Характеристика процесса горения. Химические реакции горения

Горение – одно из интереснейших и жизненно необходимых для людей явлений природы. Горение является полезным для человека до тех пор, пока оно не выходит из подчинения его разумной воле. В противном случае оно может привести к пожару. Пожар - это неконтролируемое горение, причиняющее материальный ущерб, вред жизни и здоровью граждан, интересам общества и государства. Для предотвращения пожара и его ликвидации необходимы знания о процессе горения.

Горение – это химическая реакция окисления, сопровождающаяся выделением тепла. Для возникновения горения необходимо наличие горючего вещества, окислителя и источника зажигания.

Горючее вещество – это всякое твёрдое, жидкое или газообразное вещество, способное окисляться с выделением тепла.

Окислителями могут быть хлор, фтор, бром, йод, окислы азота и другие вещества. В большинстве случаев при пожаре окисление горючих веществ происходит кислородом воздуха.

Источник зажигания обеспечивает энергетическое воздействие на горючее вещество и окислитель, приводящее к возникновению горения. Источники зажигания принято делить на открытые (светящиеся) – молния, пламя, искры, накалённые предметы, световое излучение; и скрытые (несветящиеся) – тепло химических реакций, микробиологические процессы, адиабатическое сжатие, трение, удары и т. п. Они имеют различную температуру пламени и нагрева. Всякий источник зажигания должен иметь достаточный запас теплоты или энергии, передаваемой реагирующим веществам. Поэтому на процесс возникновения горения влияет и продолжительность воздействия источника зажигания. После начала процесса горения оно поддерживается тепловым излучением из его зоны.

Горючее вещество и окислитель образуют горючую систему , которая может быть химически неоднородной или однородной. В химически неоднородной системе горючее вещество и окислитель не перемешаны и имеют поверхность раздела (твёрдые и жидкие горючие вещества, струи горючих газов и паров, поступающих в воздух). При горении таких систем кислород воздуха непрерывно диффундирует сквозь продукты горения к горючему веществу и затем вступает в химическую реакцию. Такое горение называется диффузионным . Скорость диффузионного горения невелика, так как она замедляется процессом диффузии. Если горючее вещество в газообразном, парообразном или пылеобразном состоянии уже перемешано с воздухом (до поджигания его), то такая горючая система является однородной и процесс её горения зависит только от скорости химической реакции. В этом случае горение протекает быстро и называется кинетическим .

Горение может быть полным и неполным. Полное горение происходит в том случае, когда кислород поступает в зону горения в достаточном количестве. Если кислорода недостаточно для окисления всех продуктов, участвующих в реакции, происходит неполное горение. К продуктам полного горения относятся углекислый и сернистый газы, пары воды, азот, которые не способны к дальнейшему окислению и горению. Продукты неполного горения – окись углерода, сажа и продукты разложения вещества под действием тепла. В большинстве случаев горение сопровождается возникновением интенсивного светового излучения – пламенем.

Различают ряд видов возникновения горения: вспышка, возгорание, воспламенение, самовозгорание, самовоспламенение, взрыв.

Вспышка – это быстрое сгорание горючей смеси без образования повышенного давления газов. Количества тепла, которое образуется при вспышке, недостаточно для продолжения горения.

Возгорание – это возникновение горения под воздействием источника зажигания.

Воспламенение – возгорание, сопровождающееся появлением пламени. При этом вся остальная масса горючего вещества остаётся относительно холодной.

Самовозгорание – явление резкого увеличения скорости экзотермических реакций окисления в веществе, приводящее к возникновению его горения при отсутствии внешнего источника зажигания. В зависимости от внутренних причин процессы самовозгорания делятся на химические, микробиологические и тепловые. Химическое самовозгорание происходит от воздействия на вещества кислорода воздуха, воды или от взаимодействия веществ. Самовозгораются промасленные тряпки, спецодежда, вата и даже металлическая стружка. Причиной самовозгорания промасленных волокнистых материалов является распределение жировых веществ тонким слоем на их поверхности и поглощение кислорода из воздуха. Окисление масла сопровождается выделением тепла. Если образуется тепла больше, чем теплопотери в окружающую среду, то возможно возникновение горения без всякого подвода тепла. Некоторые вещества самовозгораются при взаимодействии с водой. К ним относятся калий, натрий, карбид кальция и карбиды щелочных металлов. Кальций загорается при взаимодействии с горячей водой. Окись кальция (негашеная известь) при взаимодействии с небольшим количеством воды сильно разогревается и может воспламенить соприкасающиеся с ней горючие материалы (например, дерево). Некоторые вещества самовозгораются при смешивании с другими. К ним относятся в первую очередь сильные окислители (хлор, бром, фтор, йод), которые, контактируя с некоторыми органическими веществами, вызывают их самовозгорание. Ацетилен, водород, метан, этилен, скипидар под действием хлора самовозгораются на свету. Азотная кислота, также являясь сильным окислителем, может вызывать самовозгорание древесной стружки, соломы, хлопка. Микробиологическое самовозгорание заключается в том, что при соответствующей влажности и температуре в растительных продуктах, торфе интенсифицируется жизнедеятельность микроорганизмов. При этом повышается температура и может возникнуть процесс горения. Тепловое самовозгорание происходит в результате продолжительного действия незначительного источника тепла. При этом вещества разлагаются и в результате усиления окислительных процессов самонагреваются. Полувысыхающие растительные масла (подсолнечное, хлопковое и др.), касторовая олифа, скипидарные лаки, краски и грунтовки, древесина и ДВП, кровельный картон, нитролинолеум и некоторые другие материалы и вещества могут самовозгораться при температуре окружающей среды 80 - 100 ?С.

Самовоспламенение - это самовозгорание, сопровождающееся появлением пламени. Самовоспламеняться могут твёрдые и жидкие вещества, пары, газы и пыли в смеси с воздухом.

Взрыв (взрывное горение) - это чрезвычайно быстрое горение, которое сопровождается выделением большого количества энергии и образованием сжатых газов, способных производить механические разрушения.

Виды горения характеризуются температурными параметрами, основными из них являются следующие. Температура вспышки – это наименьшая температура горючего вещества, при которой над его поверхностью образуются пары или газы, способные кратковременно вспыхнуть в воздухе от источника зажигания. Однако скорость образования паров или газов ещё недостаточна для продолжения горения. Температура воспламенения – это наименьшая температура горючего вещества, при которой оно выделяет горючие пары или газы с такой скоростью, что после воспламенения их от источника зажигания возникает устойчивое горение. Температура самовоспламенения – это самая низкая температура вещества, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся воспламенением. Температура самовоспламенения у исследованных твёрдых горючих материалов и веществ 30 – 670 °С. Самую низкую температуру самовоспламенения имеет белый фосфор, самую высокую - магний. У большинства пород древесины эта температура равна 330 – 470 ?С.

Конспект по безопасности жизнедеятельности

Акты химического превращения происходят при непосредственном контакте реагирующих компонентов (молекул, атомов, радикалов), но только в тех случаях, когда их энергия превышает определенный энергетический предел, называемый энергией активации Е а. Изобразим графически изменение энергии реагирующих компонентов (горючего и окислителя) и продуктов реакции при горении (рис.1.)

Изобразим графически изменение энергии реагирующих компонентов (горючего и окислителя) и продуктов реакции при горении (рис.1.)

Рис 1. Изменение энергии реагирующих веществ и продуктов реакции при горении

По оси абсцисс изображен путь реакции горения, по оси ординат – энергия.
– средняя начальная энергия реагирующих компонентов,
- средняя энергия продуктов горения.

В реакцию горения будут вступать только активные частицы горючего и окислителя, которые будут обладать энергией, необходимой для вступление во взаимодействие, т.е. способные преодолеть энергетический барьер
. Избыточная энергия активных частиц по сравнению сос средней энергией
, называется энергией активации. Поскольку реакции, протекающие при горении являются экзотермическими
. Разность энергий образовавшихся продуктов горения и исходных веществ (горючего и окислителя) определяет тепловой эффект реакции:

Доля активных молекул возрастает при увеличении температуры горючей смеси.

На рис.2. изображено распределение энергий между молекулами при температуре Если по оси энергий отметить значение, равное энергии активации, то получим долю активных молекул в смеси при заданной температуре. Если под действием источника тепла температура смеси возросла до значения, то возрастет и доля активных молекул, а следовательно, и скорость реакции горения.

Однако существуют химические реакции, которые не нуждаются для своего развития в заметном предварительном подогреве. Это цепные реакции.

Основа теории цепных реакций – предположение о том, что исходные вещества превращаются в конечный продукт не сразу, а с образованием активных промежуточных продуктов

Продукт первичной химической реакции обладает большим запасом энергии, которая может рассеиваться в окружающем пространстве при соударении молекул продуктов реакции или за счет излучения, а может передаваться молекулам реагирующих компонентов, переводя их в активное состояние. Эти активные молекулы (атомы, радикалы) реагирующих веществ порождают цепь реакций, где энергия передается от одной молекулы к другой. Поэтому такие реакции называются цепными.

Химически активные молекулы, атомы, радикалы, образующиеся на элементарных стадиях цепной реакции – звеньях цепи- называются активными центрами. Большую часть активных центров составляют атомы и радикалы, которые наиболее реакционно способны. Но вследствие этого они и неустойчивы, т.к. могут вступать в реакции рекомбинации с образованием малоактивных продуктов.

Длина цепи, образуемая одним начальным активным центром, может достигать несколько сотен тысяч звеньев. Кинетические закономерности цепных реакций существенно зависят от того, сколько активных центров образуется в одном звене цепи. Если при участии исходного активного центра в результате образуется только один активный центр, то такая цепная реакция называется неразветвленной, если же в одном звене цепи образуются два или более активных центров, то такая цепная реакция называется разветвленной. Скорость разветвленных цепных реакций возрастает лавинообразно, в чем и состоит причина самоускорения химических реакций окисления при горении, так как для большинства из них характерен механизм разветвленных цепных реакций.

Практически любая реакция горения может иметь одновременно признаки и теплового и цепного механизма протекания реакции. Зарождение первых активных центров может иметь тепловой характер, а реагирование активных частиц по цепному механизму приводит к выделению тепла, разогреву горючей смеси и тепловому зарождению новых активных центров.

Любая цепная реакция складывается из элементарных стадий зарождения, продолжения и обрыва цепи.

Зарождение цепи является эндотермической реакцией. Образование свободных радикалов (т.е. атомов или групп атомов, имеющих свободные валентности, например,
) из молекул исходных веществ возможно в результате мономолекулярного или бимолекулярного взаимодействия, а также в результате каких-либо посторонних воздействий на горючую смесь –инициирования.

Инициирование может осуществляться путем добавки специальных вещест – инициаторов , легко образующих свободные радикалы (например, пероксидов, химически активных газов
), под действием ионизирующих излучений, под действием света – фотохимическое инициирование. Например, взаимодействие водорода с хлором

при обычных условиях протекает крайне медленно, а при сильном освещении (солнечным светом, горящим магнием) протекает со взрывом.

К реакциям продолжения цепи относятся элементарные стадии цепной реакции, идущие с сохранением свободной валентности и приводящие к расходованию исходных веществ и образованию продуктов реакции.

зарождение цепи:

разветвление цепи:

обрыв цепи:

гомогенный

гетерогенный

При развитии цепи, когда концентрация активных центров станет достаточно большой возможно образование такого звена, в котором активный центр прореагирует без генерации нового активного центра. Такое явление называется обрывом цепи.

Обрыв цепи может быть гомогенным и гетерогенным.

Гомогенный обрыв цепей возможен либо при взаимодействии радикалов или атомов между собой с образованием устойчивых продуктов, либо при реакции активного центра с посторонней для основного процесса молекулой без генерации новых активных центров.

Гетерогенный обрыв цепи происходит на стенках сосуда, где протекает реакция горения или поверхности твердых микрочастиц, присутствующих в газовой фазе, иногда специально вводимых (например, как при тушении порошками). Механизм гетерогенного обрыва цепей связан с адсорбцией активных центров на поверхности твердых частиц или материалов. Скорость гетерогенного обрыва цепей сильно зависит от соотношения площади поверхности стенок к объему сосуда, где происходит горение. Таким образом, уменьшение диаметра сосуда заметно снижает скорость реакции горения, вплоть до его полного прекращения. На этом основано создание огнепреградителей.

Примером разветвленной цепной реакции может служить реакция горения водорода в кислороде.

зарождение цепи:

разветвление цепи:

обрыв цепи:

гомогенный

Всем нам практически ежедневно приходится сталкиваться с тем или иным проявлением процессом горения. В нашей статье мы хотим более подробно рассказать какие особенности включает в себя данный процесс с научной точки зрения.

Является основной составляющим процессом на пожаре. Пожар начинается с возникновения горения, его интенсивность развития как правило путь пройденный огнем, то есть скорость горения, а тушение заканчивается прекращением горения.

Под горением обычно понимают экзотермическую реакцию между горючим и окислителем, сопровождающуюся, по крайней мере, одним из трех следующих факторов: пламенем, свечением, дымообразованием. Из-за сложности процес­са горения указанное определение не является исчерпывающим. В нем не учтены такие важнейшие особенности горения, как быстрое протекание лежащей в его основе экзотермической реакции, ее самоподдерживающийся характер и способность к самораспространению процесса по горючей смеси.

Различие между медленной экзотермической окислительно-вос­становительной реакцией (коррозия железа, гниение) и горением заключается в том, что последняя протекает настолько быстро, что теплота производится быстрее, чем рассеивается. Это приводит к по­вышению температуры в зоне реакции на сотни и даже тысячи гра­дусов, к видимому свечению и образованию пламени. По сути так образуется пламенное горение.Если происходит выделение тепла но пламя при это отсутствует, то этот процесс называется тлением.И в том и в другом процессе происходит – аэрозоля полного или неполного сгорания ве­ществ. Стоит отметить, что при горении некоторых веществ пламени не видно, а также отсутствует и выделение дыма, к таким веществам относится водород. Слишком быстрые реакции (взрывчатое пре­вращение) также не входят в понятие горения.

Необходимым условием для возникновения горения является на­личие горючего вещества, окислителя (при пожаре его роль выпол­няет кислород воздуха) и источника зажигания. Для непосредственно­го возгорания необходимо наличие критических условий по составу горючей смеси, геометрии и температуре горючего материала, давле­нию и др. После возникновения горения в качестве источника зажи­гания выступает уже само пламя или зона реакции.

Например, метан способен окисляться кислородом с выделением тепла до метилового спирта и муравьиной кислоты при 500-700 К. Однако, чтобы реакция продолжилась, необходимо пополнение теп­лоты за счет внешнего подогрева. Горением это не является. При на­гревании реакционной смеси до температуры выше 1000 К скорость окисления метана возрастает настолько, что выделяющегося тепла становится достаточно для дальнейшего продолжения реакции, необ­ходимость в подводе теплоты извне исчезает, начинается горение. Та­ким образом, реакция горения, возникнув, способна сама себя поддер­живать. Это главная отличительная особенность процесса горения. Другая, связанная с ней особенность - способность пламени, являю­щегося зоной химической реакции, самопроизвольно распростра­няться по горючей среде или горючему материалу со скоростью, оп­ределяемой природой и составом реакционной смеси, а также услови­ями процесса. Это основной механизм развития пожара.

Типичная модель горения построена на реакции окисления органических веществ или углерода кислородом воздуха. Множество физических и химических процессов сопровождают горение. Физика это перенос тепла в систему. Окислительные и восстановительные реакции это составляющая природы горения со стороны химии. Отсюда из понятия горение вытекают самые разные химические превращения, включая разложение исходных соединений, диссоциации и ионизации продуктов.

Совокупность горючего вещества или материала с окислителем представляет собой горючую среду. В результате разложения горю­чих веществ под воздействием источника зажигания происходит об­разование газопаровоздушной реакционной смеси. Горючие смеси, которые по составу (соотношению компонентов горючего и окисли­теля) отвечают уравнению химической реакции, называются смесями стехиометрического состава. Они наиболее опасны в пожарном от­ношении: легче воспламеняются, интенсивнее горят, обеспечивая полное сгорание вещества, в результате чего выделяют максималь­ное количество теплоты.

Рис. 1. Формы диффузионных пламен

а – горение реактивной струи, б – горение разлитой жидкости, в – горение лесной подстилки

По соотношению количества горючего материала и объема окислителя различают бедные и богатые смеси: бедные содержат в изобилии окислитель, богатые - горючий материал. Минимальное количество окислителя, необходимое для полного сгорания единицы массы (объема) того или иного горю­чего вещества, определяется по уравнению химической реакции. При горении с участием кислорода требуемый (удельный) расход воздуха для большинства горючих веществ находится в пределах 4-15 м 3 /кг. Горение веществ и материалов возможно только при обусловленном содержании в воздухе их паров или газообразных продуктов, а также при концентрации кислорода не ниже заданного предела.

Так, для картона и хлопка самопотухание наступает уже при 14 об. % кис­лорода, а полиэфирной ваты - при 16 об. %. В процессе горения, как и в других химических процессах, обяза­тельны два этапа: создание молекулярного контакта между реаген­тами и само взаимодействие молекул горючего с окислителем с об­разованием продуктов реакции. Если скорость превращения исход­ных реагентов определяется диффузионными процессами, т.е. ско­ростью переноса (пары горючих газов и кислорода переносятся в зону реакции за счет градиента концентраций в соответствии с зако­нами диффузии Фика), то такой режим горения называется диффу­зионным. На рис. 1 приведены различные формы диффузионных пламен. При диффузионном режиме зона горения размыта, и в ней образуется значительное количество продуктов неполного сгора­ния. Если же скорость горения зависит только от скорости химиче­ской реакции, которая значительно выше скорости диффузии, то режим горения называется кинетическим. Ему свойственны более высокие скорости и полнота сгорания и как следствие высокие ско­рости тепловыделения и температура пламени. Этот режим имеет место в предварительно перемешанных смесях горючего и окисли­теля. Отсюда, если реагенты в зоне химической реакции находятся в одинаковой (обычно газовой) фазе, то такое горение называют го­могенным, при нахождении горючего и окислителя в зоне реакции в разных фазах - гетерогенным. Гомогенным является горение не только газов, но и , а также большинства твердых . Объясняется это тем, что в зоне реакции горят не сами материалы, а их пары и газообразные продукты разложе­ния. Наличие пламени является отличительным признаком гомоген­ного горения.

Примерами гетерогенного горения служат горение углерода, уг­листых остатков древесины, нелетучих металлов, которые даже при высоких температурах остаются в твердом состоянии. Химическая реакция горения в этом случае будет происходить на поверхности раздела фаз (твердой и газообразной). Отметим, что конечными про­дуктами горения могут быть не только оксиды, но и фториды, хлори­ды, нитриды, сульфиды, карбиды и др.

Характеристики процесса горения разнообразны. Их можно подразделить на следующие группы: форма, размер и структура пламе­ни; температура пламени, его излучательная способность; тепловы­деление и теплота сгорания; скорость горения и концентрационные пределы устойчивого горения и др.

Всем известно, что при горении образуется свечение которое сопровождает продукта горения.

Рассмотрим две системы:

  • газообразная система
  • конденсированная система

В первом случае при возникновении горения весь процесс будет происходить в пламени, во втором же случае часть реакций будет происходить в самом материале, либо его поверхности. Как упоминалось выше существуют газы которые могут гореть без пламени, но если рассматривать твердые вещества существуют также группы металлов которые также способны гореть без проявления пламени.

Часть пламени с максимальным значением, где происходят интенсивные превращения, называется фронтом пламени.

Теплообменные процессы и диффузия активных частиц из зоны горения которые являются ключевыми механизмами движения фронта пламени по горючей смеси.

Скорость распространения пламени принято разделять на:

  • дефлаграционное (нормальное), протекаю­щее с дозвуковыми скоростями (0,05-50 м/с)
  • детонационное, ког­да скорости достигают 500-3000 м/с.

Рис. 2. Ламинарное диффузионное пламя

В зависимости от характера скорости движения газового потока, создающего пламя, различают ламинар­ные и турбулентные пламена. В ламинарном пламени движение газов происходит в разных слоях, все процессы тепло-, массоообмена происходят путем мо­лекулярной диффузии и конвекции. В турбулентных пламенах про­цессы тепло-, массообмена осуществляются в основном за счет мак­роскопического вихревого движения. Пламя свечи - пример лами­нарного диффузионного пламени (рис. 2). Любое пламя высотой более 30 см будет уже обладать случайной газовой механической не­устойчивостью, которая проявляется видимыми завихрениями дыма и пламени.

Рис. 3. Переход ламинарного потока в турбулентный

Очень наглядным примером перехода ламинарного потока в тур­булентный является струйка сигаретного дыма (рис. 3), которая, поднявшись на высоту около 30 см, приобретает турбулентность.

При пожарах пламена имеют диффузионный турбулентный ха­рактер. Присутствие турбулентности в пламени усиливает перенос тепла, а смешивание влияет на химические процессы. В турбулент­ном пламени выше также скорости горения. Это явление делает затруднительным перенос поведения мелкомасштабных пламен на крупномасштабные, имеющих большую глубину и высоту.

Экспериментально доказано, что температура горения веществ в воздухе гораздо ниже температуры горения в атмосферной кислородной среде

В воздухе температура будет колебаться от 650 до 3100 °С, а в кислородной показатели температуры возрастут на 500-800 °С.

Тема : Типы химических реакций. Реакции горения.

Цели: Способствовать развитию у школьников интереса к химии и ОБЖ, раскрыть межпредметные связи, повторить типы химических реакций, совершенствовать учебные умения школьников при составлении химических уравнений, приобрести навыки работы с огнетушителем, познакомиться с мерами профилактики пожаров, способствовать развитию умений сравнивать и обобщать, быстро и четко формулировать и высказывать свои мысли, применять свои знания на практике.

Оборудование и реактивы : презентация к уроку, фарфоровая чашка, спирт, картонка, спички, воздушно-пенный и углекислотный огнетушители.

Ход урока:

Учитель химии: Горение это первая химическая реакция, с которой познакомился человек. Огонь…Можно ли представить наше существование без огня? Он вошел в нашу жизнь, стал неотделим от нее. Но далеко не всегда , вглядываясь в танцующий язычок пламени, мы задумываемся над тем, какую великую роль сыграл огонь в судьбе человеческой. Без огня человек не сварит ни пищу, ни сталь, без него невозможно движение транспорта. Без огня человек, наверное, не смог бы стать человеком… «Только научившись добывать огонь с помощью трения, люди впервые заставили служить себе некоторую неорганическую силу природы», - писал Ф.Энгельс.

Сущность процесса горения долгое время оставалась загадкой природы. Только лишь два века назад наконец удалось проникнуть в тайны горения. И сделала это всемогущая химия. До этого ошибочно думали, что всякое горючее вещество содержит в себе особую «огненную мате­рию», некую мифическую субстанцию – флогистрон, которая при горении выделяется из вещества и поглощается воздухом. Таким образом, горение считали реакцией разложения.

На самом же деле огонь – это признак такого процесса, в ходе которого горящие вещества взаимодействуют с кислородом с выделением большого количества теплоты и света. Этот химиче­ский процесс и называют горением.

Задание: Напишите уравнения взаимодействия и кислородом: лития, серы, углерода, фос­фора.

Один ученик выполняет задания на доске. Остальные – в тетрадях.

Учитель:

Ученик: Это реакции соединения. По тепловому эффекту экзотермические, идут с выделением теплоты. Продукты реакций горения – оксиды. Оксиды – это бинарные соединения, в состав которых входит кислород со степенью окисления -2.

Учитель: Какие условия должны соблюдаться для протекания реакции горения?

Ученик: Чтобы вещество загорелось должны быть соблюдены два условия: 1) достижение темпера­туры воспламенения вещества и 2) доступ кислорода.

Учитель проводит опыт:

Опыт1. Горение спирта. В фарфоровую чашку налить немного спирта, поджечь его, а затем плотно прикрыть чашку листом картона.

Учитель: : Почему пламя гаснет, а бумага не загорается?

Ученик: Пламя гаснет, так как нет доступа кисло­рода, бумага не загорается т.к. не была достигнута температура воспламенения.

Учитель: Каковы условия прекращения процесса горения?

К какому типу относятся эти реакции. Какие это реакции по тепловому эффекту? К какому классу веществ относятся продукты этих реакций? Какие вещества называются оксидами?

Ученик: Для прекращения процесса горе­ния следует либо охладить вещество ниже температуры воспламенения, либо прекратить к нему доступ кислорода.

Задание: Допишите уравнения химических реакций: презентация слайд №

+ О2 → CuO

Mg + … → MgO

… + O2 → CO2

CuS + … → SO2 + …

Один учащийся записывает на доске, остальные в тетрадях, затем проводят самопроверку.

Учитель ОБЖ: Знание условий горения веществ необходимо человеку для тушения пожара. Причиной по­жара являются многие факторы, и прежде всего – это химическая неграмотности многих людей, недопустимая небрежность в выполнении учебных, бытовых и производственных операций, на­рушение условий обращения с веществами и источниками энергии. Что же такое пожар?

Пожар – это неконтролируемый, быстропротекающий при высокой температуре химиче­ский процесс, сопровождающийся выделением большого количества теплоты, уничтожающий ма­териальные ценности и создающий опасность для жизни людей. Как правило, пожар возникает из-за несоблюдения мер предосторожности при работе с огнем и нарушения правил противопожар­ной безопасности.

При тушении пожара водой создаются два условия: вода охлаждает горячие предметы, а ее пары затрудняют к ним доступ кислорода. Кроме того, для прекращения доступа воздуха часто используют песок, оксид углерода (IV ), который получают в огнетушителях, взрывчатые вещества (при взрыве образуется относительный вакуум и прекращается горение). Этот прием используется при тушении пожаров в случаях горения нефти и ее продуктов.

Пожар можно погасить:

    Охлаждением горящего предмета;

    Прекращением доступа воздуха к очагу горения;

    Удалением горючих веществ и предметов с возможных путей распространения огня

Ученик: Для тушения пожара применяют воду, пену, углекислый газ, снег, землю, песок и другие сыпучие негорючие материалы. Вода является эффективным огнегасительным средством, доступным, дешевым и безвредным. Она оказывает сильное охлаждающее действие, резко пони­жая температуру горящего тела. Однако, вода неэффективна при тушении горючих органических жидкостей, таких как, бензин, керосин, бензол, нефть, которые легче воды и не смешиваются с ней. Нельзя использовать воду для гашения загоревшегося газа. Непригодна вода и для тушения пожара при наличии электроустановок, находящихся под напряжением. Использовать воду для тушения пожаров в этом случае опасно для жизни, так как вода электропроводна. Горящие жидко­сти можно засыпать песком. Он устраняет доступ кислорода и ликвидирует пламя. Более эффек­тивным средством пожаротушения является сода (карбонат и бикарбонат натрия). Она разлагается при повышенной температуре, при этом поглощается тепло и выделяется углекислый газ, обвола­кивающий горящий предмет.

Загорание жидкого топлива, смазочных масел, а также газов на воздухе из трубопроводов и баллонов можно остановить, набросив накидку из огнезащитной ткани или тяжелое покрывало.

Задание: Какие средства тушения пожара нужно использовать в следующих случаях: а) заго­релась одежда на человеке; б) воспламенился бензин; в) возник пожар на складе лесоматериа­лов; г) загорелась нефть на поверхности воды?

Учитель химии: Особое внимание необходимо обратить на приемы тушения пожара, который мо­жет возникнуть в кабинете химии. Горючие спирт и ацетон разрешается тушить водой, так как они в ней хорошо растворяются.

Спиртовку после употребления убирают лишь после того, как погасят пламя и она остынет.

При воспламенении одежды следует как можно быстрее снять ее, плотно свернуть, пога­сить пламя песком или водой. Помните, что при загорании одежды нельзя бежать или совершать резкие движения. При беге и резких движениях доступ воздуха увеличивается, а это приводит к усилению процесса горения. Если снять воспламенившуюся одежде невозможно, необходимо плотно завернуть человека в накидку, облить водой или воспользоваться огнетушителем.

Огнетушители могут быть воздушно-пенные и углекислотные.

Учитель ОБЖ: Рассмотрим устройство и принцип работы содового огнетушителя

Для тушения пожаров применяют специальный аппарат – огнетушитель. Содовый огнетуши­тель состоит из резервуара, заполненного раствором соды, капсулы, в которую налита соляная кислота, и раструба, с помощью которого сильную струю углекислого газа направляют в очаг пожара. Чтобы привести огнетушитель в действие, необходимо разбить капсулу, слегка встряхнуть содержимое резервуара и направить струю углекислого газа в зону горения.

Учитель ОБЖ : Как привести в действие огнетушитель?

Ученик: Необходимо пусковую рукоятку поднять вверх и отвести ее вперед, повернув на 180 0 от началь­ного положения, а затем повернуть огнетушитель.

В приведенных в действие огнетушителях происходит химическая реакция, в результате чего из отверстия выбрасывается струя пены длиной 6-8 м. Эту струю надо направить на очаг по­жара. Продолжительность действие огнетушителей около 1 мин. При этом выбрасывается почти 40 л пены.

Демонстрация огнетушителей и освоение работы с ними

Рефлексия:

Ответьте на вопросы:

    Какими явлениями сопровождается горение? (Горение сопровождается и физи­ческими и химическими явлениями: выделение и передача теплоты, химическая реак­ция окисления, выделение продуктов сгорания и распределение их в окружающей среде).

    Как изменяется агрегатное состояние веществ в ходе горения? (Твердые вещества в ходе горе­ния превращаются в жидкие и газообразные).

    Что называют дымом? (Дым – это смесь газообразных и твердых продуктов сгорания)

    Какие компоненты дыма обладают токсичностью, т.е. вредными для организма человека свой­ствами? (Оксид углерода (II ), оксид фосфора (V ), формальдегид, оксиды азота, серо­водород, хлороводород, фосген, пары синильной кислоты)

    Почему для человека опасна большая плотность дыма? (Большая концентрация продуктов го­рения в составе дыма понижает процентное содержание кислорода. При содержании кислорода в воздухе 14-16% наступает кислородное голодание, 9%-ное содержание кисло­рода опасно для жизни).

    Почему вода гасит пламя? (Вода, обладая высокой теплоемкостью, может интенсивно по­глощать теплоту, выделяющуюся при горении. Способность воды гасить пламя усилива­ется еще тем, что, превращаясь при нагревании в пар, вода разбавляет реагирующие при горении вещества).

    Какие вы знаете вещества или материалы, создающие условия для прекращения горения? (Водные растворы солей, пена, песок, флюсы, тальк, мел, водяной пар, углекислый газ, азот и др.)

Домашнее задание: Вычислите массу железа и объем кислорода (н.у.), который необходимо взять, чтобы получить 0,3 моль оксида железа (III ).

Подведение итогов урока, учитель благодарит детей за активное участие, выставляет и комментирует оценки учащихся.

Баланс – (от фр. balance – буквально “весы”) – количественное выражение сторон какого-либо процесса, которые должны уравновешивать друг друга. Другими словами, баланс – это равновесие, уравновешивание. Процессы горения на пожаре подчиняются фундаментальным законам природы, в частности, законам сохранения массы и энергии.

Для решения многих практических задач, а также для выполнения пожарно-технических расчетов необходимо знать количество воздуха, необходимого для горения, а также объем и состав продуктов горения. Эти данные необходимы для расчета температуры горения веществ, давления при взрыве, избыточного давления взрыва, флегматизирующей концентрации флегматизатора, площади легкосбрасываемых конструкций.

Методика расчета материального баланса процессов горения определяется составом и агрегатным состоянием вещества. Свои особенности имеет расчет для индивидуальных химических соединений, для смеси газов и для веществ сложного элементного состава.

Индивидуальные химические соединения – это вещества, состав которых можно выразить химической формулой. Расчет процесса горения в этом случае производится по уравнению реакции горения.

Составляя уравнение реакции горения, следует помнить, что в пожарно-технических расчетах принято все величины относить к 1 молю горючего вещества. Это, в частности, означает, что в уравнении реакции горения перед горючим веществом коэффициент всегда равен 1 .

Состав продуктов горения зависит от состава исходного вещества.

Элементы, входящие в состав горючего вещества

Продукты горения

Углерод С

Углекислый газ СО 2

Водород Н

Вода Н 2 О

Сера S

Оксид серы (IV) SO 2

Азот N

Молекулярный азот N 2

Фосфор Р

Оксид фосфора (V) Р 2 О 5

Галогены F, Cl, Br, I

Галогеноводороды HCl , HF , HBr , HI

Горение пропана в кислороде

    Записываем реакцию горения:

С 3 Н 8 + О 2 = СО 2 + Н 2 О

2. В молекуле пропана 3 атома углерода, из них образуется 3 молекулы углекислого газа.

С 3 Н 8 + О 2 = 3СО 2 + Н 2 О

3. Атомов водорода в молекуле пропана 8, из них образуется 4 молекулы воды:

С 3 Н 8 + О 2 = 3СО 2 + 4Н 2 О

4. Подсчитаем число атомов кислорода в правой части уравнения

5. В левой части уравнения так же должно быть 10 атомов кислорода. Молекула кислорода состоит из двух атомов, следовательно, перед кислородом нужно поставить коэффициент 5.

С 3 Н 8 + 5О 2 = 3СО 2 + 4Н 2 О

Коэффициенты, стоящие в уравнении реакции, называются стехиометрическими коэффициентами и показывают, сколько молей (кмолей) веществ участвовало в реакции или образовалось в результате реакции.

Стехиометрический коэффициент, показывающий число молей кислорода, необходимое для полного сгорания вещества, обозначается буквой .

В первой реакции = 5.

Горение глицерина в кислороде

1. Записываем уравнение реакции горения.

С 3 Н 8 О 3 + О 2 = СО 2 + Н 2 О

2. Уравниваем углерод и водород:

С 3 Н 8 О 3 + О 2 = 3СО 2 + 4Н 2 О.

3. В правой части уравнения 10 атомов кислорода.

В составе горючего вещества есть 3 атома кислорода, следовательно, из кислорода в продукты горения перешли 10 – 3 = 7 атомов кислорода.

Таким образом, перед кислородом необходимо поставить коэффициент 7: 2 = 3,5

С 3 Н 8 О 3 +3,5О 2 = 3СО 2 + 4Н 2 О.

В этой реакции = 3,5.

Горение аммиака в кислороде

Аммиак состоит из водорода и азота, следовательно, в продуктах горения будут вода и молекулярный азот.

NH 3 + 0,75 O 2 = 1,5 H 2 O + 0,5 N 2 = 0,75.

Обратите внимание, что перед горючим веществом коэффициент 1, а все остальные коэффициенты в уравнении могут быть дробными числами.

Горение сероуглерода в кислороде

Продуктами горения сероуглерода CS 2 будут углекислый газ и оксид серы (IV).

CS 2 + 3 O 2 = CO 2 + 2 SO 2 = 3.

Чаще всего в условиях пожара горение протекает не в среде чистого кислорода, а в воздухе. Воздух состоит из азота (78 %), кислорода (21 %), окислов азота, углекислого газа, инертных и других газов (1 %). Для проведения расчетов принимают, что в воздухе содержится 79 % азота и 21 % кислорода. Таким образом, на один объем кислорода приходится 3,76 объемов азота (79:21 = 3,76).

В соответствии с законом Авогадро и соотношение молей этих газов будет 1: 3,76. Таким образом, можно записать, что молекулярный состав воздуха (О 2 + 3,76 N 2 ).

Составление реакций горения веществ в воздухе аналогично составлению реакций горения в кислороде. Особенность состоит только в том, что азот воздуха при температуре горения ниже 2000 0 С в реакцию горения не вступает и выделяется из зоны горения вместе с продуктами горения.

Горение водорода в воздухе

Н 2 + 0,5(О 2 + 3,76 N 2 ) = Н 2 О + 0,5 3,76 N 2 = 0,5.

Обратите внимание, что стехиометрический коэффициент перед кислородом 0,5 необходимо поставить и в правой части уравнения перед азотом.

Горение пропанола в воздухе

С 3 Н 7 ОН + 4,5(О 2 + 3,76 N 2 ) =3СО 2 + 4Н 2 О +4,5 3,76 N 2

В составе горючего есть кислород, поэтому расчет коэффициента проводят следующим образом: 10 – 1 = 9; 9: 2 = 4,5.

Горение анилина в воздухе

С 6 Н 5 N Н 2 + 7,75(О 2 + 3,76 N 2 ) =6СО 2 + 3,5Н 2 О + 0,5 N 2 +7,75 3,76 N 2

В этом уравнении азот в правой части уравнения встречается дважды: азот воздуха и азот из горючего вещества.

Горение угарного газа в воздухе

СО + 0,5(О 2 + 3,76 N 2 ) =СО 2 + 0,5 3,76 N 2

Горение хлорметана в воздухе

СН 3 С l + 1,5(О 2 + 3,76 N 2 ) =СО 2 + НС l + Н 2 О +1,5 3,76 N 2

Горение диэтилтиоэфира в воздухе

2 Н 5 ) 2 S + 7,5(О 2 + 3,76 N 2 ) =4СО 2 + 5Н 2 О + SO 2 + 7,5 3,76 N 2

Горение диметилфосфата в воздухе

(СН 3 ) 2 НР О 4 + 3(О 2 + 3,76 N 2 ) =2СО 2 + 3,5Н 2 О + 0,5Р 2 О 5 + 3 3,76 N 2

В процессах горения исходными веществами являются горючее вещество и окислитель, а конечными - продукты горения.

1. Запишем уравнение реакции горения бензойной кислоты.

С 6 Н 5 СООН + 7,5(О 2 + 3,76 N 2 ) =7СО 2 + 3Н 2 О +7,5 3,76 N 2

2. Исходные вещества: 1 моль бензойной кислоты;

7,5 молей кислорода;

7,53,76 молей азота.

Газов воздуха всего 7,54,76 молей.

Всего (1 + 7,54,76) молей исходных веществ.

3. Продукты горения: 7 молей углекислого газа;

3 моля воды;

7,53,76 моля азота.

Всего (7 + 3 + 7,53,76) молей продуктов горения.

Аналогичные соотношения и в том случае, когда сгорает 1 киломоль бензойной кислоты.

Смеси сложных химических соединений или вещества сложного элементного состава нельзя выразить химической формулой, их состав выражается чаще всего в процентном содержании каждого элемента. К таким веществам можно отнести, например, нефть и нефтепродукты, древесину и многие другие органические вещества.