

Если производная меняет знак «–» на знак «+» при переходе через стационарную точку, то эта стационарная точка является точкой минимума.

Если производная знак не меняет при переходе через стационарную точку, т.е. слева и справа от стационарной точки производная положительна или отрицательна, то эта точка не является точкой экстремума.

Рассмотрим одну из задач. Найти точки экстремума функции f(х) = х 4 – 4х 3 .

Решение.

1) Найдем производную: f "(х) = 4х 3 – 12х 2 = 4х 2 (х – 3).

2) Найдем стационарные точки: 4х 2 (х – 3) = 0, х 1 = 0, х 2 = 3.

3) Методом интервалов устанавливаем, что производная f "(х) = 4х 2 (х – 3) положительна при х > 3, отрицательна при х < 0 и при 0 < х < 3.

4) Так как при переходе через точку х 1 = 0 знак производной не меняется, то эта точка не является точкой экстремума.

5) Производная меняет знак «–» на знак «+» при переходе через точку х 2 = 3. Поэтому х 2 = 3 – точка минимума.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Рассмотрим два зубца хорошо всем известного профиля пилы. Направим ось вдоль ровной стороны пилы, а ось - перпендикулярно к ней. Получим график некоторой функции, изображенный на рис. 1.

Совершенно очевидно, что и в точке , и в точке значения функции оказываются наибольшими в сравнении со значениями в соседних точках справа и слева, а в точке - наименьшим в сравнении с соседними точками. Точки называются точками экстремума функции (от латинского extremum - «крайний»), точки и - точками максимума, а точка - точкой минимума (от латинских maximum и minimum - «наибольший» и «наименьший»).

Уточним определение экстремума.

Говорят, что функция в точке имеет максимум, если найдется интервал, содержащий точку и принадлежащий области определения функции, такой, что для всех точек этого интервала оказывается . Соответственно функция в точке имеет минимум, если для всех точек некоторого интервала выполняется условие .

На рис. 2 и 3 приведены графики функций, имеющие в точке экстремум.

Обратим внимание на то, что по определению точка экстремума должна лежать внутри промежутка задания функции, а не на его конце. Поэтому для функции, изображенной на рис. 1, нельзя считать, что в точке она имеет минимум.

Если в данном определении максимума (минимума) функции заменить строгое неравенство на нестрогое , то получим определение нестрогого максимума (нестрогого минимума). Рассмотрим для примера профиль вершины горы (рис. 4). Каждая точка плоской площадки - отрезка является точкой нестрогого максимума.

В дифференциальном исчислении исследование функции на экстремумы очень эффективно и достаточно просто осуществляется с помощью производной. Одна из основных теорем дифференциального исчисления, устанавливающая необходимое условие экстремума дифференцируемой функции, - теорема Ферма (см. Ферма теорема). Пусть функция в точке имеет экстремум. Если в этой точке существует производная , то она равна нулю.

На геометрическом языке теорема Ферма означает, что в точке экстремума касательная к графику функции горизонтальна (рис. 5). Обратное утверждение, разумеется, неверно, что показывает, например, график на рис. 6.

Теорема названа в честь французского математика П. Ферма, который одним из первых решил ряд задач на экстремум. Он еще не располагал понятием производной, но применял при исследовании метод, сущность которого выражена в утверждении теоремы.

Достаточным условием экстремума дифференцируемой функции является смена знака производной. Если в точке производная меняет знак с минуса на плюс, т.е. ее убывание сменяется возрастанием, то точка будет точкой минимума. Напротив, точка будет точкой максимума, если производная меняет знак с плюса на минус, т.е. переходит от возрастания к убыванию.

Точка, где производная функции равна нулю, называется стационарной. Если исследуется на экстремум дифференцируемая функция, то следует найти все ее стационарные точки и рассмотреть знаки производной слева и справа от них.

Исследуем на экстремум функцию .

Найдем ее производную: .