Генетика и генная инженерия кратко. Доклад: Генная инженерия - настоящее и будущее. Задачи и методы генной инженерии

БИОЛОГИЯ, ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ

И БИОТЕХНОЛОГИЯ

«Познание определяется тем,

что утверждается нами

как Истина»

П. А. ФЛОРЕНСКИЙ.

Современная биология коренным образом отличается от традиционной биологии не только большей глубиной разработки познавательных идей, но и более тесной связью с жизнью общества, с практикой. Можно сказать, что в наше время биология стала средством преобразования живого мира с целью удовлетворения материальных потребностей общества. Это заключение иллюстрируется прежде всего тесной связью биологии с биотехнологией, которая стала важнейшей областью материального производства, равноправным партнером механической и химической технологий, созданных человеком ранее. Чем же объясняется взлет биотехнологии?

С момента своего возникновения биология и биотехнология всегда развивались совместно, причем с самого начала биология была научной основой биотехнологии. Однако длительное время недостаток собственных данных не позволял биологии оказывать очень большое влияние на биотехнологию. Положение резко изменилось с созданием во второй половине XX в. методологии генетической инженерии, под которой понимают генетическое манипулирование с целью "конструкции новых и реконструкции существующих генотипов. Являясь по своей природе методическим достижением, генетическая инженерия не привела к ломке сложившихся представлений о биологических явлениях, не затронула основных положений биологии подобно тому, как радиоастрономия не поколебала основных положений астрофизики, установление «механического эквивалента тепла» не привело к изменению законов теплопроводности, а доказательство атомистической теории вещества не изменило соотношений термодинамики, гидродинамики и теории упругости.

Генетическая инженерия открыла новую эру в биологии по той причине, что появились новые возможности для проникновения в глубь биологических явлений с целью дальнейшей характеристики форм существования живой материи, с целью более эффективного изучения структуры и функции генов на молекулярном уровне, понимания тонких механизмов работы генетического аппарата. Успехи генетической инженерии означают переворот в современном естествознании. Они определяют критерии ценности современных представлений о структурно-функциональных особенностях молекулярного и клеточного уровней живой материи. Современные данные о живом имеют гигантское познавательное значение, ибо обеспечивают понимание одной из важнейших сторон органического мира и тем самым вносят неоценимый вклад в создание научной картины мира. Таким образом, резко расширив свою познавательную базу, биология через генетическую инженерию оказала также ведущее влияние на подъем биотехнологии.

Генетическая инженерия создает заделы на пути познания способов и путей «конструирования» новых организмов или улучшения существующих организмов, придавая им большую хозяйственную ценность, большую способность резкого увеличения продуктивности биотехнологических процессов.

В рамках генетической инженерии различают генную инженерию и клеточную инженерию. Под генной инженерией понимают манипуляции с целью создания рекомбинантных молекул ДНК. Часто эту методологию называют молекулярным клонированием, клонированием генов, технологией рекомбинантных ДНК или просто генетическими манипуляциями. Важно подчеркнуть, что объектом генной инженерии являются молекулы ДНК, отдельные гены. Напротив, под клеточной инженерией понимают генетические манипуляции с изолированными отдельными клетками или группами клеток растений и животных.

Глава XIX

ГЕННАЯ ИНЖЕНЕРИЯ

Генную инженерию составляет совокупность различных экспериментальных приемов (методик), обеспечивающих конструкцию (реконструкцию) и клонирование молекул ДНК (генов) с заданными целями.

Методы генной инженерии используют в определенной последовательности (рис. 221), причем различают несколько стадий в выполнении типичного генно-инженерного эксперимента, направленного на клонирование какого-либо гена, а именно:

1. Выделение ДНК из клеток интересующего организма (исходного) и выделение ДНК-вектора.

2. Разрезание (рестрикция) ДНК исходного организма на фрагменты, содержащие интересующие гены, с помощью одного из ферментов-рестриктаз и выделение этих генов из образованной рестрикционной смеси. Одновременно разрезают (рестрикциируют) векторную ДНК, превращая ее из кольцевой структуры в линейную.

3. Смыкание интересующего сегмента ДНК (гена) с ДНК вектора с целью получения гибридных молекул ДНК.

4. Введение гибридных молекул ДНК путем трансформации в какой-либо другой организм, например, в Е. coli или в соматические клетки.

5. Высев бактерий, в которые вводили гибридные молекулы ДНК, на питательные среды, позволяющие рост только клеток, содержащих гибридные молекулы ДНК.

6. Идентификация колоний, состоящих из бактерий, содержащих гибридные молекулы ДНК.

7. Выделение клонированной ДНК (клонированных генов) и ее характеристика, включая секвенирование азотистых оснований в клонированном фрагменте ДНК.

ДНК (исходная и векторная), ферменты, клетки, в которых клонируют ДНК - все это называют «инструментами» генной инженерии.

Выделение ДНК

Рассмотрим методику выделения ДНК на примере ДНК плаз-мид. ДНК из плазмидосодержащих бактериальных клеток выделяют с помощью традиционной техники, заключающейся в получении клеточных экстрактов в присутствии детергентов и последующем удалении из экстрактов белков фенольной экстракцией (рис. 222). Полная очистка плазмидной ДНК от белков, РНК и других соединений проводится в несколько стадий. После того как клетки разрушены, например, с помощью лизоцима (растворены их стенки), к экстракту добавляют детергент, чтобы растворить мембраны и инактивировать некоторые белки. Большинство хромосомной ДНК удаляют из получаемых препаратов обычным центрифугированием.

Часто для полной очистки используют хроматографию. Если требуется очень тщательная очистка, используют высокоскоростное центрифугирование в градиенте плотности CsCI с использованием этидия бромида. Оставшаяся хромосомная ДНК будет фрагментирована в линейную, тогда как плазмидная ДНК останется ковалентно закрытой. Поскольку этидий бромид менее плотен, чем ДНК, то при ультрацентрифугировании в центрифужной пробирке будет «выкручиваться» два кольца - плазмидная ДНК и хромосомная ДНК (рис. 223). Плазмидную ДНК отбирают для дальнейшей работы, хромосомную ДНК выбрасывают.

Генная инженерия является совокупностью способов, приемов и технологий выделения из клеток или организма генов, получения рекомбинантных РНК и ДНК, осуществления различных манипуляций с генами, а также введения их и в другие организмы. Эта дисциплина способствует получению желаемых характеристик изменяемого организма.

Наукой в широком смысле генная инженерия не является, однако считается биотехнологическим инструментом. В ней применяются исследования таких наук, как генетика, молекулярная микробиология.

Созданные методы генной инженерии, связанные с управлением наследственностью, явились одним из самых ярких событий в развитии науки.

Ученые, молекулярные биологи, биохимики научились изменять, модифицировать гены и создавать абсолютно новые, сочетая гены от разных организмов. Также они научились и синтезировать материал в соответствии с заданными схемами. Искусственный материал ученые начали вводить в организмы, заставляя их работать. На всей этой работе основывается генная инженерия.

Однако существует некоторая ограниченность «биологического материала». Данную проблему ученые пытаются решить при помощи и Специалисты отмечают, что этот путь достаточно перспективен. В течение последних нескольких десятилетий учеными были созданы приемы, при помощи которых определенные клетки из растительных или можно заставить развиваться и размножаться независимо, отдельно от организма.

Достижения генной инженерии имеют большое значение. применяются в экспериментах, а также при промышленном производстве определенных веществ, которые невозможно получить при использовании бактериальных культур. Однако и в этой области имеют место трудности. Так, например, проблемой является отсутствие способности у клеток животных делиться такое же бесконечное количество раз, как

В ходе экспериментов были сделаны фундаментальные открытия. Так, впервые был выведен «химически чистый», изолированный ген. Впоследствии ученые открыли ферменты лигазы и рестриктазы. При помощи последних стало возможно разрезать ген на кусочки - нуклеотиды. А при помощи лигаз можно наоборот соединять, «склеивать» эти кусочки, но уже в новой комбинации, создавая, конструируя иной ген.

Значительных успехов добились ученые и в процессе «чтения» биологической информации. На протяжении многих лет расшифровкой заложенных в генах данных занимались У. Гилберт и Ф. Сенгер, американский и английский ученые.

Специалисты отмечают, что генная инженерия за весь период своего существования не оказала негативного воздействия на самих исследователей, не причинила вреда человеку и не принесла ущерба природе. Ученые отмечают, что достигнутые результаты как в процессе изучения функционирования механизмов, обеспечивающих жизнедеятельность организмов, так и в прикладной отрасли являются весьма внушительными. При этом перспективы представляются поистине фантастичными.

Несмотря на большое значение генетики и генной инженерии в сельском хозяйстве и медицине, главные ее результаты еще не достигнуты.

Перед учеными стоит достаточно много задач. Следует определить не только функции и назначение каждого гена, но и условия, при которых происходит его активация, в какие именно периоды жизни, под воздействием каких факторов, в каких именно участках организма он включается и провоцирует синтез соответствующего белка. Кроме того, немаловажно выяснить роль этого белка в жизни организма, какие реакции он запускает, выходит ли за клеточные пределы, какую несет информацию. Достаточно сложной является проблема сворачивания белков. Решение этих и многих других задач осуществляется учеными в рамках генной инженерии.

С помощью которых осуществляется направленное комбинирование генетической информации любых организмов. Генетическая инженерия (Г. и.) позволяет преодолевать природные межвидовые барьеры, препятствующие обмену генетической информацией между таксономически удалёнными видами организмов и создавать клетки и организмы с несуществующими в природе сочетаниями генов, с заданными наследуемыми свойствами.

Главным объектом генно-инженерного воздействия является носитель генетической информации - дезоксирибонуклеиновая кислота (ДНК), молекула которой обычно состоит из двух цепей. Строгая специфичность спаривания пуриновых и пиримидиновых оснований обусловливает свойство комплементарности - взаимного соответствия нуклеотидов в двух цепях. Создание новых сочетаний генов оказалось возможным благодаря принципиальному сходству строения молекул ДНК у всех видов организмов, а фактическая универсальность генетич. кода делает возможной экспрессию чужеродных генов (проявление их функциональной активности) в любых видах клеток. Этому способствовало также накопление знаний в области химии , выявление молекулярных особенностей организации и функционирования генов (в т.ч. установление механизмов регуляции их экспрессии и возможности подчинения генов действию «чужих» регуляторных элементов), разработка методов секвенирования ДНК, открытие полимеразной цепной реакции, позволившей быстро синтезировать любой фрагмент ДНК.

Важными предпосылками для появления Г.и. явились: открытие плазмид, способных к автономной репликации и переходу из одной бактериальной клетки в другую, и явления трансдукции - переноса некоторых генов бактериофагами , что позволило сформулировать представление о векторах - молекулах-переносчиках генов.

Огромное значение в развитии методологии Г.и. сыграли ферменты, участвующие в преобразовании нуклеиновых кислот: рестриктазы (узнают в молекулах ДНК строго определенные последовательности (сайты) и «разрезают» двойную цепь в этих местах), ДНК-лигазы (ковалентно связывают отдельные фрагменты ДНК), обратная транскриптаза (синтезирует на матрице РНК комплементарную копию ДНК, или кДНК) и др. Только при их наличии создание искусств. структур стало технически выполнимой задачей. Ферменты используются для получения индивидуальных фрагментов ДНК (генов) и создания молекулярных гибридов - рекомбинантных ДНК (рекДНК) на основе ДНК плазмид и вирусов . Последние доставляют нужный ген в клетку хозяина, обеспечивая там его размножение (клонирование) и образование конечного продукта гена (его экспрессию).

Принципы создания рекомбинантных молекул ДНК

Термин «Г. и.» получил распространение после того, как в 1972 П. Бергом с сотр. впервые была получена рекомбинантная ДНК, представлявшая собой гибрид, в котором были соединены фрагменты ДНК бактерии кишечной палочки, её вируса (бактериофага λ) и ДНК обезьяньего вируса SV40. В 1973 С. Коэн с сотр. использовали плазмиду pSC101 и рестриктазу (Eco RI), которая разрывает её в одном месте таким образом, что на концах двухцепочечной молекулы ДНК образуются короткие комплементарные одноцепочечные «хвосты» (обычно 4-6 нуклеотидов). Их назвали «липкими», поскольку они могут спариваться (как бы слипаться) друг с другом. Когда такую ДНК смешивали с фрагментами чужеродной ДНК, обработанной той же рестриктазой и имеющей такие же липкие концы, получались новые гибридные плазмиды, каждая из которых содержала по крайней мере один фрагмент чужеродной ДНК, встроенной в Eco RI-сайт плазмиды. Стало очевидным, что в такие плазмиды можно встраивать фрагменты разнообразных чужеродных ДНК, полученных как из микроорганизмов, так и из высших эукариот.

Основная современная стратегия получения рекДНК сводится к следующему:

  1. в ДНК плазмиды или вируса, способных размножаться независимо от хромосомы , встраивают принадлежащие др. организму фрагменты ДНК, содержащие определ. гены или искусственно полученные последовательности нуклеотидов, представляющие интерес для исследователя;
  2. образующиеся при этом гибридные молекулы вводят в чувствительные прокариотические или эукариотические клетки, где они реплицируются (размножаются, амплифицируются) вместе со встроенными в них фрагментами ДНК;
  3. отбирают клоны клеток в виде колоний на специальных питательных средах (или вирусов - в виде зон просветления - бляшек на слое сплошного роста клеток бактерий или культур тканей животных), содержащие нужные типы молекул рекДНК и подвергают их разностороннему структурно-функциональному изучению.

Для облегчения отбора клеток, в которых присутствует рекДНК, используют векторы, содержащие один и более маркеров. У плазмид, например, такими маркерами могут служить гены устойчивости к антибиотикам (отбор клеток, содержащих рекДНК, проводят по их способности расти в присутствии того или иного антибиотика). РекДНК, несущие нужные гены, отбирают и вводят в реципиентные клетки. С этого момента начинается молекулярное клонирование - получение копий рекДНК, а значит и копий целевых генов в её составе. Только при возможности разделения всех трансфицированных или инфицированных клеток каждый клон будет представлен отдельной колонией клеток и содержать определ. рекДНК. На заключительном этапе производится идентификация (поиск) клонов, в который заключён нужный ген. Она основывается на том, что вставка в рекДНК детерминирует какое-то уникальное свойство содержащей его клетки (напр., продукт экспрессии встроенного гена). В опытах по молекулярному клонированию соблюдаются 2 основных принципа:

  • ни одна из клеток, где происходит клонирование рекДНК, не должна получить более одной плазмидной молекулы или вирусной частицы;
  • последние должны быть способны к репликации.

В качестве векторных молекул в Г.и. используется широкий спектр плазмидных и вирусных ДНК. Наиболее популярны клонирующие векторы, содержащие несколько генетич. маркеров и имеющие по одному месту действия для разных рестриктаз. Таким требованием, напр., лучше всего отвечает плазмида pBR322, которая была сконструирована из исходно существующей в природе плазмиды с помощью методов, применяемых при работе с рекДНК; она содержит гены устойчивости к ампициллину и тетрациклину, содержит по одному сайту узнавания для 19 разных рестриктаз. Частным случаем клонирующих векторов являются экспрессирующие векторы, которые наряду с амплификацией обеспечивают правильную и эффективную экспрессию чужеродных генов в реципиентных клетках. В ряде случаев молекулярные векторы могут обеспечивать интеграцию чужеродной ДНК в геном клетки или вируса (их называют интегративными векторами).

Одна из важнейших задач Г.и. - создание штаммов бактерий или дрожжей, линий клеток тканей животных или растений, а также трансгенных растений и животных (см. Трансгенные организмы), которые обеспечивали бы эффективную экспрессию клонируемых в них генов. Высокий уровень продукции белков достигается в том случае, если гены клонируются в многокопийных векторах, т.к. при этом целевой ген будет находиться в клетке в большом количестве. Важно, чтобы кодирующая последовательность ДНК находилась под контролем промотора, который эффективно узнаётся РНК-полимеразой клетки, а образующаяся мРНК была бы относительно стабильной и эффективно транслировалась. Кроме того, чужеродный белок, синтезируемый в реципиентных клетках, не должен подвергаться быстрой деградации внутриклеточными протеазами. При создании трансгенных животных и растений часто добиваются тканеспецифичной экспрессии вводимых целевых генов.

Поскольку генетич. код универсален, возможность экспрессии гена определяется лишь наличием в его составе сигналов инициации и терминации транскрипции и трансляции, правильно узнаваемых хозяйской клеткой. Т.к. большинство генов высших эукариот имеет прерывистую экзон-интронную структуру, в результате транскрипции таких генов образуется матричная РНК-предшественник (пре-мРНК), из которой при последующем сплайсинге выщепляются некодирующие последовательности - интроны, и образуется зрелая мРНК. Такие гены не могут экспрессироваться в клетках бактерий, где отсутствует система сплайсинга. Для того чтобы преодолеть это препятствие на молекулах зрелой мРНК с помощью обратной транскриптазы синтезируют ДНК-копию (кДНК), к которой с помощью ДНК-полимеразы достраивается вторая цепь. Такие фрагменты ДНК, соответствующие кодирующей последовательности генов (уже не разделённой интронами), можно встраивать в подходящий молекулярный вектор.

Зная аминокислотную последовательность целевого полипептида, можно синтезировать кодирующую его нуклеотидную последовательность, получив т.н. ген-эквивалент, и встроить его в соответствующий экспрессирующий вектор. При создании гена-эквивалента обычно учитывают свойство вырожденности генетич. кода (20 аминокислот кодируются 61 кодоном) и частоту встречаемости кодонов для каждой аминокислоты в тех клетках, в которые планируется вводить этот ген, т.к. состав кодонов может существенно отличаться у разных организмов. Правильно подобранные кодоны могут значительно повысить продукцию целевого белка в реципиентной клетке.

Значение генетической инженерии

Г.и. значительно расширила экспериментальные границы , поскольку позволила вводить в разл. типы клеток чужеродную ДНК и исследовать её функции. Это позволило выявлять общебиологич. закономерности организации и выражения генетич. информации в разл. организмах. Данный подход открыл перспективы создания принципиально новых микробиологич. продуцентов биологически активных веществ. а также животных и растений, несущих функционально активные чужеродные гены. Мн. ранее недоступные биологически активные белки человека, в т.ч. интерфероны, интерлейкины, пептидные гормоны, факторы крови стали нарабатываться в больших количествах в клетках бактерий, дрожжей или млекопитающих, и широко использоваться в медицине. Более того, появилась возможность искусственно создавать гены, кодирующие химерные полипептиды, обладающие свойствами двух или более природных белков. Все это дало мощный импульс к развитию биотехнологии .

Глвными объектами Г.и. являются бактерии Escherichia coli (кишечная палочка) и Bacillus subtilis (сенная палочка), пекарские дрожжи Saccharomices cerevisiae , разл. линии клеток млекопитающих. Спектр объектов генно-инженерного воздействия постоянно расширяется. Интенсивно развиваются направления исследований по созданию трансгенных растений и животных. Методами Г.и. создаются новейшие поколения вакцин против различных инфекционных агентов (первая из них была создана на основе дрожжей, продуцирующих поверхностный белок вируса гепатита В человека). Большое внимание уделяется разработке клонирующих векторов на основе вирусов мле-копитающих и использованию их для создания живых поливалентных вакцин для нужд ветеринарии и медицины, а также в качестве молекулярных векторов для генной терапии раковых опухолей и наследственных заболеваний. Разработан метод прямого введения в организм человека и животных рекДНК, направляющих продукцию в их клетках антигенов разл. инфекционных агентов (ДНК-вакцинация). Новейшим направлением Г.и. является создание съедобных вакцин на основе трансгенных растений, таких как томаты, морковь, картофель, кукуруза, салат и др., продуцирующих иммуногенные белки возбудителей инфекций.

Опасения, связанные с проведением генно-инженерно экспериментов

Вскоре после первых успешных экспериментов по получению рекДНК группа учёных во главе с П. Бергом предложила ограничить проведение ряда генно-инженерных опытов. Эти опасения основывались на том, что свойства организмов, содержащих чужую генетич. информацию, трудно предсказать. Они могут приобрести нежелательные признаки, нарушить экологич. равновесие, привести к возникновению и распространению необычных заболеваний человека, животных, растений. Кроме того отмечалось, что вмешательство человека в генетич. аппарат живых организмов аморально и может вызвать нежелательные социальные и этические последствия. В 1975 эти проблемы обсуждались на междунар. конференции в Асиломаре (США). Её участники пришли к заключению о необходимости продолжения использования методов Г.и. но при обязательном соблюдении определ. правил и рекомендаций. Впоследствии эти правила, установленные в ряде стран, были существенно смягчены и свелись к приёмам обычным в микробиологич. исследованиях, созданию спец. защитных устройств, препятствующих распространению биологич. агентов в окружающей среде, использованию безопасных векторов и реципиентных клеток, не размножающихся в природных условиях.

Часто под Г.и. понимают только работу с рекДНК, а как синонимы Г.и. используются термины «Молекулярное клонирование», «Клонирование ДНК», «Клонирование генов». Однако все эти понятия отражают содержание лишь отдельных генно-инженерных операций и поэтому не эквивалентны термину Г.и. В России как синоним Г.и. широко используется термин «генная инженерия». Однако смысловое содержание этих терминов различно: Г.и. ставит целью создание организмов с новой генетич. программой, в то время как термин «генная инженерия» поясняет как это делается, т.е. путём манипуляции с генами.

Литература

Щелкунов С.Н. Клонирование генов. Новосибирск, 1986; Уотсон Дж ., Туз Дж ., Курц Д. Рекомбинантные ДНК: Краткий курс. М., 1986; Клонирование ДНК. Методы М., 1988; Новое в клонировании ДНК: Методы М., 1989. Щелкунов С.Н. Генетическая инженерия. 2-е изд., Новосибирск, 2004.

Генетическая инженерия и современная биотехнология возникли в результате развития микробиологии, генетики и биохимии. Достижения молекулярной биологии, молекулярной генетики, биологии клетки, а также вновь открытые эксперимен-тальные методы и новое оборудование обеспечили немыслимые темпы развития генетической инженерии и биотехнологии.

Цель генной инженерии

Целью генной инженерии является изменение строения генов, их расположения в хромосоме и регулирование их деятельности в со-ответствии с потребностями человека. Для достижения этой цели применяются различные методы, позволяющие осуществлять в про-мышленных масштабах производство белков, создавать новые сорта растений и породы животных, наиболее отвечающие требованиям, диагностировать и лечить различные инфекционные и наследствен-ные болезни человека.

Объектами исследования генетической инженерии являются вирусы, бактерии, грибы , животные (в том числе организм человека) и растительные клетки. После очищения молекулы ДНК этих живых существ от других веществ клетки материальные различия между ними исчезают. Очищенная молекула ДНК может быть расщеплена с помощью энзимов на специфические отрезки, которые затем при необходимости можно с помощью сшивающих энзимов соединить между собой. Современные методы генетической инженерии позволяют размножать любой отрезок ДНК или заменять любой нуклеотид в цепи ДНК другим. Разумеется, эти успехи достигнуты в результате последовательного изучения закономерностей наследственности.

Генетическая инженерия (генная инженерия) возникла в результате открытия энзимов, специфическим образом разделяющих материальную основу наследственности — молекулу ДНК на отрезки и соединяющих эти отрезки концами друг с другом, а также электрофоретического метода, позволяющего с высокой точностью разделять по длине отрезки ДНК. Создание методов и оборудования для определения специфической последовательности нуклеотидов, образующих молекулу ДНК, а также для автоматического синтеза любого желаемого отрезка ДНК обеспечило развитие генетической инженерии быстрыми темпами.

Развитию у учёных стремления управлять наследст-венностью способствовали доказательства, свидетельствующие о том, что основу наследственности всех растений и животных составляет молекула ДНК, что бактерии и фаги также подчиняются законам наследст-венности, что мутационный процесс является общим для всех живых существ и может регулироваться экспериментальными методами.

Луи Пас-тер

Вели-кий французский учёный Луи Пас-тер, разработав метод получения клонов, первым показал, что бак-терии разнообразны, обладают нас-ледственностью и их свойства тесно связаны с последней (рис. 1, 2).

Туорт и Д’Эррель

В 1915 г. Туорт и Д’Эррель доказали, что фаги (фаги — вирусы, размножающиеся в бактериях), самопроизвольно размножаясь внутри бактерий, могут их уничтожить. Микробиологи возлагали надежды на использование фагов против микробов — возбудителей опасных инфекционных заболеваний. Однако бактерии обладают устойчивостью к фагам вследствие само-произвольных спонтанных мутаций. Наследование этих мутаций предохраняет бактерии от уничтожения со стороны фагов.

Размножаясь внутри клетки, вирусы и фаги могут погубить её или, внедрившись в геном клетки, изменить её наследственность. Для изменения наследственности организма широко используются процессы трансформации и трансдукции .

Джошуа и Эстер Ледерберги

В 1952 г. Джошуа и Эстер Ледерберги, используя метод копирования (репликации) колоний бактерий, до-казали существование самопроиз-вольных мутаций в бактериях (рис. 3). Они разработали метод, позволяющий выделять мутантные клетки с помощью репликации. Под влиянием внешней среды частота мутаций возрастает. Специальные методы позволяют увидеть невооружённым глазом клоны новых штаммов , образовавшихся в результате мутаций.

Метод репликации колоний бактерий осуществляется следующим образом. Стерилизованную бархатную ткань натягивают на поверхность деревянного приспособления и прик-ладывают к колонии бактерий, рас-тущих на поверхности чашки Петри, предназначенной для пересадки реп-лик. Затем колонии переносят в чистую чашку Петри с искусствен-ной питательной средой . Материал с сайта

Этапы генной инженерии

Генная инженерия осуществляется в несколько этапов.

  • Определяют ген, представляющий интерес по его функциям, затем его выделяют, клонируют и изучают его структуру.
  • Выделенный ген соединяют (рекомбинируют) с ДНК какого-нибудь фага, транспозона или плазмиды , имеющей способность рекомбинироваться с хромосомой, и таким путём создают век-торную конструкцию.
  • Векторную конструкцию встраивают в клетку (транс¬формация) и получают трансгенную клетку.
  • Из трансгенной клетки в искусственных условиях можно полу¬чить зрелые организмы.