Как правильно называть пептиды. Что такое пептиды? Типы и виды пептидов. Механизм действия и особенности применения пептидов в косметологии

Пептиды – это природные или синтетические соединения, молекулы которых построены из остатков аминокислот, соединенных между собой пептидными (пептидный мостик), по своей сути, амидными связями.

Молекулы пептидов могут содержать неаминокислотную компоненту. Пептиды, имеющие до 10 аминокислотных остатков, называются олигопептидами (дипептиды, трипептиды и т.д.) Пептиды, содержащие более 10 до 60 аминокислотных остатков, относят к полипептидам . Природные полипептиды с молекуляроной массой более 6000 дальтон называют белками.

Номенклатура

Аминокислотный остаток пептида, который несет -аминогруппу, называют N -концевым , несущий свободную -карбоксильную группу – С-концевым. Название пептида состоит из перечисления тривиальных названий аминокислот, начиная с N-концевой. При этом суффикс «ин» меняется на «ил» для всех аминокислот, кроме С-концевой.

Примеры

Глицилаланин или Gly-Ala

б) аланил-серил-аспаргил-фенилаланил-глицин

или Ala – Ser – Asp – Phe – Gly. Здесь аланин N-концевая аминокислота, а глутамин – С-концевая аминокислота.

Классификация пептидов

1. Гомомерные – при гидролизе образуются только аминокислоты.

2. Гетеромерные – при гидролизе кроме -аминокислот, образуются неаминокислотные компоненты, например:

а) гликопептиды;

б) нуклеопептиды;

в) фосфопептиды.

Пептиды могут быть линейными или циклическими. Пептиды, в которых связи между аминокислотными остатками только амидные (пептидные), называются гомодетными. Если, кроме амидной группы, имеются сложноэфирные, дисульфидные группы пептиды называются гетеродетным. Гетеродетные пептиды, содержащие гидроксиаминокислоты называются пептолидами. Пептиды, состоящие из одной аминокислоты называются гомополиаминокислотами. Те пептиды, которые содержат одинаковые повторяющиеся участки (из одного или нескольких аминокислотных остатков), называют регулярными. Гетеромерные и гетеродетные пептиды называются депсипептидами .

Строение пептидной связи

В амидах связь углерод-азот является частично двоесвязанной вследствие р,-сопряжения НПЭ атома азота и -связи карбонила (длина связи С-N: в амидах - 0,132 нм, в аминах - 0,147 нм), поэтому амидная группа является плоской и имеет транс-конфигурацию. Таким образом, пептидная цепь представляет собой чередование плоских фрагментов амидной группы и фрагментов углеводородных радикалов соответствующих аминокислот. В последних вращение вокруг простых связей незатруднено, следствием этого является образование различных конформеров. Длинные цепи пептидов образуют -спирали и β-структуры (аналогично белкам).

Синтез пептидов

В процессе синтеза пептида должна образоваться пептидная связь между карбоксильной группой одной аминокислоты и аминной группой другой аминокислоты. Из двух аминокислот возможно образование двух дипептидов:

Приведённые выше схемы являются формальными. Для синтеза, например, глицилаланина, необходимо провести соответствующие модификации исходных аминокислот (в данном пособии этот синтез не рассматривается).

ПЕПТИДЫ - биополимеры, молекула к-рых построена из аминокислотных остатков, соединенных пептидной связью (-CO-NH-); в биохимии пептидами принято называть низкомолекулярные фрагменты белковых молекул, состоящих из небольшого числа аминокислотных остатков (от двух до нескольких десятков). Многие П. обладают биол, активностью. Гидролитическое расщепление П. катализируется специфическими ферментами - пептид-гидролазами (см.). Наиболее интересную и важную группу биологически активных П. составляют пептидные гормоны. К ним относятся: гормоны гипоталамуса: тиролиберин, гонадолиберин, соматостатин (см. Гипоталамические нейрогормоны); гормоны гипофиза: вазопрессин (см.), окситоцин (см.), адренокортикотропный гормон (см.), липотропин (см. Липотропные факторы гипофиза); гормон щитовидной железы - кальцитонин (см.); гормон поджелудочной железы - глюкагон , (см.); гормоны жел.-киш. тракта: секретин (см.), гастрин (см.), панкреозимин, а также ангиотензин (см.), брадикинин и каллидин (см. Медиаторы аллергических реакций). К природным П. относятся нек-рые антибиотики (грамицидин С и др.), ионофоры (антаманид и др.), ингибиторы протеиназ, яды змей и насекомых, а также биологически активные ди- и трипептиды: глутатион (см.), карнозин (см.) и ансерин (см.), принимающие участие во многих биохим, процессах, протекающих в клетке. Особую группу П. составляют эндогенные опиаты (см. Опиаты эндогенные), а также гормоны сна, стимуляторы памяти и другие так наз. нейропептиды.

Почти все биологически активные П., в т. ч. пептидные гормоны, кинины (см.), энкефалины и др., синтезируются в организме в виде белковых предшественников, из к-рых они образуются в результате специфического гидролиза определенных пептидных связей под действием пептид-гидролаз. П. выполняют важную функцию в организме. Гипоталамические нейрогормоны регулируют деятельность гипофиза, контролирующего функцию многих периферических эндокринных желез. П., обладающие морфиноподобным действием, влияют на механизмы восприятия болевых стимулов и другие процессы, протекающие в мозге. Вазопрессин, окситоцин, кортикотропин и меланотропин, помимо хорошо известных эффектов, оказывают влияние на поведение, память, мотивацию и обучение. Пептидные гормоны жел.-киш. тракта и Гипоталамические нейрогормоны, кроме тех органов, из к-рых они были выделены впервые, обнаружены в заметных количествах в различных структурах головного мозга.

Хим. и биол, свойства П. зависят от свойств пептидной связи и последовательности аминокислотных остатков в молекуле пептида. В каждом П., за исключением циклических, имеются аминный и карбоксильный концы молекулы (NH 2 - и COOH-концы соответственно). В общем виде структура П. может быть представлена в следующем виде:

Где R1, R2, R3, ..., Rn - боковые радикалы аминокислотных остатков. Пептидная связь имеет жесткую структуру, все ее атомы находятся в транс-положении и располагаются в одной плоскости. Наибольшими степенями свободы обладают связи, располагающиеся с двух сторон от альфа-углеродного атома, а именно связи - C α -NH- и C α -CO-, вокруг которых может вращаться вся пептидная цепь, что позволяет П. в р-ре принимать различную пространственную структуру - конформацию (см.).

В зависимости от количества аминокислотных остатков, входящих в состав молекулы, пептиды называются ди-, три-, тетрапептидами и т. д., олигопептидами и полипептидами. Наименование П. начинается с названия аминокислоты, имеющей свободную a-NH2- группу, к к-рому прибавляется суффикс -ил. Суффикс -ил включается и в название всех остальных аминокислотных остатков, за исключением аминокислоты, имеющей свободную COOH-группу, название к-рой не изменяется. Например, трипептид NH 2 -Глу-Гис-Фен-COOH получил название глутамил-гистидил-фенилаланин.

П. являются амфотерными электролитами (см. Амфолиты) и обычно хорошо растворимы в воде. Поскольку П. способны нести электрический заряд, для препаративного разделения их смеси и очистки индивидуальных П. широко используют различные методы ионообменной хроматографии (см.) и электрофореза (см.), особенно высоковольтный электрофорез. Благодаря наличию асимметрических a-угле родных атомов П. обладают оптической активностью. Электронные переходы пептидной связи обусловливают существование полосы поглощения П. в ультрафиолетовой части спектра при 180-230 нм, а присутствие в П. остатков ароматических аминокислот- триптофана, тирозина и фенилаланина - объясняет наличие максимума поглощения в области 280 нм. На этих свойствах основаны нек-рые количественные методы определения П. Валентные колебания NH- и CO-групп обусловливают интенсивные полосы поглощения в инфракрасной части спектра при 3300 см -1 , 3080 см -1 и 1660 см -1 .

П. дают характерную цветную реакцию с нингидрином (см.), к-рый используется для проявления П. на бумаге после распределительной хроматографии или электрофореза. Существуют специфические реактивы, взаимодействующие с N-концевой аминогруппой П., такие, как фенилизотиоцианат, дансилхлорид, динитрофторбензол и др., позволяющие идентифицировать N-концевой аминокислотный остаток в П. Фенилизотиоцианат, кроме того, дает возможность последовательно отщеплять аминокислотные остатки от NH 2 -конца П. и т. о. устанавливать его первичную структуру (метод Эдмана). Знание структуры П. позволяет получать их синтетическим путем и широко использовать синтетические физиологически активные П. в мед. практике и при экспериментальных исследованиях.

Наиболее простой качественной реакцией на пептидную связь является биуретовая реакция (см.). Значительную трудность представляет собой количественное определение биологически активных П., т. к. они присутствуют в биол, жидкостях и тканях в ничтожных количествах. Поэтому для количественного определения индивидуальных биологически активных П. широко пользуются радиоиммунологическими методами (см.), обладающими высокой специфичностью и чувствительностью. С помощью радиоиммунологических методов получены практически все сведения об изменениях концентрации биологически активных П. в крови и тканях человека в норме и при различных патологических состояниях.

Библиография: Ашмарин И. П. и др. Олигопептиды мозга - анальгетики, стимуляторы памяти и сна, Молек. биол., т. 12, № 5, с. 965, 1978, библиогр.; Биохимия гормонов и гормональной регуляции, под ред. Н. А. Юдаева, с. 44, М., 1976; Дзвени Т. и Гергей Я. Аминокислоты, пептиды и белки, пер. с англ., М., 1976; Ленинджер А. Биохимия, пер. с англ., М., 1976; Шредер Э. и Любке К. Пептиды, пер. с англ., т. 1-2, М., 1967-1969.

ὀλίγος «малочисленный»); при большей длине последовательности они называются полипепти́дами (от греч. πολυ- «много»); полипептиды могут иметь в молекуле неаминокислотные фрагменты, например углеводные остатки. Белка́ми обычно называют полипептиды, содержащие, примерно, от 50 аминокислотных остатков с молекулярной массой более 5000 (6000 )-10000 дальтон .

На сегодняшний день известно более 1500 видов пептидов, определены их свойства и разработаны методы синтеза.

Панкреатические молекулы полипептидного характера

  • APP Avian pancreatic polypeptide
  • en:HPP Human pancreatic polypeptide

Свойства пептидов

Пептиды постоянно синтезируются во всех живых организмах для регулирования физиологических процессов. Свойства пептидов зависят, главным образом, от их первичной структуры - последовательности аминокислот, а также от строения молекулы и её конфигурации в пространстве (вторичная структура).

Классификация пептидов и строение пептидной цепочки

Молекула пептида - это последовательность аминокислот: два и более аминокислотных остатка, соединённых между собой амидной связью, составляют пептид. Количество аминокислот в пептиде может сильно варьировать. И в соответствии с их количеством различают:

  1. олигопептиды - молекулы, содержащие до десяти аминокислотных остатков; иногда в их названии упоминается количество входящих в их состав аминокислот, например, дипептид, трипептид, пентапептид и др.;
  2. полипептиды - молекулы, в состав которых входит более десяти аминокислот.

Соединения, содержащие более ста аминокислотных остатков, обычно называются белками. Однако это деление условно, некоторые молекулы, например, гормон глюкагон, содержащий лишь двадцать девять аминокислот, называют белковым гормоном. По качественному составу различают:

  1. гомомерные пептиды - соединения, состоящие только из аминокислотных остатков;
  2. гетеромерные пептиды - вещества, в состав которых входят также небелковые компоненты.

Пептиды также делятся по способу связи аминокислот между собой:

  1. гомодетные - пептиды, аминокислотные остатки которых соединены только пептидными связями;
  2. гетеродетные пептиды - те соединения, в которых помимо пептидных связей встречаются ещё и дисульфидные, эфирные и тиоэфирные связи.

Цепочка повторяющихся атомов называется пептидным остовом: (-NH-CH-OC-). Участок (-CH-) с аминокислотным радикалом образует соединение (-NH-C(R1)H-OC-), называемое аминокислотным остатком. N-концевой аминокислотный остаток имеет свободную α-аминогруппу (-NH), в то время как у C-концевого аминокислотного остатка свободной является α-карбоксильная группа (OC-). Пептиды различаются не только по аминокислотному составу, но и по количеству, а также расположению и соединению аминокислотных остатков в полипептидную цепочку. Пример: Про-Сер-Про-Ала-Гис и Гис-Ала-Про-Сер-Про Несмотря на одинаковый количественный и качественный состав, эти пептиды имеют совершенно разные свойства.

Пептидная связь

Пептидная (амидная) связь - это вид химической связи, которая возникает вследствие взаимодействия α-аминогруппы одной аминокислоты и α-карбоксигруппы другой аминокислоты. Амидная связь очень прочная, и в нормальных клеточных условиях (37 °C, нейтральный pH) самопроизвольно не разрывается. Пептидная связь разрушается при действии на неё специальных протеолитических ферментов (протеаз, пептидгидролаз).

Значение

Пептидные гормоны и нейропептиды , например, регулируют большинство процессов организма человека, в том числе, принимают участие в процессах регенерации клеток. Пептиды иммунологического действия защищают организм от попавших в него токсинов. Для правильной работы клеток и тканей необходимо адекватное количество пептидов. Однако с возрастом и при патологии возникает дефицит пептидов, который существенно ускоряет износ тканей, что приводит к старению всего организма. Сегодня проблему недостаточности пептидов в организме научились решать. Пептидный пул клетки восполняют синтезированными в лабораторных условиях короткими пептидами.

Синтез пептидов

Образование пептидов в организме происходит в течение нескольких минут, химический же синтез в условиях лаборатории - достаточно длительный процесс, который может занимать несколько дней, а разработка технологии синтеза - несколько лет. Однако, несмотря на это, существуют довольно весомые аргументы в пользу проведения работ по синтезу аналогов природных пептидов. Во-первых, путём химической модификации пептидов возможно подтвердить гипотезу первичной структуры. Аминокислотные последовательности некоторых гормонов стали известны именно благодаря синтезу их аналогов в лаборатории.

Во-вторых, синтетические пептиды позволяют подробнее изучить связь между структурой аминокислотной последовательности и её активностью. Для выяснения связи между конкретной структурой пептида и его биологической активностью была проведена огромная работа по синтезу не одной тысячи аналогов. В результате удалось выяснить, что замена лишь одной аминокислоты в структуре пептида способна в несколько раз увеличить его биологическую активность или изменить её направленность. А изменение длины аминокислотной последовательности помогает определить расположение активных центров пептида и участка рецепторного взаимодействия.

В-третьих, благодаря модификации исходной аминокислотной последовательности, появилась возможность получать фармакологические препараты. Создание аналогов природных пептидов позволяет выявить более «эффективные» конфигурации молекул, которые усиливают биологическое действие или делают его более продолжительным.

В-четвёртых, химический синтез пептидов экономически выгоден. Большинство терапевтических препаратов стоили бы в десятки раз больше, если бы были сделаны на основе природного продукта.

Зачастую активные пептиды в природе обнаруживаются лишь в нанограммовых количествах. Плюс к этому, методы очистки и выделения пептидов из природных источников не могут полностью разделить искомую аминокислотную последовательность с пептидами противоположного или же иного действия. А в случае специфических пептидов, синтезируемых организмом человека, получить их возможно лишь путём синтеза в лабораторных условиях.

Биологически активные пептиды

Пептиды, обладая высокой физиологической активностью, регулируют различные биологические процессы. По биорегуляторному действию пептиды принято делить на несколько групп:

  • соединения, обладающие гормональной активностью (глюкагон , окситоцин , вазопрессин и др.);
  • вещества, регулирующие пищеварительные процессы (гастрин , желудочный ингибирующий пептид и др.);
  • пептиды, регулирующие аппетит (эндорфины , нейропептид-Y, лептин и др.);
  • соединения, обладающие обезболивающим эффектом (опиоидные пептиды);
  • органические вещества, регулирующие высшую нервную деятельность, биохимические процессы, связанные с механизмами памяти, обучения, возникновением чувства страха, ярости и др.;
  • пептиды, которые регулируют артериальное давление и тонус сосудов (ангиотензин II, брадикинин и др.).
  • пептиды, которые обладают противоопухолевым и противовоспалительным свойствами (Луназин)

Однако такое деление условно, так как действие многих пептидов не ограничивается каким-либо одним направлением. Так, например, вазопрессин , помимо сосудосуживающего и антидиуретического действия, улучшает память.

Пептидные гормоны

Пептидные гормоны - это многочисленный и наиболее разнообразный по составу класс гормональных соединений, представляющий собой биологически активные вещества. Их образование происходит в специализированных клетках железистых органов, после чего активные соединения поступают в кровеносную систему для транспортировки к органам-мишеням. По достижении цели гормоны специфически воздействуют на определённые клетки, взаимодействуя с соответствующим Пептидные биорегуляторы

На основе разработанной петербургскими учеными технологии из органов и тканей животных были выделены пептиды, обладающие тканеспецифическим действием, способные восстанавливать на оптимальном уровне метаболизм в клетках тех тканей, из которых они выделены. Важным отличием этих пептидов является их регулирующее действие: при подавлении функции клетки они её стимулируют, а при повышенной функции - снижают до нормального уровня. Это позволило создать новый класс лекарственных препаратов - пептидные биорегуляторы.

Первый из них - иммуномодулятор тималин - уже более 28 лет находится на фармацевтическом рынке и применяется для восстановления функции иммунной системы при заболеваниях различного генеза, включая онкологические заболевания. За ним последовали эпиталамин (биорегулятор нейроэндокринной системы), сампрост (препарат для лечения заболеваний предстательной железы), кортексин (препарат для лечения широкого спектра неврологических заболеваний), ретиналамин (препарат для лечения дегенеративно-дистрофических заболеваний сетчатки). За 25 лет широкого применения пептидных биорегуляторов их получили более 15 млн человек. При этом не было выявлено противопоказаний к их применению и побочного действия.

В настоящее время обнаружено, что тималин и ему подобные противопоказаны при аутоиммунных заболеваниях, так как тималин стимулирует, в том числе, область перевозбужденного иммунитета. По всей видимости, в тималине полностью отсутствует супрессорная функция, которая чрезвычайно важна при борьбе с аутоиммунными заболеваниями.

ПЕПТИДЫ , природные или синтетич. соед., к-рых построены из остатков a -аминокислот, соединенных между собой пептидными (амидными) связями C(O) NH. Могут содержать в также неаминокислотную компоненту (напр., остаток ). По числу аминокислотных остатков, входящих в пептидов, различают ди-пептиды, трипептиды, тетрапептиды и т.д. Пептиды, содержащие до 10 аминокислотных остатков, наз. олигопептидами, содержащие более 10 аминокислотных остатков полипепти-дами Прир с мол. м. более 6 тыс. наз.

Историческая справка. Впервые пептиды были выделены из ферментативных гидролизатов . Термин "пептиды" предложен Э. Фишером. Первый синтетический пептид получил T. Курциус в 1881 Э. Фишер к 1905 разработал первый общий метод синтеза пептидов и синтезировал ряд олигопептидов разл. строения. Существ. вклад в развитие пептидов внесли ученики Э. Фишера Э. Абдергальден, Г. Лейке и M. Бергман. В 1932 M Бергман и Л. Зервас использовали в синтезе пептидов бензилоксикарбонильную группу (карбобензоксигруппу) для защиты a -аминогрупп , что ознаменовало новый этап в развитии синтеза пептидов. Полученные N-защищенные (N-карбобензоксиаминокислоты) широко использовали для получения различных пептидов, к-рые успешно применяли для изучения ряда ключевых проблем и этих B-B, напр, для исследования субстратной протеолитич. . С применением N-карбобензоксиаминокислот были впервые синтезированы ( , и др.). Важное достижение в этой области разработанный в нач. 50-х гг. P. Воганом и др. синтез пептидов методом смешанных (подробно методы синтеза пептидов рассмотрены ниже). В 1953 В. Дю Виньо синтезировал первый пептидный -окситоцин. На основе разработанной P. Меррифилдом в 1963 концепции твердофазного пептидного синтеза были созданы автоматич. синтезаторы пептидов. Получили интенсивное развитие методы контролируемого ферментативного синтеза пептидов. Использование новых методов позволило осуществить синтез и др.

Успехи синтетич. пептидов были подготовлены достижениями в области разработки таких , очистки и анализа пептидов, как , на разл. , гель-фильтрация, высокоэффективная (ВЭЖХ), иммуно-хим. анализ и др. Получили большое развитие также методы анализа концевых групп и методы ступенчатого расщепления пептидов. Были, в частности, созданы автоматич. аминокислотные анализаторы и автоматич. приборы для определения первичной структуры пептидов-т.наз. секвенаторы.

Номенклатура пептидов. Аминокислотный остаток пептидов, несущий своб. a -аминогруппу, наз. N-концевым, а несущий своб. a -карбоксильную группу - С-концевым. Название пептида образу ется из назв. входящих в его состав аминокислотных остатков, перечисляемых последовательно, начиная с N-концево-го. При этом используют тривиальные назв. , в к-рых окончание "ин" заменяется на "ил"; исключение C-концевой остаток, назв. к-рого совпадает с назв. соответствующей . Все аминокислотные остатки, входящие в пептиды, нумеруются, начиная с N-конца. Для записи первичной структуры пептидов () широко используют трехбуквенные и однобуквенные обозначения аминокислотных остатков (напр., Ala Ser -Asp Phe -GIy аланил-серил-аспарагил-фенилаланил-гли-цин).

Строение. имеет св-ва частично . Это проявляется в уменьшении длины этой связи (0,132 нм)по сравнению с длиной C N (0,147 нм). Частично двоесвязный характер делает невозможным своб. вращение заместителей вокруг нее. поэтому пептидная группировка является плоской и имеет обычно транс-конфигурацию (ф-ла I). T. обр., остов пептидной цепи представляет собой ряд жестких плоскостей с подвижным ("шарнирным") сочленением в месте, где расположены асимметрич. С (в ф-ле I обозначены звездочкой).

В р-рах пептидов наблюдается предпочтительное образование определенных конформе-ров. С удлинением цепи более выраженную устойчивость приобретают (аналогично ) упорядоченные элементы вторичной структуры (a -спираль и b -струк-тура). Образование вторичной структуры особенно характерно для регулярных пептидов, в частности для полиаминокислот.

Свойства. Олигопептиды по св-вам близки к , подобны . Олигопептиды представляют собой, как правило, кристаллич. в-ва, разлагающиеся при нагр. до 200 300 0 C. Они хорошо раств. в , разб. к-тах и , почти не раств. в орг. р-рителях. Исключение Олигопептиды, построенные из остатков гидрофобных .

Олигопептиды обладают амфотерными св-вами и, в зависимости от кислотности среды, могут существовать в форме , или . Осн. полосы поглощения в ИК спектре для группы NH 3300 и 3080 см -1 , для группы C=O 1660 см -1 . В УФ спектре полоса поглощения пептидной группы находится в области 180-230 нм. Изоэлектрич. точка (рI) пептидов колеблется в широких пределах и зависит от состава аминокислотных остатков в . Величины рК а пептидов составляют для а-СООН ок. 3, для a -N H 2 ок. 8.

Хим. св-ва олигопептидов определяются содержащимися в них функц. группами, а также особенностями . Их хим. превращения в значит. мере аналогичны соответствующим р-циям . Они дают положит. и . Дипептиды и их производные (особенно эфиры) легко циклизуются, превращаясь в . Под действием 5,7 н.

соляной к-ты пептиды гидролизуются до в течение 24ч при 105 0 C.

Синтез. Хим. синтез пептидов заключается в создании между группой COOH одной и NH 2 др. или пептида. В соответствии с этим различают карбоксильную и аминную компоненты р-ции пептидного синтеза. Для проведения целенаправленного контролируемого синтеза пептидов необходима предварит. временная защита всех (или нек-рых) функц. групп, к-рые не участвуют в образовании , а также предварит. активация одной из компонент пептидного синтеза. После окончания синтеза удаляют. При получении биологически активных пептидов необходимое условие - предотвращение на всех этапах пептидного синтеза.

Наиб. важные способы образования при осуществлении р-ции в р-ре-методы активир. эфиров, кар-бодиимидный, смешанных и азидный метод.

Метод активированных эфиров основан на предварит. образовании сложноэфирного производного карбоксильной компоненты путем введения в нее спиртового остатка, содержащего сильный электроноакцепторный заместитель. В результате образуется высокореакционноспо-собный эфир, легко подвергающийся под действием аминокомпоненты пептидного синтеза. В качестве активир. эфиров при синтезе пептидов широко используют пента-фтор-, пентахлор-, трихлор- и n-нитрофениловые и ряд др. эфиров защищенных и пептидов.

Карбодиимидный метод образования предусматривает использование в качестве конденсирующих разл. замещенных . Особенно широкое применение при синтезе пептидов получил дициклогексил-карбодиимид:



X и Y-соотв. N- и С-защитные группы С этим конденсирующим можно осуществлять синтез пептидов и в водных средах, т. к. скорости р-ций и промежуточно образующейся О-ацилизомо-чевины (II) существенно различаются. При синтезе пептидов находят также применение разл. водорастворимые карбодиими-ды (напр., N-диметиламинопропил-N"-этилкарбодиимид).

Метод смешанных основан на предварит. активации карбоксильной компоненты пептидного синтеза путем образования смешанного с карбоновой или неорг. к-той. Наиб. часто используют алкиловые эфиры хлормуравьиной (хлоругольной) к-ты, особенно этиловый и изобутиловый эфиры, напр.:



В - третичный

При синтезе пептидов по этому методу весьма эффективны смешанные N-ациламинокислот и пивалиновой (триметилуксусной) к-ты. Благодаря сильному положит. трет-бутилъной группы электро-фильность карбоксильного С в остатке пивалиновой к-ты существенно снижена, и это, наряду со стерич. препятствиями, подавляет нежелат. побочную р-цию образования и своб. N-ациламинокислоты, к-рая осуществляется по схеме:

В одном из вариантов метода смешанных применяют в качестве конденсирующего агента 1-этоксикар-бонил-2-этокси-1,2-дигидрохинолин. Это соед. легко образует с карбоксильной компонентой пептидного синтеза про-межут. смешанный , быстро вступающий в р-цию , причем полностью исключается нежелат. побочная р-ция.

Частный случай метода смешанных - метод симметрич. , в к-ром используют 2 O. Их применение исключает возможность или неправильного .

Азидный метод синтеза предусматривает активацию карбоксильной компоненты предварит, превращением ее в N-замещенной или пептида:



Ввиду нестойкости их в своб. виде из р-ра, как правило, не выделяют. Если вместо для р-ции с гидразидом использовать алкиловые эфиры азотистой к-ты (напр., трет-бутилнитрит), то азид-ную можно проводить в орг. р-рителе; образующуюся HN 3 связывают третичными . Нередко азидная осложняется нежелат. побочными р-циями (превращ. гидразида не в , а в амид; р-ция гидразида с , ведущая к образованию 1,2-диацил-гидразина; промежут. образование , к-рый в результате перегруппировки Курциуса может приводить к производному или соответствующему и др.). Преимущества азидного метода-малая степень , возможность применения и без защиты .

Для превращ. защищенных пептидов в свободные используют спец. методы деблокирования, к-рые основаны на р-циях, обеспечивающих отщепление разл. , гарантирующих сохранение всех в . Примеры деблокирования: удаление оксикарбониль-ной группы каталитич. при атм. и комнатной т-ре, отщепление трет-бутилоксикарбонильной группы мягким , а также гидролитич. отщепление трифторацетильной группы под действием разб. р-ров .

При синтезе биологически активных пептидов важно, чтобы не происходила , к-рая может осуществляться в результате обратимого отщепления H + от a -атома С N-ациламинокислоты или пептида. способствуют и к-ты, высокая т-ра и полярные р-рители. Решающую роль играет , катализируемая , к-рая может протекать по т. наз. азлактоновому механизму или через енолизацию по схеме:



Наиб. важные способы исключения : 1) наращивание пептидной цепи в направлении от С-конца к N-концу с применением N-защитных групп типа ROC(O). 2) Активация N-защищенных пептидных фрагментов с С-концевы-ми остатками или . 3) Использование азид-ного метода (при отсутствии избытка третичного и поддержании низких т-р в реакц. среде). 4) Применение активир. эфиров , к-рых протекает через переходное состояние, стабилизир. водородными мостиками (напр., эфиров, образованных с N-гидроксипипери-дином и 8-гидроксихинолином). 5) Использование карбоди-имидного метода с N-гидроксисоед. или к-т Льюиса.

Наряду с синтезом пептидов в р-рах, важное значение имеет синтез пептидов с применением нерастворимых . Он включает пептидов (р-ция, или метод, Мэр-рифилда) и синтез пептидов с использованием полимерных .

Стратегия твердофазного пептидного синтеза предусматривает временное закрепление синтезируемой пептидной цепи на нерастворимом полимерном и осуществляется по схеме:



Благодаря этому способу удалось заменить весьма сложные и трудоемкие процедуры разделения и очистки промежут. пептидов простыми операциями промывки и , а также свести процесс пептидного синтеза к стандартной последовательности периодически повторяющихся процедур, легко поддающихся автоматизации. Метод Меррифилда позволил существенно ускорить процесс синтеза пептидов. На основе этой методологии созданы разл. типы автоматич. синтезаторов пептидов.

Соединение высокопроизводит. пептидов с разделяющими способностями препаративной ВЭЖХ обеспечивает выход на качественно новый уровень хим. синтеза пептидов, что, в свою очередь, благотворно влияет на развитие разл. областей , мол. биологии, фармакологии и медицины.

Стратегия синтеза пептидов с применением полимерных предусматривает временное связывание с высокомол. активир. карбоксильной компоненты или конденсирующего агента пептидного синтеза. Преимущество этого метода: закрепленные на могут вводиться в избытке, а отделение синтезированных пептидов от нерастворимых не представляет затруднений.

Пример такого синтеза-пропускание аминокомпоненты в заданной последовательности через неск. колонок, в каждой из к-рых находится связанный с полимерным активир. эфир определенной

Пептиды (от греч. πεπτός, «перевариваемый», производное от πέσσειν, «переварить») – это встречаемые в природе короткие цепочки мономеров аминокислот, связанных пептидными (амидными) связями. Ковалентные химические связи образуются, когда карбоксильная группа одной аминокислоты реагирует с аминогруппой другой аминокислоты. Самые короткие пептиды – это дипептиды, состоящие из 2-х аминокислот, соединенных одной пептидной связью. После них следуют трипептиды, тетрапептиды и т.д. Полипептид представляет собой длинную, непрерывную и неразветвленную пептидную цепь. Следовательно, пептиды входят в широкие химические классы биологических олигомеров и полимеров, наряду с нуклеиновыми кислотами, олигосахаридами и полисахаридами и т.д.

Пептиды отличаются от белков по размеру, и в качестве произвольного ориентира можно считать, что они содержат приблизительно 50 или меньше аминокислот. Белки состоят из одного или нескольких полипептидов, расположенных в биологически функциональном пути, часто связанных к лигандом, таким как коферменты и кофакторы, или с другим белком или другой макромолекулой (ДНК, РНК и т.п.), или со сложными макромолекулярными формированиями. В конце концов, в то время как аспекты лабораторных методов, применяемых к пептидам в сравнении с полипептидами и белками, различаются (например, специфика электрофореза, хроматографии и т.д.), границы размера, отличающие пептиды от полипептидов и белков, не являются абсолютными: длинные пептиды, такие как бета-амилоид, называются белками, а более мелкие белки, такие как инсулин, считаются пептидами. Аминокислоты, которые были включены в пептиды, называются «остатками» в связи с выпуском либо иона водорода из конца амина, либо гидроксильного иона из карбоксильного конца, или обоих веществ, по мере того, как молекула воды выделяется при образовании каждой амидной связи. Все пептиды, за исключением циклических пептидов, имеют N-концевой и C-концевой остаток в конце пептида.

Пептидные классы

Пептиды делятся на несколько классов, в зависимости от того, как они производятся:

Молочные пептиды

Два натуральных молочных пептида образуются из молочного белка казеина, когда его разрушают пищеварительные ферменты; они также могут быть образованы из протеиназ, образованных лактобациллами во время ферментации молока.

Рибосомные пептиды

Рибосомные пептиды синтезируются путем трансляции мРНК. Они часто подвергаются протеолизу, чтобы сформировать зрелую форму. Они, как правило, функционируют в высших организмах как гормоны и сигнальные молекулы. Некоторые организмы производят пептиды в качестве антибиотиков, такие как микроцины. Так как они транслируются, участвующие в этом аминокислотные остатки ограничиваются остатками, используемыми рибосомой. Тем не менее, эти пептиды часто имеют посттрансляционные модификации, такие как фосфорилирование, гидроксилирование, сульфирование, пальмитоилирование, гликозилирование и формирование дисульфида. В общем, они являются линейными, хотя наблюдались петлеобразные структуры. Наблюдаются и более экзотические манипуляции, например, рацемизация L-аминокислот в D-аминокислоты в яде утконоса.

Нерибосомные пептиды

Нерибосомные пептиды собираются с помощью ферментов, которые являются специфическими для каждого пептида, а не с помощью рибосомы. Наиболее распространенным нерибосомальным пептидом является глутатион, который является составной частью антиоксидантной защиты большинства аэробных организмов. Другие нерибосомные пептиды наиболее распространены в одноклеточных организмах, растениях и грибах и синтезируются модульными комплексами ферментов, называемыми нерибосомные пептидные синтетазы. Эти комплексы часто располагаются аналогичным образом, и они могут содержать множество различных модулей для выполнения разнообразных химических манипуляций на разрабатываемом продукте. Эти пептиды часто являются циклическими и могут иметь весьма сложные циклические структуры, хотя линейные нерибосомальные пептиды являются распространенными. Так как система тесно связана с машинами для создания жирных кислот и поликетидов, часто встречаются гибридные соединения. Присутствие оксазолов или тиазолов часто указывает на то, что соединение синтезируют таким образом.

Пептоны

Пептоны получают из молока животных или мяса, переработанного в ходе протеолиза. Помимо небольших пептидов, полученный лиофилизированный материал включает в себя жиры, металлы, соли, витамины и многие другие биологические соединения. Пептоны используются в питательных средах для выращивания бактерий и грибков.

Пептидные фрагменты

Пептидные фрагменты – это фрагменты белков, которые используются для идентификации или количественного определения белка источника. Часто они являются продуктами ферментативного разложения, выполняемого в лаборатории на контролируемом образце, но также могут быть образцами судебно-медицинской или палеонтологической экспертизы, которые были расщеплены благодаря воздействию естественных факторов.

Пептиды в молекулярной биологии

Пептиды получили известность в области молекулярной биологии по нескольким причинам. Во-первых, пептиды позволяют создавать пептидные антитела в организме животных без необходимости очистки белка, представляющего интерес. Это предполагает синтез антигенных пептидов участков белка, представляющего интерес. Затем они будут использованы для получения антител против этого белка у кролика или мыши. Другая причина состоит в том, что пептиды стали играть важную роль в масс-спектрометрии, что позволяет идентифицировать белки, представляющие интерес, на основе пептидных масс и последовательности. В этом случае пептиды наиболее часто генерируются в ходе переработки в геле после электрофоретического разделения белков. Пептиды недавно начали использоваться при исследовании структуры и функции белков. Например, синтетические пептиды могут быть использованы в качестве зондов, чтобы увидеть, где происходит взаимодействие белок-пептид. Ингибирующие пептиды также используются в клинических исследованиях для изучения влияния пептидов на ингибирование раковых белков и других заболеваний. Например, один из наиболее перспективных способов связан с пептидами, которые нацелены на рилизинг-фактор лютеинизирующего гормона. Эти специфические пептиды действуют в качестве агониста, а это означает, что они связываются с клеткой, регулируя рецепторы РФЛГ. Процесс ингибирования клеточных рецепторов позволяет предположить, что пептиды могут быть полезны при лечении рака простаты. Тем не менее, дополнительные исследования и эксперименты необходимы перед тем, как противораковые качества пептидов можно будет считать окончательными.

Пептидные семьи

Пептидные семьи, упомянутые в этом разделе, представляют собой рибосомные пептиды, как правило, обладающие гормональной активностью. Все эти пептиды синтезируются клетками как более длинные «пропептиды» или «пропротеины» и сокращаются до выхода из ячейки. Они попадают в кровоток, где они выполняют свои сигнальные функции.

Тахикининовые пептиды

    Вещество Р

    Кассинин

    Нейрокинин

    Эледоизин

    Нейрокинин B

Вазоактивные кишечные пептиды

    VIP (вазоактивный кишечный пептид; PHM27)

    PACAP пептид, активирующий аденилатциклазу гипофиза

    Пептид PHI 27 (пептид гистидин изолейцин 27)

    GHRH 1-24 (соматолиберин 1-24)

    Глюкагон

    Секретин

Панкреатические полипептид связанные пептиды

    NPY (нейропептид Y)

    PYY (пептид YY)

    APP (Птичий панкреатический полипептид)

    PPY панкреатический полипептид

Опиоидные пептиды

    Проопиомеланокортиновые (POMC) пептиды

    Энкефалиновые пентапептиды

    Продинорфиновые пептиды

Кальцитониновые пептиды

    Кальцитонин

Другие пептиды

    Натрийуретический пептид B-типа (BNP) - производится в миокарде и полезен в медицинской диагностике

    Лактотрипептиды. Лактотрипептиды могут снижать кровяное давление, хотя доказательства являются смешанными.

Замечания по терминологии

Длина:

    Полипептид является одной линейной цепью многих аминокислот, удерживаемых вместе амидными связями.

    Белок представляет собой один или несколько полипептидов (длиной более 50 аминокислот).

    Олигопептид состоит только из нескольких аминокислот (от двух до двадцати).

Количество аминокислот:

    Монопептид содержит одну аминокислоту.

    Дипептид содержит две аминокислоты.

    Трипептид состоит из трех аминокислот.

    Тетрапептид содержит четыре аминокислоты.

    Пентапептид имеет пять аминокислот.

    Гексапептид содержит шесть аминокислот.

    Гептапептид состоит из семи аминокислот.

    Октапептид имеет восемь аминокислот (например, ангиотензин II).

    Нонапептид имеет девять аминокислот (например, окситоцин).

    Декапептид имеет десять аминокислот (например, гонадотропин-рилизинг-гормон и ангиотензин I).

    Ундекапептид (или монодекапептид) содержит одиннадцать аминокислот, додекапептида (или дидекапептид) – двенадцать аминокислот, тридекапептид – тринадцать аминокислот, и так далее.

    Икозапептид состоит из двадцати аминокислот, триконтапептид – из тридцати аминокислот, тетраконтапептид – из сорока аминокислот, и так далее.

Функция:

    Нейропептид представляет собой пептид, который активен в сочетании с нервной тканью.

    Липопептид представляет собой пептид, который имеет липид, соединенный с ним, и пепдуцины – это липопептиды, которые взаимодействуют с рецептором, сопряжённым с G-белком.

    Пептидный гормон, который представляет собой пептид, который действует как гормон.

    Протеоза представляет собой смесь пептидов, полученных в результате гидролиза белков. Термин несколько архаичен.

Допинг в спорте

Термин «пептид» неправильно или нечетко используется для обозначения незаконных стимуляторов секреции и пептидных гормонов в спортивном допинге: незаконные пептиды-стимуляторы секреции входят в Список 2 (S2) запрещенных веществ Всемирного антидопингового агентства, и поэтому запрещены для использования профессиональными спортсменами, как конкурентными, так и неконкурентными. Такие пептидные стимуляторы секреции входили в список ВАДА запрещенных веществ, по крайней мере, в 2008 году. Австралийская комиссия по преступности (неправильно используя термин пептиды) цитировала предполагаемое злоупотребление незаконными пептидными секретогогами, используемыми в австралийском спорте, включая пептиды, стимулирующие выработку гормона роста CJC-1295, GHRP-6, и GHSR (ген) гексарелин. Существует продолжающееся противоречие относительно законности использования пептидных секретагогов в спорте.

Список пептидов

2013/12/02 20:25 Наталья
2013/11/27 00:15 Pavel
2013/11/27 00:19 Pavel
2013/11/27 00:21 Pavel
2016/08/31 21:18
2015/03/28 00:18 Яна
2014/03/29 01:56 Наталья
2013/11/26 21:00 Pavel
2015/06/06 17:45 Яна
2013/11/26 20:49 Pavel
2013/11/24 15:14
2015/03/26 21:10 Наталья