Гипоталамус отдел мозга. Гипоталамус: строение и роль в организме, признаки дисфункции органа. Передача информации в гипоталамусе

Роль гипоталамуса

Гипоталамус, или подбугровая область промежуточного мозга, является высшим центром интеграции и регуляции вегетативных функций организма. Он принимает участие в корреляции различных соматических функций, регуляции работы желудочно-кишечного тракта, сна и бодрствования, водно-солевого, жирового и углеводного обмена, поддержания температуры тела и гомеостаза. Одна из наиболее важных функций гипоталамуса связана с регуляцией деятельности эндокринной системы организма. Разнообразие функции гипоталамуса обусловлено сложностью его морфологического строения и обилием связей с различными отделами нервной системы, органами чувств, внутренними органами и внутренней средой организма. Строение гипоталамуса . Гипоталамус относится к филогенетически древним образованиям мозга и хорошо развит уже у низших позвоночных. Он образует дно третьего желудочка и лежит между перекрестом зрительных нервов и задним краем маммилярных тел. В состав гипоталамуса входит серый бугор, срединное возвышение, воронка и задняя или нервная доля гипофиза. Спереди он граничит с преоптической областью, которую отдельные авторы также включают в систему подбугорья. Гипоталамус развивается в ранний период эмбриогенеза из переднего мозгового пузыря. В процессе развития головного мозга, после обособления больших полушарий, передний мозговой пузырь дает начало межуточному мозгу, а его полость превращается в третий желудочек. В дне этого желудочка путем выпячивания образуется мозговая воронка, дистальный конец которой превращается в заднюю долю гипофиза. Основание воронки значительно утолщается и дает начало серому бугру. В ка-удальной части образуются парные маммилярные тела. Боковые стенки третьего желудочка образуют зрительные бугры, связанные с большими полушариями головного мозга. Центральное серое вещество гипоталамуса без резкой границы переходит в центральное серое вещество среднего мозга. Нервные клетки в гипоталамусе собраны в более или менее обособленные группы или ядра, которые занимают в нем определенное место и состоят из различных по своему строению невронов. Разнообразие нейрального состава ядер гипоталамуса обусловлено их функциональной дифференциройкой. В процессе эволюции ряда животных число и структура гипоталамических ядер подверглись значительным изменениям. У кролика, например, насчитывают 30, а у собаки 15 пар ядер. В литературе пока отсутствует единая номенклатура гипоталамических ядер. Пинес и Майман выделяют в гипоталамусе передний, средний и задний отделы. В каждом отделе они различают следующие ядра. Передний отдел : 1) супрахиазматическое; 2) супраоптическое (передние, латеральные и медиальные отделы); 3) пара-вентрикулярное. Средний отдел : 1) супраоптическое (задние отделы); 2) ту-беральные (верхние, средние и нижние); 3) паллидо-инфунди-булярное; 4) маммило-инфундибулярное. Задний отдел : 1) маммило-йнфундибулярные; 2) ядра маммилярных тел (внутреннее, наружное, вставочное); 3) супра-маммилярные. Филогенетически наиболее древними образованиями гипоталамуса являются паравентрикулярное и супраоптическое ядра. Они гомологичны преоптическим ядрам низших позвоночных. У млекопитающих суираоптическое ядро лежит в переднем гипоталамусе над хиазмой (рис. 1) и проходит в дорсолатеральном направлении от зрительного перекреста до середины серого, бугра.

Рис. 72. Сагиттальный срез мозга млекопитающего (по Кларку): 1 -- гипофиз; 2 -- супрахиазматическое ядро; 3 -- супраоптическое ядро; 4 -- паравентрикулярное ядро; 5 -- ядра мамми-лярной области; 6 -- ядра преоптической области; 7 -- свод; 8-- Stria terminilis -- хиазма; 10--передняя комиссура.

У многих животных оно подразделяется на отдельные группы нейронов, соединенных между собой клеточными мостиками. Не менее характерной группировкой клеток гипоталамуса является паравентрикулярное ядро, расположенное под передней коммисурой в стенке третьего желудочка. Паравентрикулярное ядро развивается из того же самого клеточного материала, что и супраоптическое ядро. В строении клеток этих ядер обнаруживается значительное сходство. Они имеют округлую, грушевидную или удлиненную форму и от нейронов других ядер гипоталамуса и центрального серого вещества отличаются значительно более крупными размерами.

Рис. 2. Схема васкулярных связей гипоталамуса и гипофиза (по Алешину): / -- супраоптическое ядро; 2 -- паравентрикулярное ядро; 3 -- туберальные ядра; 4 -- маммилярные ядра; 5 -- первичная капиллярная сеть в срединном возвышении; 6 -- сосудистые клубочки первичной капиллярной сети; 7 -- вены портальной системы; 8 -- передняя доля гипофиза; 9 -- средняя доля гипофиза; 10 -- задняя доля гипофиза; // -- вторичная капиллярная система в передней доле гипофиза; 12 -- капилляры задней доли гипофиза; 13 -- гипоталамо-гипо-физарный тракт.

Васкуляризация гипоталамуса . Гипоталамическая область характеризуется обильным кровоснабжением. Наибольшей васкуляризацией отличается паравентрикулярное и супраоптическое ядра, в которых каждая клетка связана с 2--3 капиллярами. Здесь на площадь 1 мм 2 приходится до 2650 капилляров. Электронно-микроскопические исследования показали, что в местах контакта между телом нейрона и сильно утонченной базальной мембраной эндотелия капилляров часто совсем нет глиальной прослойки. Вследствие этого сосуды обладают очень хорошей проницаемостью даже для высокомолекулярных белковых соединений. Из крови в клетки супраоптических и паравентрикулярных ядер легко поступают питательные вещества, гормоны и другие химические соединения. Гипоталамические образования поэтому обладают высокой чувствительностью к отклонениям в составе гуморальной среды организма и отвечают на них изменением физиологической активности.

Важнейшее значение в механизме гипоталамической регуляции гормональной функции гипофиза имеет общность их васкуляризации. Между гипоталамусом и передней долей гипофиза существует специальная система кровообращения, получившая название воротной, или портальной, системы сосудов гипофиза. Она состоит из артериол, которые берут начало от артерий виллизиевого круга. Артериолы проникают в срединное возвышение серого бугра и здесь распадаются на большое количество капилляров. В срединном возвышении клубочки и петли этих капилляров вступают в тесный контакт с окончаниями нервных волокон клеток нейросекреторных ядер гипоталамуса и образуют с ними так называемые вазоневральные синапсы (рис. 2). Первичные капилляры в сером бугре собираются в портальные вены, которые по гипофизарной ножке идут в переднюю долю гипофиза, и в его паренхиме распадаются в густую сеть синуооидных капилляров (вторичная капиллярная сеть). В заднюю долю гипофиза сосуды портальной системы не проникают, и кровь в нее поступает из других источников. Движение крови по портальной системе от гипоталамуса к гипофизу происходит в результате сокращения стенок сосудов. В переднюю долю гипофиза кровь поступает еще по средней и задней гипофизарным артериям, а также по сосудистым анастомозам из нейрогипофиза.

Связи гипоталамуса . Гипоталамическая область имеет обширные связи с различными отделами центральной нервной системы, в том числе с ретикулярной формацией ствола мозга, гипофизом и т. д. Среди проводящих путей гипоталамуса различают эфферентные, афферентные и внутригипоталамические связи.

Эфферентные пути от гипоталамуса идут к таламусу (гипо-таламо-таламический путь), покрышке (маммило-тегментальный путь), от всех ядер гипоталамуса к нижележащим симпатическим образованиям и узлам (диффузные нисходящие связи), от гипоталамуса к гипофизу (гипоталамо-гипофизарный тракт). В гипоталамо-гипофизарных путях выделяют супраоптикогипо-физарный, а также туберо-гипофизарный пути. Первый путь образован большим количеством (до 100000) аксонов клеток су-праоптического и паравентрикулярного ядер, которые по ножке гипофиза поступают в заднюю долю гипофиза. Эти волокна проходят во внешнем слое срединного возвышения и не проникают из задней в переднюю долю гипофиза (см. рис. 2).

В регуляции функций эндокринной системы особое значение имеет тубероинфундибулярный путь, который передает эфферен-тацию из гипоталамуса в переднюю долю гипофиза. Волокна этого пути прослеживаются до срединного возвышения, где их окончания с петлями и клубочками первичных капилляров портальной системы образуют рассмотренные выше вазоневральные синапсы.

Афферентные пути к ядрам гипоталамуса идут от таламуса, лобных долей, гиппокампа, зрительного бугра,- амигдалоидного комплекса, миндалин, экстрапирамидной системы и ретикулярной формации ствола мозга.

Ретикулярной формации приписывается большое значение в регуляции функции гипоталамуса и эндокринной системы. Исследованиями Грина, Русселя и др. установлено, что ядра гипоталамуса находятся в тесной анатомической и.функциональной связи с ретикулярной формацией. Последняя образована сложным комплексом невронов различной величины, которые диф-фузно рассеяны в стволе мозга. Для отростков клеток ретикулярной формации характерно наличие большого количества коллатералей, через посредство которых один аксон может вступать в функциональные связи с множеством нервных клеток (до 20 000). Ретикулярная формация, как впервые было установлено Мэгуном и Мурицци, оказывает общее активирующее действие на различные отделы мозга и состоит из восходящей и- нисходящей систем. Волокна восходящей системы от каудальных частей продолговатого мозга, варолиева моста и среднего мозга проецируются на различные участки коры больших полушарий; нисходящие же волокна связывают ретикулярную формацию с системой спинного мозга." В ретикулярную формацию проецируется огромное количество волокон от ядерных образований ствола мозга, рецепторов внутренних органов, от аппаратов зрения, слуха и проводников чувствительности. Ретикулярная формация отличается высокой чувствительностью к изменениям гуморальной среды организма. На воздействие гормонов и различных химических соединений она быстро отвечает изменением своей физиологической активности.

Гипоталамус получает восходящие волокна преимущественно от ретикулярной формации среднего мозга. Через покрышку среднего мозга и задний отдел гипоталамуса эти волокна достигают серого бугра. На этой морфологической основе осуще-ствляется функциональная связь между ретикулярной формацией, гипоталамусом и эндокринными железами. Ретикулярная формация среднего мозга передает импульсы через гипоталамус к эндокринным железам организма и оказывает активизирующее действие на ядра подбугорья.

Нейросекреторная деятельность гипоталамуса . Нейроны отдельных ядер гипоталамуса проявляют способность к секреторной деятельности (нейрокринии) и вырабатывают особые вещества (нейросекреты), которые играют важную роль в регуляции функции эндокринной системы. Пионерами в изучении гипотала-мической нейросекреции являются Шаррер и Гаупп, которые еще в 1933 г. обнаружили в клетках переднего гипоталамуса гранулы и капельки нейросекрета. Последующими исследованиями было установлено широкое распространение явлений нейросекреции не только у позвоночных, но и беспозвоночных животных.

У рыб нейросекреторная функция характерна для преоптического ядра передней области гипоталамуса. У высших позвоночных и человека эти свойства в наиболее отчетливой форме выражены в клетках паравентрикулярного и супраоптического ядер. Нейросекреция характерна и для нейронов ядер серого бугра, но в них она не получает такого яркого морфологического выражения, как в паравентрикулярном и супраоптическом ядрах. гипоталамус соматический гомеостаз нейросекреторный

Нейросекреторные невроны гипоталамуса одновременно сочетают в себе свойства нервных и железистых клеток. Они относятся к мультиполярным невронам с относительно крупным ядром и содержат нейрофибриллы, хорошо развитую систему эргастоплазмы (субстанцию Ниссля) с рибосомами и общие для всех клеток органоиды.

Нейросекреторные процессы у высших животных наиболее полно изучены в клетках супраоптического и паравентрикулярного ядер. Нейросекрет представлен гранулярными образованиями, обладающими известным постоянством своего строения у всех животных. Гранулы имеют вид гомогенных шариков и пузырьков, окруженных мембраной. В зависимости от специфического отношения к красителям различают гомориположительный и гомориотрицательный нейросекрет. Первый хорошо окрашивается хромовоквасцовым гематоксилином по Гомори в темно-синий цвет; гомориотрицательное или оксифильное нейросекре-торное вещество при окраске по Гомори красится флоксином в розовый цвет.

Химическая природа нейросекрета окончательно не выяснена. Гомориположительное вещество обладает относительно высокой химической устойчивостью и является сложным белково-полиса-харидо-липидным соединением. Гомориотрицательный нейросекрет является относительно простым протеином, богатым аминокислотами с сульфгидрильными и дисульфидными группами. Этот вид нейросекрета наиболее широко распространен у беспозвоночных животных.

Первичный биосинтез нейросекрета в клетках происходит в приядерной зоне цитоплазмы. В перинуклеарной области он появляется в виде мелких пылевидных зернышек, которые затем распространяются по всей клетке (рис. 3). Образование нейросекрета связано с уменьшением размеров ядра и ядрышка, а также заметной редукцией субстанции Ниссля. Электронномикро-скопические исследования показывают, что в синтезе нейросекрета главную роль играет эргастоплазма с ее системой рибосом и аппарат Гольджи (Шаррер и др.). Считают, что образование нейросекрета в клетках ядер гипоталамуса протекает по апокриновому, меракриновому и голокриновому типам (Поленов).

Интенсивность синтеза секрета и выведения его из клеток меняется в зависимости от времени года, условий температурного и светового режимов, физиологического состояния организма, стадии полового цикла и т. д. При дегидратации организма,

Рис. 74. Последовательные стадии образования нейро-секрета в клетках гипоталамуса (по Шарреру): 1 -- тельца Ниссля; 2 -- гранулы секрета; 3 -- аксон; 4 -- ядро; 5 -- базофильная цитоплазма.

например, в клетках паравентрикулярного и супраоптического ядер значительно уменьшается содержание нейросекреторного вещества.

Возрастные изменения гипоталамической нейросекреции изучены еще недостаточно. Образование нейросекрета в супраопти-ческих и паравентрикулярных ядрах гипоталамуса начинается уже в ранний период индивидуального развития животных. У крупного рогатого скота, например, в ядрах подбугорья нейро-секрет обнаруживается у 3-месячных зародышей. У кур первые признаки нейросекреции в супраоптических ядрах обнаруживаются в ранний период инкубации. По данным Денисьевского, образование нейросекрета в клетках паравентрикулярных ядер зародыша уток начинается на 17-й день инкубации. У морских свинок нейросекреторный процесс начинается на 21--28-й день после рождения. У многих животных образование нейросекрета наступает в невронах супраоптического ядра раньше, чем в пара-вентрикулярном. В ранний период развития в гипоталамусе содержится меньше нейросекрета, чем у взрослых животных.

Нейросекрет оказывает физиологическое действие через гуморальную среду организма. В связи с этим значительный интерес представляет вопрос о путях его выведения из нейронов ядер гипоталамуса. Микроскопическими исследованиями установлено, что из невронов супраоптических и паравентрикулярных ядер гранулы гомориположительного нейросекрета по длинным аксонам гипоталамо-гипофизарного тракта токами аксоплазмы смещаются в заднюю долю гипофиза. По мере передвижения от места образования до окончания нервных отростков изменяются химические и тинкториальные свойства нейросекрета. По данным отдельных исследователей, нейросекрет может синтезироваться и в терминалях аксонов, лежащих в задней доле гипофиза (Ди-пен). Задняя доля гипофиза является, таким образом, резервуаром для гипоталамического гомориположительного нейросекрета. Отсюда нейросекрет поступает в кровеносное русло. Часть нейро-секреторного вещества может попадать в кровеносное русло и через ликвор третьего желудочка. Кроме того, нейросекреторные клетки посылают свои аксоны к обонятельным ядрам и эпендиме боковых желудочков переднего мозга. Депонированный в задней доле гипофиза, гомориположительный нейросекрет является носителем физиологически высокоактивных гормонов вазопрессина и окситоцина. По мнению некоторых авторов,_окситоцин образуется в паравентрикулярном, а вазопресин в супраоптическом ядрах. Другие же исследователи считают, что, в зависимости от физиологического состояния организма, клетки одного и того же ядра могут синтезировать оба гормона.

Рис. 75. Портальная система сосудов гипофиза у птиц (по Глису): 1 -- передняя доля гипофиза; 2 -- задняя доля гипофиза; 3 -- срединное возвышение.

Гипоталамический нейросекрет поступает также в переднюю долю гипофиза и контролирует ее гормональную функцию. Однако сюда он поступает из подбугорья не по нервным окончаниям, а с током крови, циркулирующей по сосудам портальной системы. Гуморальный путь тра-нспортировки вырабатываемых клетками гипоталамуса веществ в переднюю долю гипофиза доказывается прямыми экспериментами. У уток, например, портальные вены из гипоталамуса в аденогипофиз проходят обособленно от гипофизарной ножки (рис. 4). Бенуа и Ассенмахер указывают, что перерезка только одной ножки не оказывает существенного влияния на гормональную функцию гипофиза. Перерезка же портальной системы сосудов, при сохранении целостности гипофизной ножки, приводит к угнетению физиологической активности передней доли гипофиза. Показано также, что кровь, взятая из портальных сосудов, стимулирует гипофиз, тогда как кровь из сонной артерии этими свойствами не обладает. Эти эксперименты показывают, что из гипоталамуса в переднюю долю гипофиза действительно поступают вещества, которые активируют его гормональную деятельность. Однако природа этих веществ изучена еще недостаточно.

Рис. 5. Пер. в. с. -- передние воротные сосуды; Зад. в. с. --задние воротные сосуды; МТ -- маммилярпос тело; X -- хиазма; СО -- супраоптическое ядро; ПДГ -- передняя доля гипофиза; ЗДГ -- задняя доля гипофиза

Микроскопическими исследованиями установлено, что во внутреннем слое срединного возвышения амиэлиновые волокна ту-бероинфундибулярного пучка, берущие начало от клеток ядер серого бугра, своими окончаниями вступают в связь с расположенными здесь короткими петлями и клубочками первичных капилляров портальной системы (см. рис. 2).

В этих вазоневральных синапсах отростки нервных клеток гипоталамуса отдают в кровь портальной системы секреторное вещество, которое поступает затем в паренхиму передней доли гипофиза. Этот нейросекрет, выделяемый ядрами серого бугра, однако, не окрашивается по Гомори. Отдельные исследователи отождествляли его с медиаторами нервных клеток (ацетилхоли-ном и норадреналином). В настоящее время эта теория уже почти совсем не имеет сторонников. Исследования показали, что нейро-секрсторное вещество от обычных метаболитов нервных клеток отличается более высокой энзиматической устойчивостью и способностью оказывать физиологическое действие на значительном расстоянии от места своего образования в гипоталамусе. Значительный интерес представляет тот факт, что при электролитическом повреждении отдельных участков срединного возвышения в передней доле гипофиза подавляется образование и выведение в кровь не всех, а только какого-либо одного гормона, активирующего функцию строго определенной периферической эндокринной железы (рис. 5). На этом основании считают, что отдельные нервные волокна от различных клеток гипоталамуса несут в срединное возвышение и отдают в кровь портальной системы не одно, а несколько особых веществ или нейрогуморов (Каррато и др.), которые реализуют различные функции передней доли гипофиза (гонадотропную, тиреотропную и адренокор-тикогропную). Возможно, различные нейрогуморы сосудами портальной системы проецируются на определенные зоны паренхимы передней доли гипофиза.

Как уже отмечалось, значение гомориположительного нейро-секрета в регуляции гормональной функции гипофиза изучено еще недостаточно. Обычными методами окрашивания его не удается выявить в туберо-гипофизарном пути и в крови портальной системы. Вместе с тем вокруг капилляров, в их эндотелии и между секреторными клетками передней доли гипофиза часто накапливается значительное количество гранул, которые проявляют такие же реакции, как и гипоталамический неиросекрет. При избыточном введении в организм поваренной соли происходит быстрое выведение нейросекрета из задней доли гипофиза, супраоптического и паравентрикулярного ядер. В этих условиях нейросекретом обогащаются и секреторные клетки передней доли гипофиза (Войткевич и др.). Отдельные исследователи допускают, что в осуществлении связи гипоталамуса с гипофизом важную роль могут играть вазопресин и окситоцин, носителями которых является неиросекрет паравентрикулярного и супраоптического ядер (Мартини и др.). Следует, однако, отметить, что методом хроматографии Саффрон удалось отделить в экстрактах задней доли гипофиза от вазопресина и окситоцина вещество, которое активирует адренокортикотропную функцию передней доли гипофиза.

Приведенные данные показывают, что вопрос о природе нейросекрета, ответственного за регуляцию функции гипофиза, еще нуждается в дальнейшей разработке. Тем не менее, обширный фактический материал указывает на ведущее значение в гнпота-ламическом контроле функции эндокринной системы васкулярных связей. Срединное возвышение серого бугра гипоталамуса и является тем участком, во внутреннем слое которого через посредство вазоневральных синапсов осуществляется передача влияний с гипоталамуса на переднюю долю гипофиза.

Значение гипоталамуса в регуляции функции эндокринной системы . Гипоталамус принимает участие в нервной и гуморальной регуляции физиологических функций организма. Особенно велико его значение в контроле гормональной деятельности эндокринной системы. Прежде всего гипоталамус сам продуцирует вещества, которые гуморальным путем влияют на отдельные функции организма. Уже отмечалось, что нейроны супраоптического и паравентрикулярного ядер подбугорья синтезируют неиросекрет, который перемещается по нервным отросткам гипоталамо-гипофизарного тракта и аккумулируется в задней доле гипофиза. Этот нейросекрет является носителем физиологически высокоактивных гормонов вазопресина и окситоцина.

Клинические наблюдения и многочисленные экспериментальные исследования последних лет показывают, что гипоталамус оказывает доминирующее влияние на гормональную деятельность передней доли гипофиза и через нее на многие периферические железы внутренней секреции. Этот вывод основан прежде всего на экспериментах по нарушению анатомической связи между гипоталамусом и гипофизом. Так, при перерезке у кроликов (Гаррис), кур (Ширм и Налбандон), уток (Бенуа и Ассен-махер) и других животных гипофизарной ножки резко понижается выделение гипофизом в кровь кринотропных гормонов, активирующих функцию половых желез, коры надпочечников и щитовидной железы. При нарушении связи между гипофизом и гипоталамусом периферические железы переходят в состояние физиологической депрессии. Эта операция особенно сильно отражается на функциональном состоянии половых желез. Если после перерезки ножки портальные сосуды регенерируют и восстанавливается транспортировка из гипоталамуса нейросекрста, то тогда опять нормализуется работа передней доли гипофиза и периферических желез.

Представления о механизмах передачи регулирующих влияний с гипоталамуса на гипофиз за короткую историю разработки этой важной проблемы современной эндокринологии претерпели существенные изменения. На первых этапах ее разработки многие исследователи считали, что влияние гипоталамуса на гипофиз осуществляется через посредство парасимпатической и симпатической нервной системы. Поскольку, однако, прямая нервная связь между ними, по-видимому, отсутствует, то Шаррер уже давно высказал предположение, что гипоталамическая регуляция гормональных функций гипофиза осуществляется преимущественно гуморальным путем при участии нейросекрета. Это положение в дальнейшем подтвердилось не только в опытах с перерезкой портальных сосудов, но и в экспериментах по трансплантации гипофиза в различные органы. При пересадке его гипофизэктомированным животным в почку или в височную долю (Гаррис и Якобсон) гипофиз приживляется, васкуляризируется, но в этих условиях угнетается его гормональная деятельность. Если же этот гипофиз затем подсадить в область срединного возвышения, то после врастания портальных сосудов его гормональная деятельность быстро восстанавливается. Такой же результат получен при совместной инкубации вне организма гипофиза с фрагментами гипоталамуса или при добавлении в культуру экстракта из срединного возвышения подбугорья.

Многочисленные экспериментальные исследования подтверждают, что гипоталамический контроль гормональной функции гипофиза действительно осуществляется через кровь уже рассмотренными прежде нейрогуморами (реализующими факторами). В экспериментальных условиях на функцию передней доли гипофиза может оказывать влияние и суммарный экстракт из нейрогипофиза. На этом основании отдельные исследователи допускают, как это видно на схеме Поленова (таблица I), возможность действия на гормонопоэз передней доли гипофиза и нейросекрета, который поступает в кровеносное русло из нейрогипофиза.

Значительный интерес представляет вопрос о локализации в гипоталамусе участков, ответственных за регуляцию различных гормональных функций гипофиза. При его разработке в настоящее время используются различные приемы. Наиболее широкое применение получил метод точечной электрокаугуляции гипоталамуса, осуществляемой с помощью стереотаксического аппарата, позволяющего производить строго координированные передвижения электродов. Следует, однако, отметить, что и применение стереотаксической техники не устраняет затруднений в решении поставленного вопроса о топографической локализации в гипоталамусе различных зон, регулирующих отдельные функции гипофиза, так как входящие в его состав клеточные компоненты находятся в сложных морфологических и функциональных взаимоотношениях между собой и другими отделами нервной системы. Поэтому повреждение одного участка неизбежно приводит к морфологическим и функциональным нарушениям других компонентов системы. Кроме того, в строении и функциональной дифференцировке отдельных частей гипоталамуса наблюдаются и видовые различия. Вследствие этого полученные различными исследователями данные о значении отдельных участков гипоталамуса в регуляции эндокринных функций организма порою носят противоречивый характер. В настоящее время вполне определенно можно говорить лишь о том, что гипоталамус контролирует гонадотропную, тиреотропную и аденокортико-тропную функции передней доли гипофиза. Для осуществления этих функций, по Бенуа, например, необходима целостность зоны переднего гипоталамуса, расположенной под паравентри-кулярным ядром на границе с преоптическим и туберальным участками.

Рассмотренные выше данные показывают, что гипоталамус и гипофиз в морфологическом и функциональном отношении образуют единую гипоталамо-гипофизарную систему, в которой нервные импульсы переключаются на гуморальные. Значительный интерес, представляет вопрос о механизме работы этого своеобразного пульта управления эндокринными функциями организма. Обширный материал экспериментальных исследований позволяет рассматривать гипоталамус, гипофиз и периферические железы (железы-мишени) как звенья единой системы, функциональная деятельность которой подчиняется принципу обратных связей с самонастройкой на оптимальный для данных условий жизни организма режим работы.

Разработке этих вопросов в свое время много внимания уделял М. М. Завадовский. Давно известно, что избыток в крови гормонов желез-мишеней автоматически приводит к угнетению, а их недостаток -- к стимуляции соответствующих тронных функций передней доли гипофиза. Причем угнетение тронной функции наступает в результате повышения концентрации в крови гормона железы-мишени, при некоторых условиях, по-видимому, может осуществляться и непосредственно через гипофиз. Обратный же механизм регуляции, т. е. стимуляция тропной функции гипофиза понижением содержания в крови гормона железы-мишени, осуществляется при обязательном участии гипоталамуса. Изменение уровня гормона в крови является, таким образом, сигналом, который воспринимается клетками соответствующих ядер гипоталамуса.

При описании васкуляризации гипоталамуса уже отмечалось, что особенности строения стенок капилляров и их проницаемости для сложных химических соединений обеспечивают высокую чувствительность нейронов подбугорья к гормонам. Факт непосредственного действия на нейроны гормонов доказывается многочисленными экспериментами подсадки в соответствующие зоны гипоталамуса ткани эндокринных желез или аппликации синтетическими гормонами. Например, имплантация с помощью стереотаксического аппарата кристаллов полового гормона угнетает гонадотропную функцию гипофиза и физиологическую активность половой железы. Сходный результат дает и трансплантация кусочков яичника. Таким образом, через посредство гормонов гипоталамус получает информацию об уровне активности желез-мишеней и посылает в гипофиз сигналы, в ответ на которые последний через продукцию соответствующих тройных гормонов устраняет неблагоприятные для организма отклонения в функции эндокринной системы. Экспериментальные исследования вместе с тем показывают, что в некоторых случаях афферентная сигнализация от желез-мишеней к гипоталамусу может передаваться и нервнопроводниковым путем. Настройка рассмотренной системы обратных связей носит динамический характер и изменяется прежде всего в различные периоды онтогенеза.

В регуляции функций эндокринных желез принимают также участие внегипоталамические центры нервной системы и прежде всего ретикулярная формация. Хотя разработка этого вопроса находится еще в начальной стадии, тем не менее уже теперь имеются многочисленные доказательства ее участия в контроле гормональной активности отдельных эндокринных желез. Эксперименты показывают, что при блокировании фармакологическими средствами, частичном повреждении или раздражении ретикулярной формации электрическим током наступают значительные изменения в уровне гормональной активности отдельных эндокринных желез.

Ретикулярной формации приписывается большое значение в механизме передачи к эндокринным железам разнообразных воздействий на организм, идущих из внешней среды. Характерные изменения в гормональной деятельности надпочечников, щитовидной железы и гонад, наступающие под воздействием не обычных раздражителей в так называемых реакциях "напряжения", или "стресса", многие исследователи также связывают с деятельностью ретикулярной формации.

Пути действия ретикулярной формации на периферические эндокринные железы изучены еще недостаточно. Имеющиеся экспериментальные данные пока не позволяют решить вопрос о том, оказывает ли она только общее активирующее действие на гипоталамус и переключает в него информацию от внешней среды и внутренних органов или же и сама принимает непосредственное участие в регуляции физиологической активности периферических эндокринных желез. Последнее предположение подтверждается отдельными наблюдениями. Известно, что после удаления гипофиза гормональная деятельность отдельных эндокринных желез полностью не прекращается, а сохраняется на уровне так называемой базальной активности, для которой характерна суточная ритмичность. Последняя, по-видимому, контролируется ретикулярной формацией. Рассмотренные факты приводят отдельных исследователей к заключению, что импульсы от ретикулярной формации могут достигать периферических желез без участия гипофиза. Таким образом, возможен и парагипо-физарный путь регуляции эндокринных желез. Ретикулярная формация не только оказывает влияние на гуморальную среду организма, но и сама реагирует на ее изменения. Это указывает на возможность участия ретикулярной формации в рассмотренном выше механизме обратных связей.

Гипоталамус является частью промежуточного мозга и вхо­дит в состав лимбической системы. Это сложноорганизованный отдел мозга, выполняющий целый ряд вегетативных функций, от­вечает за гуморальное и нейросекреторное обеспечение организ­ма, эмоциональные поведенческие реакции и другие функции.

Морфологически в гипоталамусе выделяют около 50пар ядер, разделенных топографически на 5больших групп: 1)преоптическая группа или область, в которую входят: перивентрикулярное, преоптическое ядро, медиальное и латеральное преоптическое ядра, 2)передняя группа: супраоптическое, паравентрикулярное и супрахиазматическое ядра, 3)средняя группа: вентромедиальное и дорсомедиальное ядра, 4)наружная группа: латеральное гипоталамическое ядро, ядро серого бугра, 5)задняя группа: заднее гипоталамическое ядро, перифорникальное ядро, медиальные и латеральные ядра сосцевидных (мамиллярных) тел.

Нейроны гипоталамуса имеют особую чувствительность к со­ставу омывающей их крови: изменениям рН, рСО 2 рО 2 содержа­нию катехоламинов, ионов калия и натрия. В супраоптическом ядре имеются осморецепторы. Гипоталамус -единственная структура мозга, в которой отсутствует гематоэнцефалический барьер. Нейроны гипоталамуса способны к нейросекреции пептидов, гормонов, медиаторов.

В заднем и латеральном гипоталамусе выявлены нейроны, чувствительные к адреналину. Адренорецептивные нейроны мо­гут находится в одном и том же ядре гипоталамуса вместе с холинорецептивными и серотонинорецептивными. Введение адрена­лина или норадреналина в латеральный гипоталамус вызывает ре­акцию еды, а введение ацетилхолина или карбохолина -питье­вую реакцию. Нейроны вентромедиального и латерального ядер гипоталамуса проявляют высокую чувствительность к глюкозе за счет наличия в них «глюкорецепторов».

Проводниковая функция гипоталамуса

Гипоталамус имеет афферентные связи с обонятельным моз­гом, базальными ганглиями, таламусом, гиппокампом, орбиталь­ной, височной и теменной корой.

Эфферентные пути представлены: мамиллоталамическим, гипоталамо-таламическим, гипоталамо-гипофизарным, мамиллотегментальным, гипоталамогиппокампальным трактами. Кроме того, гипоталамус посылает импульсы к вегетативным центрам ствола мозга и спинного мозга. Гипоталамус имеет тесные связи с ретикулярной формацией ствола мозга, определяющей протека­ние вегетативных реакций организма, его пищевое и эмоциональ­ное поведение.

Собственные функции гипоталамуса

Гипоталамус является главным подкорковым центром, регу­лирующим вегетативные функции. Раздражение передней груп­пы ядер имитирует эффекты парасимпатической нервной сис­темы, ее трофотропное влияние на организм: сужение зрачка, брадикардию, снижение артериального давления, усиление сек-Реции и моторики желудочно-кишечного тракта. Супраоптичес­кое и паравентрикулярное ядра участвуют в регуляции водного и солевого обмена за счет выработки антидиуретического гор­мона.

Стимуляция задней группы ядер оказывает эрготропные вли­тия, активирует симпатические эффекты: расширение зрачка, тахикардию, повышение кровяного давления, торможение моторики и секреции желудочно-кишечного тракта.

Гипоталамус обеспечивает механизмы терморегуляции. Так, ядра передней группы ядер содержат нейроны, отвечающие за теплоотдачу, а задней группы -за процесс теплопродукции. Ядра средней группы участвуют в регуляции метаболизма и пищевого поведения. В вентромедиальных ядрах находится центр насыщения, а в латеральных -центр голода. Разрушение вентромедиального ядра приводит к гиперфагии -повышенному потребле­нию пищи и ожирению, а разрушение латеральных ядер -к пол­ному отказу от пищи. В этом же ядре находится центр жажды. В гипоталамусе располагаются центры белкового, углеводного и жирового обмена, центры регуляции мочеотделения и полового поведения (супрахиазматическое ядро), страха, ярости, цикла «сон-бодрствование».

Регуляция многих функций организма гипоталамусом осу­ществляется за счет продукции гормонов гипофиза и пептидных гормонов: либеринов, стимулирующих высвобождение гормо­нов передней доли гипофиза, истатинов - гормонов, которые тормозят их выделение. Эти пептидные гормоны (тиролиберин, кортиколиберин, соматостатин и др.) через портальную сосуди­стую систему гипофиза достигают его передней доли и вызыва­ют изменение продукции соответствующего гормона аденогипофиза.

Супраоптическое и паравентрикулярное ядра помимо их уча­стия в водно-солевом обмене, лактации, сокращении матки про­дуцируют гормоны полипептидной природы -окситоцин иан­тидиуретический гормон (вазопрессин), которые с помощью аксонального транспорта достигают нейрогипофиза и, кумулируясь в нем, оказывают соответствующее действие на реабсорбцию во­ды в почечных канальцах, на тонус сосудов, на сокращение бере­менной матки.

Супрахиазматическое ядро имеет отношение к регуляции по­лового поведения, а патологические процессы в области этого яд­ра приводят к ускорению полового созревания и нарушениям менструального цикла. Это же ядро является центральным води­телем циркадианных (околосуточных) ритмов многих функций в организме.

Гипоталамус имеет непосредственное отношение, как уже от­мечалось выше, к регуляции цикла «сон-бодрствование». При этом задний гипоталамус стимулирует бодрствование, передний -сон, а повреждение заднего гипоталамуса может вызвать пато­логическийлетаргический сон.

В гипоталамусе и гипофизе вырабатываются нейропептиды, относящиеся к антинотицептивной (обезболивающей) системе, или опиаты: энкефалины иэндорфины.

Гипоталамус является частью лимбической системы, прини­мающей участие в реализации эмоционального поведения.

Д. Олдс, вживляя электроды в некоторые ядра гипоталамуса крысы, наблюдал, что при стимуляции одних ядер происходила негативная реакция, других -положительная: крыса не отходила от педали, замыкающей стимулирующий ток, и нажимала ее до изнеможения (опыт с самораздражением). Можно предполо­

жить, что она раздражала «центры удовольствия». Раздражение переднего гипоталамуса провоцировало картину ярости, страха, пассивно-оборонительную реакцию, а заднего -активную агрессию, реакцию нападения.

Гипоталамус (hypothalamus) - отдел промежуточного мозга, которому принадлежит ведущая роль в регуляции многих функций организма, и прежде всего постоянства внутренней среды, гипоталамус является высшим вегетативным центром, осуществляющим сложную интеграцию функций различных внутренних систем и их приспособление к целостной деятельности организма, играет существенную роль в поддержании оптимального уровня обмена веществ и энергии, в терморегуляции, в регуляции деятельности пищеварительной, сердечно-сосудистой, выделительной, дыхательной и эндокринной систем. Под контролем гипоталамус находятся такие железы внутренней секреции, как гипофиз, щитовидная железа, половые железы, поджелудочная железа, надпочечники и др.

Гипоталамус расположен книзу от таламуса под гипоталамической бороздой.
Его передней границей являются зрительный перекрест (chiasma opticum), терминальная пластинка (lamina terminalis) и передняя спайка (commissura ant.). Задняя граница проходит позади нижнего края сосцевидных тел (corpora mamillaria). Кпереди клеточные группы гипоталамуса без перерыва переходят в клеточные группы пластинки прозрачной перегородки (lamina septi pellucidi).

Проводящие пути тесно связывают гипоталамус с соседними структурами головного мозга. Кровоснабжение ядер гипоталамуса осуществляется веточками артериального круга головного мозга. Взаимосвязь между гипоталамусом и аденогипофизом происходит через портальные сосуды аденогипофиза. Характерной особенностью кровеносных сосудов гипоталамуса является проницаемость их стенок для крупных молекул белков.

Несмотря на небольшие размеры гипоталамуса, его строение отличается значительной сложностью Группы клеток образуют отдельные ядра гипоталамуса.
У человека и других млекопитающих в гипоталамусе обычно различают 32 пары ядер. Между соседними ядрами существуют промежуточные нервные клетки или их небольшие группы, поэтому физиологическое значение могут иметь не только ядра, но и некоторые межъядерные гипоталамические зоны. Ядра гипоталамуса образуются нервными клетками, не обладающими секреторной функцией, и нейросекреторными клетками. Нейросекреторные нервные клетки сконцентрированы непосредственно около стенок III желудочка мозга. По своим структурным особенностям эти клетки напоминают клетки ретикулярной формации и продуцируют физиологически активные вещества - гипоталамические нейрогормоны.

В гипоталамусе выделяют три нерезко разграниченные области: переднюю, среднюю и заднюю. В передней области гипоталамуса сосредоточены нейросекреторные клетки, где они образуют с каждой стороны надзрительное (nucl.
supraopticus) и паравентрикулярное (nucl. paraventricularis) ядра. Надзрительное ядро состоит из клеток, лежащих между стенкой III желудочка мозга и дорсальной поверхностью зрительного перекреста. Паравентрикулярное ядро имеет вид пластинки между сводом (fornix) и стенкой III желудочка мозга. Аксоны нейронов паравентрикулярного и надзрительного ядер, образуя гипоталамо-гипофизарный пучок, достигают задней доли гипофиза, где накапливаются гипоталамические нейрогормоны, оттуда они поступают в кровоток.

Между надзрительным и паравентрикулярным ядрами расположены многочисленные одиночные нейросекреторные клетки или их группы. Нейросекреторные клетки надзрительного ядра гипоталамуса вырабатывают преимущественно антидиуретический гормон (вазопрессин), а паравентрикулярного ядра - окситоцин.

В средней области гипоталамуса, вокруг нижнего края III желудочка мозга, лежат серобугорные ядра (nucll. tuberaies), дуговидно охватывающие воронку (infundibulum) гипофиза. Кверху и немного латеральнее от них находятся крупные вентромедиальные и дорсомедиальные ядра.

В задней области гипоталамуса расположены ядра, состоящие из рассеянных крупных клеток, среди которых находятся скопления мелких клеток К этому отделу относятся также медиальные и латеральные ядра сосцевидного тела (nucll. corporis mamillaris mediales et laterales), которые на нижней поверхности промежуточного мозга имеют вид парных полушарий. Клетки этих ядер дают начало одной из так называемых проекционных систем гипоталамуса в продолговатый и спинной мозг.

Наиболее крупным клеточным скоплением является медиальное ядро сосцевидного тела. Кпереди от сосцевидных тел выступает дно III желудочка мозга в виде серого бугра (tuber cinereum), образованного тонкой пластинкой серого вещества. Этот выступ вытягивается в воронку, переходящую в дистальном направлении в гипофизарную ножку и далее в заднюю долю гипофиза. Расширенная верхняя часть воронки - срединное возвышение - выстлано эпендимой, за которой идут слой нервных волокон гипоталамо-гипофизарного пучка и более тонкие волокна, берущие начало от ядер серого бугра.

Наружная часть срединного возвышения образована опорными нейроглиальными (эпендимными) волокнами, между которыми залегают многочисленные нервные волокна. В этих нервных волокнах и около них наблюдается отложение нейросекреторных гранул. Т.о., гипоталамус образован комплексом нервно-проводниковых и нейросекреторных клеток. В связи с этим регулирующие влияния гипоталамуса передаются к эффекторам, в т.ч. и к железам внутренней секреции, не только с помощью гипоталамических нейрогормонов, переносимых с током крови и, следовательно, действующих гуморально, но и по эфферентным нервным волокнам.

Значительна роль гипоталамуса в регуляции и координации функций вегетативной нервной системы. В регуляции функции ее симпатической части участвуют ядра задней области гипоталамуса, а функции парасимпатической части вегетативной нервной системы регулируют ядра его передней и средней областей. Стимуляция передней и средней областей гипоталамуса вызывает реакции, характерные для парасимпатической нервной системы - урежение сердцебиений, усиление перистальтики кишечника, повышение тонуса мочевого пузыря и др., а раздражение задней области гипоталамуса проявляется усилением симпатических реакций - учащением сердцебиений и т.д.

С состоянием вегетативной нервной системы тесно связаны вазомоторные реакции гипоталамического происхождения. Различные виды артериальной гипертензии, развивающиеся после стимуляции гипоталамуса, обусловлены комбинированным влиянием симпатической части вегетативной нервной системы и выделением адреналина надпочечниками, хотя в данном случае нельзя исключить влияние нейрогипофиза, особенно в генезе устойчивой артериальной гипертензии.

С физиологической точки зрения гипоталамус имеет ряд особенностей, прежде всего это касается его участия в формировании поведенческих реакций, важных для сохранения постоянства внутренней среды организма. Раздражениегипоталамуса приводит к формированию целенаправленного поведения - пищевого, питьевого, полового, агрессивного и т.п. Гипоталамусу принадлежит главная роль в формировании основных влечений организма.

В некоторых случаях при повреждении верхнемедиального ядра и серобугровой области Г. наблюдают чрезмерное ожирение как результат полифагии (булимий) или кахексию. Повреждение задних отделов гипоталамуса вызывает гипергликемию. Установлена роль надзрительного и паравентрикулярного ядер в механизме возникновения несахарного диабета. Активация нейронов латерального гипоталамуса вызывает формирование пищевой мотивации. При двустороннем разрушении этого отдела пищевая мотивация полностью устраняется.

Обширные связи гипоталамуса с другими структурами головного мозга способствуют генерализации возбуждений, возникающих в его клетках. Гипоталамус находится в непрерывных взаимодействиях с другими отделами подкорки и корой головного мозга. Именно это лежит в основе участия гипоталамуса в эмоциональной деятельности. Кора головного мозга может оказывать тормозящий эффект на функции гипоталамуса. Приобретенные корковые механизмы подавляют многие эмоции и первичные побуждения, формирующиеся с его участием. Поэтому декортикация нередко приводит к развитию реакции «мнимой ярости» (расширение зрачков, тахикардия, развитие внутричерепной гипертензии, усиление саливации и т.д.).

Гипоталамус является одной из главных структур, участвующих в регуляции смены сна и бодрствования. Клиническими исследованиями установлено, что симптом летаргического сна при эпидемическом энцефалите обусловлен именно повреждением гипоталамуса. В поддержании состояния бодрствования решающую роль играет задняя область гипоталамуса. Обширное разрушение средней области гипоталамуса в эксперименте приводило к развитию длительного сна. Нарушение сна в виде нарколепсии объясняется поражением гипоталамуса и ростральной части ретикулярной формации среднего мозга.

Гипоталамус играет важную роль в терморегуляции. Разрушение задних отделов гипоталамуса приводит к стойкому снижению температуры тела.

Клетки гипоталамуса обладают способностью трансформировать гуморальные изменения внутренней среды организма в нервный процесс. Центры гипоталамуса характеризуются выраженной избирательностью возбуждения в зависимости от различных изменений состава крови и кислотно-щелочного состояния, а также нервных импульсов из соответствующих органов. Возбуждение в нейронах гипоталамуса, обладающих избирательной рецепцией по отношению к константам крови, возникает не сразу, как только изменится какая-либо из них, а через определенный промежуток времени.

Если же изменение константы крови поддерживается длительно, то в этом случае возбудимость нейронов гипоталамуса быстро поднимается до критической величины и состояние этого возбуждения поддерживается на высоком уровне все время, пока существует изменение константы. Возбуждение одних клеток гипоталамуса может возникать периодически через несколько часов, как, например, при гипогликемии, других - через несколько суток или даже месяцев, как, например, при изменении содержания в крови половых гормонов.

Информативными методами исследования гипоталамуса являются плетизмографические, биохимические, рентгенологические исследования и др. Плетизмографические исследования выявляют широкий спектр изменений в гипоталамусе - от состояния вегетативной сосудистой неустойчивости и парадоксальной реакции до полной арефлексии.

При биохимических исследованиях у больных с поражением гипоталамуса независимо от его причины (опухоль, воспалительный процесс и др.) часто определяется увеличение содержания катехоламинов и гистамина в крови, увеличивается относительное содержание a-глобулинов и снижается относительное содержание b-глобулинов в сыворотке крови, изменяется экскреция с мочой 17-кетостероидов. При различных формах поражения гипоталамуса проявляются нарушения терморегуляции и интенсивности потоотделения.

Поражение ядер гипоталамуса (преимущественно надзрительного и паравентрикулярного) наиболее вероятно при заболеваниях желез внутренней секреции, черепно-мозговых травмах, приводящих к перераспределению цереброспинальной жидкости, опухолях, нейроинфекциях, интоксикациях и др. Вследствие повышения проницаемости стенок сосудов при инфекциях и интоксикациях гипоталамические ядра могут подвергаться патогенным воздействиям бактериальных и вирусных токсинов и химических веществ, циркулирующих в крови. Особенно опасны в этом отношении нейровирусные инфекции. Поражения гипоталамуса наблюдаются при базальном туберкулезном менингите, сифилисе, саркоидозе, лимфогранулематозе, лейкозах.

Из опухолей гипоталамуса наиболее часто встречаются различного вида глиомы, краниофарингиомы, эктопические пинеаломы и тератомы, менингиомы: в гипоталамусе прорастают супраселлярные аденомы гипофиза. Клинические проявления и лечение нарушений функций и заболеваний гипоталамуса

Гипоталамус располагается в глубине мозга, формируя стенки третьего желудочка.

Гипоталамус – это высший подкорковый центр интеграции вегетативных, эмоциональных и мотивационных реакций, регуляции двигательных (моторных), обменных, энергетических и иных ответов, направленных на адаптацию и корректировку поведения. Гипоталамус вместе со стволовыми структурами мозга поддерживает и регулирует кровообращение (функция сердца и тонус сосудов), регулирует обмен веществ (железы внутренней и внешней секреции), контролирует энергетический обмена организма, обмен воды, жиров, белков и углеводов. Он поддерживает и согласовывает все процессы в организме, обеспечивая постоянство внутренней среды (т.н. гомеостаз). При этом совместно с близлежащими структурами диэнцефальной области он контролирует эмоции, поведение, сон.

Гипоталамус расположен в самом центре мозга.

Он содержит около 48 ядер (скопление нервных клеток), часть из которых напрямую связана с гипофизом. Гипофиз - это центр эндокринной регуляции в организме, он регулирует функцию надпочечников, тимуса, щитовидной железой, паращитовидных желез, некоторые функции поджелудочной железы, половые железы.

Гипоталамус непосредственно участвует в сне, пробуждении, формировании настроения, в реакции на стресс и в самом стрессе, в мотивациях и поведенческих реакциях. Примерами нарушения функции гипоталамуса могут служить синдром гипервозбудимости (гиперактивные дети) и посттравматический стрессовый синдром .

Гипоталамус можно сравнить с центральным компьютером в организме человека, своеобразной релейной станцией, к которой стекается вся информация о многочисленных вегетативных (не подвластных сознанию) функциях организма. В его ведении частота сердечных сокращений, температуру тела, чувство голода и сытости, сон, половой рефлекс (поиск пары), он определяет темперамент (эмоции, агрессивность и др.). Подавляющий поток информации достигает гипоталамуса, но не поступает в кору головного мозга. Сознание человека не в состоянии обработать такой поток информации и сознательно сделать адекватную корректировку функций организма. Гипоталамус во многом самостоятельная «инстанция» мозга, которая запрограммирована на «автоматическую» регуляцию всех вегетативных процессов в организме. Осознанный анализ такого объема информации даже теоретически невозможен, «переварить» ее сознанию нереально. Да и не нужно. Система регуляции вегетативных функций отлажена природой и настроена по принципу обратной связи: запрос – ответ, больше - меньше... При этом параметры регуляции с участием гипоталамуса «откалиброваны» и реализуются в четких физиологических рамках.

На более низких уровнях (ствол мозга, спинной мозг) процессы регулируются рефлекторно. Задача же гипоталамуса, как у топ-менеджера – сбалансировать все процессы в организме и привести их к заданным физиологическим параметрам.

Например, физическая нагрузка или стресс протекают с учащением сердцебиения. При этом частота сердечных сокращений – это только видимая (ощутимая) часть регуляции. Одномоментно гипоталамус регулирует объем и силу сердечного выброса, тонус сосудов в различных участках тела, тем самым перераспределяя кровь в различные сосудистые бассейны. Например, нужно экстренно снабдить кровью работающие мышцы. При этом учащенное дыхание также требует крови к легким, которые интенсивно поглащают кислород, необходимый для мышц и, конечно же, сердца. Важно не забыть о мозге, который должен продолжать анализировать ситуацию, думать куда бежать и что делать. Чуть позже гипоталамус включает потоотделение для охлаждения кожи, дабы не допустить перегрева. При этом гипоталамус должен контролировать уровень стрессовых и иных гормонов, не обделить кровотоком почки (при критическом снижении почечного кровотока, почки проживут не более нескольких часов)…. А не только обеспечить приток к работающим при беге мышцам. Такова приблизительно роль гипоталамуса на примере только одного физиологического процесса – банальной физической нагрузке. Подобного рода процессов в организме несоизмеримо больше, в них участвуют все железы внутренней секреции – надпочечники, щитовидная железа, половые железы и многие другие органы, тесно связанные между собой. Все эти сложные процессы протекают скоординировано, одномоментно и регулируются гипоталмусом.

Любой сбой в регуляторной функции гипоталамуса приводит к серьезным поломкам. Например, ВСД (вегето-сосудистая дистония) , посттравматические стрессовые реакции (), гипоталамический синдром , лечение которых возможно только при понимании структурной организации гипоталамуса, локализации ядер (см. рис. ниже) и его многочисленных связей с другими структурами мозга и эндокринными органами. К примеру, лечение ВСД и затянувшихся посттравматических реакций не будет эффективным без стабилизации функции перивентрикулярных ядер гипоталамуса (врутренний протокол Института № 57/2001).

Для понимания сложности регулирующих систем гипоталамуса, ниже приведена схема регуляции желез внутренней секреции и гладких мышц (кишечник, протоки печени, поджедлудочной джедезы и др.) с участием психоэмоциональных факторов, завязанных на гипоталамусе. Схема приведена патофизиологом Д.Хьюбел

«Эндокринный мозг» — так называют ученые-анатомы гипоталамус (от греч. «гипо» — под, «таламус» — комната, спальня). Он находится в головном мозге человека, но очень тесно связан с гипофизом – важнейшим органом человеческой эндокринной системы. Несмотря на маленькие размеры, гипоталамус имеет очень сложное строение и выполняет как вегетативные функции нашего организма, так и эндокринные.

Что такое гипоталамус?

Гипоталамус находится в самом основании мозга – промежуточном отделе, образуя собой стенки и основание нижней части третьего мозгового желудочка. Это небольшая область, которая расположена прямо под таламусом, в подбугорной зоне. Отсюда и второе название гипоталамуса – подбугорье.

Анатомически гипоталамус является полноценной частью центральной нервной системы и связан нервными волокнами с ее основными структурами – корой и стволом головного мозга, мозжечком, спинным мозгом и др. С другой стороны, подбугорье напрямую контролирует работу гипофиза и в связке с ним составляет гипоталамо-гипофизарную систему. Ее также называют нейроэндокринной – система выполняет функции и ЦНС (например, обмен веществ), и эндокринные (гипофиз продуцирует гормоны, а центры гипоталамуса управляют этими процессами).

Важнейшая роль гипоталамуса в работе всего организма не позволяет ученым однозначно причислить его к какой-либо системе организма. Он будто бы находится на стыке двух систем, эндокринной и ЦНС, являясь связующим звеном между ними.

От таламуса гипоталамус отделяет гипоталамическая борозда, это верхняя граница органа. Спереди он ограничен терминальной пластинкой из серого вещества, которая служит своеобразной прослойкой между гипоталамусом и зрительным перекрестом (хиазмой).

Боковые границы подбугорья – это зрительные тракты. А нижняя часть гипоталамуса, или дно нижнего желудочка, называется серым бугром. Он переходит в воронку, она в свою очередь вытягивается в гипофизарную ножку. На ней висит гипофиз.

Гипоталамус весит очень мало – около 3-5 гр, о его размерах ученые спорят до сих пор. Одни исследователи сравнивают его по объему с миндальным орешком, другие считают, что он может достигать длины фаланги большого пальца руки человека. Гипоталамус имеет обтекаемую, чуть вытянутую форму. Многие клетки подбугорья основательно «впаяны» в соседние зоны мозга, поэтому четкого описания гипоталамуса на сегодняшний день не существует.

Но если истинные размеры и внешний вид этого участка головного мозга до сих пор точно не известны, структура гипоталамуса изучается очень давно.

Гипоталамус разделен на несколько областей, в которых собраны особые скопления нейронов – ядра гипоталамуса. Каждая из групп ядер выполняет свои особые функции. Большинство из этих ядер парные и расположены по обе стороны третьего желудочка, где находится сам орган. Точное количество этих ядер в гипоталамусе человека неизвестно – в медицинской литературе можно встретить разные данные по этому вопросу. Ученые сходятся в одном – число ядер колеблется в диапазоне 32-48.

Существует несколько классификаций, описывающих строение гипоталамуса. Одна из самых популярных – типология советских анатомов Л.Я. Пинеса и Р.М. Майман. По их версии, гипоталамус состоит из трех частей:

  • передний отдел (включает нейросекреторные клетки);
  • средний отдел (область серого бугра и воронки);
  • нижний отдел (сосцевидные тела).

По мнению ряда ученых, передний гипоталамус состоит из 2 зон, преоптической и передней. Некоторые специалисты разделяют эти области. В переднее подбугорье входят супрахиазматическое, супраоптическое (надзрительное), паравентрикулярное (околожелудочковое) ядра.

Средний отдел гипоталамуса состоит из серого бугра – тоненькой пластинки серого вещества головного мозга. Внешне бугор выглядит как полый выступ нижней стенки третьего желудочка. Верхушка этого бугра вытянута в узкую воронку, которая соединяется с гипофизом. В этой области сконцентрированы такие ядра: туберальные (серобугорные), вентромедиальные и дорсомедиальные, паллидо-инфундибулярные, маммило-инфундибулярные.

Сосцевидные тела являются частью заднего гипоталамуса. Они представляют собой два холмистых образования из белого вещества, внутри спрятаны 2 серых ядра. В задней области подбугорья размещаются такие группы ядер: маммило-инфундибулярные, ядра маммилярных (сосцевидных) тел, супра-маммилярные. Самое крупное ядро в этой зоне – медиальное сосцевидного тела.

Гипоталамус – один из древнейших отделов головного мозга, ученые обнаруживают его даже у низших позвоночных. А у многих рыб подбугорье вообще является самым развитым участком головного мозга. У человека развитие гипоталамуса начинается на первых неделях эмбрионального развития, а к рождению малыша этот орган уже полностью сформирован.