Что называют импульсом. Импульс тела. Закон сохранения импульса

Пуля 22-го калибра имеет массу всего 2 г. Если кому-нибудь бросить такую пулю, то он легко сможет поймать ее даже без перчаток. Если же попытаться поймать такую пулю, вылетевшую из дула со скоростью 300 м/с, то даже перчатки тут не помогут.

Если на тебя катится игрушечная тележка, ты сможешь остановить ее носком ноги. Если на тебя катится грузовик, следует уносить ноги с его пути.


Рассмотрим задачу, которая демонстрирует связь импульса силы и изменения импульса тела.

Пример. Масса мяча равна 400 г, скорость, которую приобрел мяч после удара - 30 м/с. Сила, с которой нога действовала на мяч - 1500 Н, а время удара 8 мс. Найти импульс силы и изменение импульса тела для мяча.


Изменение импульса тела

Пример. Оценить среднюю силу со стороны пола, действующую на мяч во время удара.

1) Во время удара на мяч действуют две силы: сила реакции опоры , сила тяжести .

Сила реакции изменяется в течение времени удара, поэтому возможно найти среднюю силу реакции пола.

Импульс - это одна из самых фундаментальных характеристик физической системы. Импульс замкнутой системы сохраняется при любых происходящих в ней процессах.

Знакомство с этой величиной начнем с простейшего случая. Импульсом материальной точки массы движущейся со скоростью называется произведение

Закон изменения импульса. Из этого определения можно с помощью второго закона Ньютона найти закон изменения импульса частицы в результате действия на нее некоторой силы Изменяя скорость частицы, сила изменяет и ее импульс: . В случае постоянной действующей силы поэтому

Скорость изменения импульса материальной точки равна равнодействующей всех действующих на нее сил. При постоянной силе промежуток времени в (2) может быть взят любым. Поэтому для изменения импульса частицы за этот промежуток справедливо

В случае изменяющейся со временем силы весь промежуток времени следует разбить на малые промежутки в течение каждого из которых силу можно считать постоянной. Изменение импульса частицы за отдельный промежуток вычисляется по формуле (3):

Полное изменение импульса за весь рассматриваемый промежуток времени равно векторной сумме изменений импульса за все промежутки

Если воспользоваться понятием производной, то вместо (2), очевидно, закон изменения импульса частицы записывается как

Импульс силы. Изменение импульса за конечный промежуток времени от 0 до выражается интегралом

Величина, стоящая в правой части (3) или (5), называется импульсом силы. Таким образом, изменение импульса Др материальной точки за промежуток времени равно импульсу силы, действовавшей на него в течение этого промежутка времени.

Равенства (2) и (4) представляют собой в сущности другую формулировку второго закона Ньютона. Именно в таком виде этот закон и был сформулирован самим Ньютоном.

Физический смысл понятия импульса тесно связан с имеющимся у каждого из нас интуитивным или почерпнутым из повседневного опыта представлением о том, легко ли остановить движущееся тело. Значение здесь имеют не скорость или масса останавливаемого тела, а то и другое вместе, т. е. именно его импульс.

Импульс системы. Понятие импульса становится особенно содержательным, когда оно применяется к системе взаимодействующих материальных точек. Полным импульсом Р системы частиц называется векторная сумма импульсов отдельных частиц в один и тот же момент времени:

Здесь суммирование выполняется по всем входящим в систему частицам, так что число слагаемых равно числу частиц системы.

Внутренние и внешние силы. К закону сохранения импульса системы взаимодействующих частиц легко прийти непосредственно из второго и третьего законов Ньютона. Силы, действующие на каждую из входящих в систему частиц, разобьем на две группы: внутренние и внешние. Внутренняя сила - это сила, с которой частица действует на Внешняя сила - это сила, с которой действуют на частицу все тела, не входящие в состав рассматриваемой системы.

Закон изменения импульса частицы в соответствии с (2) или (4) имеет вид

Сложим почленно уравнения (7) для всех частиц системы. Тогда в левой части, как следует из (6), получим скорость изменения

полного импульса системы Поскольку внутренние силы взаимодействия между частицами удовлетворяют третьему закону Ньютона:

то при сложении уравнений (7) в правой части, где внутренние силы встречаются только парами их сумма обратится в нуль. В результате получим

Скорость изменения полного импульса равна сумме внешних сил, действующих на все частицы.

Обратим внимание на то, что равенство (9) имеет такой же вид, как и закон изменения импульса одной материальной точки, причем в правую часть входят только внешние силы. В замкнутой системе, где внешние силы отсутствуют, полный импульс Р системы не изменяется независимо от того, какие внутренние силы действуют между частицами.

Полный импульс не меняется и в том случае, когда действующие на систему внешние силы в сумме равны нулю. Может оказаться, что сумма внешних сил равна нулю только вдоль какого-то направления. Хотя физическая система в этом случае и не является замкнутой, составляющая полного импульса вдоль этого направления, как следует из формулы (9), остается неизменной.

Уравнение (9) характеризует систему материальных точек в целом, но относится к определенному моменту времени. Из него легко получить закон изменения импульса системы за конечный промежуток времени Если действующие внешние силы неизменны в течение этого промежутка, то из (9) следует

Если внешние силы изменяются со временем, то в правой части (10) будет стоять сумма интегралов по времени от каждой из внешних сил:

Таким образом, изменение полного импульса системы взаимодействующих частиц за некоторый промежуток времени равно векторной сумме импульсов внешних сил за этот промежуток.

Сравнение с динамическим подходом. Сравним подходы к решению механических задач на основе уравнений динамики и на основе закона сохранения импульса на следующем простом примере.

щенный с сортировочной горки железнодорожный вагон массы движущийся с постоянной скоростью сталкивается с неподвижным вагоном массы и сцепляется с ним. С какой скоростью движутся сцепленные вагоны?

Нам ничего не известно о силах, с которыми взаимодействуют вагоны во время столкновения, кроме того факта, что на основании третьего закона Ньютона они в каждый момент равны по модулю и противоположны по направлению. При динамическом подходе необходимо задаваться какой-то моделью взаимодействия вагонов. Простейшее возможное предположение - что силы взаимодействия постоянны в течение всего времени, пока происходит сцепка. В таком случае с помощью второго закона Ньютона для скоростей каждого из вагонов спустя время после начала сцепки можно написать

Очевидно, что процесс сцепки заканчивается, когда скорости вагонов становятся одинаковыми. Предположив, что это произойдет спустя время х, имеем

Отсюда можно выразить импульс силы

Подставляя это значение в любую из формул (11), например во вторую, находим выражение для конечной скорости вагонов:

Конечно, сделанное предположение о постоянстве силы взаимодействия вагонов в процессе их сцепки весьма искусственно. Использование более реалистичных моделей приводит к более громоздким расчетам. Однако в действительности результат для конечной скорости вагонов не зависит от картины взаимодействия (разумеется, при условии, что в конце процесса вагоны сцепились и движутся с одной и той же скоростью). Проще всего в этом убедиться, используя закон сохранения импульса.

Поскольку никакие внешние силы в горизонтальном направлении на вагоны не действуют, полный импульс системы остается неизменным. До столкновения он равен импульсу первого вагона После сцепки импульс вагонов равен Приравнивая эти значения, сразу находим

что, естественно, совпадает с ответом, полученным на основе динамического подхода. Использование закона сохранения импульса позволило найти ответ на поставленный вопрос с помощью менее громоздких математических выкладок, причем этот ответ обладает большей общностью, так как при его получении не использовалась какая бы то ни было конкретная модель взаимодействия.

Проиллюстрируем применение закона сохранения импульса системы на примере более сложной задачи, где уже выбор модели для динамического решения затруднителен.

Задача

Разрыв снаряда. Снаряд разрывается в верхней точке траектории, находящейся на высоте над поверхностью земли, на два одинаковых осколка. Один из них падает на землю точно под точкой разрыва спустя время Во сколько раз изменится расстояние от этой точки по горизонтали, на которое улетит второй осколок, по сравнению с расстоянием, на котором упал бы неразорвавшийся снаряд?

Решение, Прежде всего напишем выражение для расстояния на которое улетел бы неразорвавшийся снаряд. Так как скорость снаряда в верхней точке (обозначим ее через направлена горизонтально, то расстояние равно произведению и на время падения с высоты без начальной скорости, равное на которое улетел бы неразорвавшийся снаряд. Так как скорость снаряда в верхней точке (обозначим ее через направлена горизонтально, то расстояние равно произведению на время падения с высоты без начальной скорости, равное тела, рассматриваемого как система материальных точек:

Разрыв снаряда на осколки происходит почти мгновенно, т. е. разрывающие его внутренние силы действуют в течение очень короткого промежутка времени. Очевидно, что изменением скорости осколков под действием силы тяжести за столь короткий промежуток времени можно пренебречь по сравнению с изменением их скорости под действием этих внутренних сил. Поэтому, хотя рассматриваемая система, строго говоря, не является замкнутой, можно считать, что ее полный импульс при разрыве снаряда остается неизменным.

Из закона сохранения импульса можно сразу выявить некоторые особенности движения осколков. Импульс - векторная величина. До разрыва он лежал в плоскости траектории снаряда. Поскольку, как сказано в условии, скорость одного из осколков вертикальна, т. е. его импульс остался в той же плоскости, то и импульс второго осколка также лежит в этой плоскости. Значит, и траектория второго осколка останется в той же плоскости.

Далее из закона сохранения горизонтальной составляющей полного импульса следует, что горизонтальная составляющая скорости второго осколка равна ибо его масса равна половине массы снаряда, а горизонтальная составляющая импульса первого осколка по условию равна нулю. Поэтому горизонтальная дальность полета второго осколка от

места разрыва равна произведению на время его полета. Как найти это время?

Для этого вспомним, что вертикальные составляющие импульсов (а следовательно, и скоростей) осколков должны быть равны по модулю и направлены в противоположные стороны. Время полета интересующего нас второго осколка зависит, очевидно, от того, вверх или вниз направлена вертикальная составляющая его скорости в момент разрыва снаряда (рис. 108).

Рис. 108. Траектория осколков после разрыва снаряда

Это легко выяснить, сравнив данное в условии время отвесного падения первого осколка с временем свободного падения с высоты А. Если то начальная скорость первого осколка направлена вниз, а вертикальная составляющая скорости второго - вверх, и наоборот (случаи а и на рис. 108). Под углом а к вертикали в ящик влетает пуля со скоростью и и почти мгновенно застревает в песке. Ящик приходит в движение, а затем останавливается. Сколько времени продолжалось движение ящика? Отношение массы пули к массе ящика равно у. При каких условиях ящик вообще не сдвинется?

2. При радиоактивном распаде покоившегося первоначально нейтрона образуются протон, электрон и антинейтрино. Импульсы протона и электрона равны а угол между ними а. Определите импульс антинейтрино.

Что называется импульсом одной частицы и импульсом системы материальных точек?

Сформулируйте закон изменения импульса одной частицы и системы материальных точек.

Рис. 109. К определению импульса силы из графика

Почему внутренние силы не входят явно в закон изменения импульса системы?

В каких случаях законом сохранения импульса системы можно пользоваться и при наличии внешних сил?

Какие преимущества дает использование закона сохранения импульса по сравнению с динамическим подходом?

Когда на тело действует переменная сила ее импульс определяется правой частью формулы (5) - интегралом от по промежутку времени, в течение которого она действует. Пусть нам дан график зависимости (рис. 109). Как по этому графику определить импульс силы для каждого из случаев а и

Пусть на тело массой m в течение некоторого малого промежутка времени Δt действовала сила Под действием этой силы скорость тела изменилась на Следовательно, в течение времени Δt тело двигалось с ускорением

Из основного закона динамики (второго закона Ньютона ) следует:

Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела (или количеством движения ). Импульс тела – векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду (кг·м/с) .

Физическая величина, равная произведению силы на время ее действия, называется импульсом силы . Импульс силы также является векторной величиной.

В новых терминах второй закон Ньютона может быть сформулирован следующим образом:

И зменение импульса тела (количества движения) равно импульсу силы .

Обозначив импульс тела буквой второй закон Ньютона можно записать в виде

Именно в таком общем виде сформулировал второй закон сам Ньютон. Сила в этом выражении представляет собой равнодействующую всех сил, приложенных к телу. Это векторное равенство может быть записано в проекциях на координатные оси:

Таким образом, изменение проекции импульса тела на любую из трех взаимно перпендикулярных осей равно проекции импульса силы на эту же ось. Рассмотрим в качестве примера одномерное движение, т. е. движение тела по одной из координатных осей (например, оси OY ). Пусть тело свободно падает с начальной скоростью υ 0 под действием силы тяжести; время падения равно t . Направим ось OY вертикально вниз. Импульс силы тяжести F т = mg за время t равен mgt . Этот импульс равен изменению импульса тела

Этот простой результат совпадает с кинематической формулой для скорости равноускоренного движения . В этом примере сила оставалась неизменной по модулю на всем интервале времени t . Если сила изменяется по величине, то в выражение для импульса силы нужно подставлять среднее значение силы F ср на промежутке времени ее действия. Рис. 1.16.1 иллюстрирует метод определения импульса силы, зависящей от времени.

Выберем на оси времени малый интервал Δt , в течение которого сила F (t ) остается практически неизменной. Импульс силы F (t ) Δt за время Δt будет равен площади заштрихованного столбика. Если всю ось времени на интервале от 0 до t разбить на малые интервалы Δt i , а затем просуммировать импульсы силы на всех интервалах Δt i , то суммарный импульс силы окажется равным площади, которую образует ступенчатая кривая с осью времени. В пределе (Δt i → 0) эта площадь равна площади, ограниченной графиком F (t ) и осью t . Этот метод определения импульса силы по графику F (t ) является общим и применим для любых законов изменения силы со временем. Математически задача сводится к интегрированию функции F (t ) на интервале .

Импульс силы, график которой представлен на рис. 1.16.1, на интервале от t 1 = 0 с до t 2 = 10 с равен:

В этом простом примере

В некоторых случаях среднюю силу F ср можно определить, если известно время ее действия и сообщенный телу импульс. Например, сильный удар футболиста по мячу массой 0,415 кг может сообщить ему скорость υ = 30 м/с. Время удара приблизительно равно 8·10 –3 с.

Импульс p , приобретенный мячом в результате удара есть:

Следовательно, средняя сила F ср, с которой нога футболиста действовала на мяч во время удара, есть:

Это очень большая сила. Она приблизительно равна весу тела массой 160 кг.

Если движение тела во время действия силы происходило по некоторой криволинейной траектории, то начальный и конечный импульсы тела могут отличаться не только по модулю, но и по направлению. В этом случае для определения изменения импульса удобно использовать диаграмму импульсов , на которой изображаются вектора и , а также вектор построенный по правилу параллелограмма. В качестве примера на рис. 1.16.2 изображена диаграмма импульсов для мяча, отскакивающего от шероховатой стенки. Мяч массой m налетел на стенку со скоростью под углом α к нормали (ось OX ) и отскочил от нее со скоростью под углом β. Во время контакта со стеной на мяч действовала некоторая сила направление которой совпадает с направлением вектора

При нормальном падении мяча массой m на упругую стенку со скоростью ,после отскока мяч будет иметь скорость . Следовательно, изменение импульса мяча за время отскока равно

В проекциях на ось OX этот результат можно записать в скалярной форме Δp x = –2m υx . Ось OX направлена от стенки (как на рис. 1.16.2), поэтому υx < 0 и Δp x > 0. Следовательно, модуль Δp изменения импульса связан с модулем υ скорости мяча соотношением Δp = 2m υ.

Импульсом (количеством движения) тела называют физическую векторную величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р . Импульс тела равен произведению массы тела на его скорость, т.е. он рассчитывается по формуле:

Направление вектора импульса совпадает с направлением вектора скорости тела (направлен по касательной к траектории). Единица измерения импульса – кг∙м/с.

Общий импульс системы тел равен векторной сумме импульсов всех тел системы:

Изменение импульса одного тела находится по формуле (обратите внимание, что разность конечного и начального импульсов векторная):

где: p н – импульс тела в начальный момент времени, p к – в конечный. Главное не путать два последних понятия.

Абсолютно упругий удар – абстрактная модель соударения, при которой не учитываются потери энергии на трение, деформацию, и т.п. Никакие другие взаимодействия, кроме непосредственного контакта, не учитываются. При абсолютно упругом ударе о закрепленную поверхность скорость объекта после удара по модулю равна скорости объекта до удара, то есть величина импульса не меняется. Может поменяться только его направление. При этом угол падения равен углу отражения.

Абсолютно неупругий удар – удар, в результате которого тела соединяются и продолжают дальнейшее своё движение как единое тело. Например, пластилиновый шарик при падении на любую поверхность полностью прекращает свое движение, при столкновении двух вагонов срабатывает автосцепка и они так же продолжают двигаться дальше вместе.

Закон сохранения импульса

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой .

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой. Этот фундаментальный закон природы называется законом сохранения импульса (ЗСИ) . Следствием его являются законы Ньютона. Второй закон Ньютона в импульсной форме может быть записан следующим образом:

Как следует из данной формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Аналогично можно рассуждать для равенства нулю проекции силы на выбранную ось. Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

Аналогичные записи можно составить и для остальных координатных осей. Так или иначе, нужно понимать, что при этом сами импульсы могут меняться, но именно их сумма остается постоянной. Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны.

Сохранение проекции импульса

Возможны ситуации, когда закон сохранения импульса выполняется только частично, то есть только при проектировании на одну ось. Если на тело действует сила, то его импульс не сохраняется. Но всегда можно выбрать ось так, чтобы проекция силы на эту ось равнялась нулю. Тогда проекция импульса на эту ось будет сохраняться. Как правило, эта ось выбирается вдоль поверхности по которой движется тело.

Многомерный случай ЗСИ. Векторный метод

В случаях если тела движутся не вдоль одной прямой, то в общем случае, для того чтобы применить закон сохранения импульса, нужно расписать его по всем координатным осям, участвующим в задаче. Но решение подобной задачи можно сильно упростить, если использовать векторный метод. Он применяется если одно из тел покоится до или после удара. Тогда закон сохранения импульса записывается одним из следующих способов:

Из правил сложения векторов следует, что три вектора в этих формулах должны образовывать треугольник. Для треугольников применяется теорема косинусов.

Изучив законы Ньютона, мы видим, что с их помощью можно решить основные задачи механики, если нам известны все силы, действующие на тело. Есть ситуации, в которых определить эти величины затруднительно или вообще невозможно. Рассмотрим несколько таких ситуаций. При столкновении двух биллиардных шаров или автомобилей мы можем утверждать о действующих силах, что это их природа, здесь действуют силы упругости. Однако ни их модулей, ни их направлений мы точно установить не сможем, тем более что эти силы имеют крайне малое время действия. При движении ракет и реактивных самолетов мы также мало что можем сказать о силах, приводящих указанные тела в движение. В таких случаях применяются методы, позволяющие уйти от решения уравнений движения, а сразу воспользоваться следствиями этих уравнений. При этом вводятся новые физические величины. Рассмотрим одну из этих величин, называемую импульсом тела

Стрела, выпускаемая из лука. Чем дольше продолжается контакт тетивы со стрелой (∆t), тем больше изменение импульса стрелы (∆), а следовательно, тем выше ее конечная скорость.

Два сталкивающихся шарика. Пока шарики находятся в контакте, они действуют друг на друга с равными по модулю силами, как учит нас третий закон Ньютона. Значит, изменения их импульсов также должны быть равны по модулю, даже если массы шариков не равны.

Проанализировав формулы, можно сделать два важных вывода:

1. Одинаковые силы, действующие в течение одинакового промежутка времени, вызывают одинаковые изменения импульса у различных тел, независимо от массы последних.

2. Одного и того же изменения импульса тела можно добиться, либо действуя небольшой силой в течение длительного промежутка времени, либо действуя кратковременно большой силой на то же самое тело.

Согласно второму закону Ньютона, можем записать:

∆t = ∆ = ∆ / ∆t

Отношение изменения импульса тела к промежутку времени, в течение которого это изменение произошло, равно сумме сил, действующих на тело.

Проанализировав это уравнение, мы видим, что второй закон Ньютона позволяет расширить класс решаемых задач и включить задачи, в которых масса тел изменяется с течением времени.

Если же попытаться решить задачи с переменной массой тел при помощи обычной формулировки второго закона Ньютона:

то попытка такого решения привела бы к ошибке.

Примером тому могут служить уже упоминаемые реактивный самолет или космическая ракета, которые при движении сжигают топливо, и продукты этого сжигаемого выбрасывают в окружающее пространство. Естественно, масса самолета или ракеты уменьшается по мере расхода топлива.

Несмотря на то что второй закон Ньютона в виде «равнодействующая сила равна произведению массы тела на его ускорение» позволяет решить довольно широкий класс задач, существуют случаи движения тел, которые не могут быть полностью описаны этим уравнением. В таких случаях необходимо применять другую формулировку второго закона, связывающую изменение импульса тела с импульсом равнодействующей силы. Кроме того, существует ряд задач, в которых решение уравнений движения является математически крайне затруднительным либо вообще невозможным. В таких случаях нам полезно использовать понятие импульса.

С помощью закона сохранения импульса и взаимосвязи импульса силы и импульса тела мы можем вывести второй и третий закон Ньютона.

Второй закон Ньютона выводится из соотношения импульса силы и импульса тела.

Импульс силы равен изменению импульса тела:

Произведя соответствующие переносы, мы получим зависимость силы от ускорения, ведь ускорение определяется как отношение изменения скорости ко времени, в течение которого это изменение произошло:

Подставив значения в нашу формулу, получим формулу второго закона Ньютона:

Для выведения третьего закона Ньютона нам понадобится закон сохранения импульса.

Векторы подчеркивают векторность скорости, то есть то, что скорость может изменяться по направлению. После преобразований получим:

Так как промежуток времени в замкнутой системе был величиной постоянной для обоих тел, мы можем записать:

Мы получили третий закон Ньютона: два тела взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению. Векторы этих сил направлены навстречу друг к другу, соответственно, модули этих сил равны по своему значению.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.

Домашнее задание

  1. Дать определение импульсу тела, импульсу силы.
  2. Как связаны импульс тела с импульсом силы?
  3. Какие выводы можно сделать по формулам импульса тела и импульса силы?
  1. Интернет-портал Questions-physics.ru ().
  2. Интернет-портал Frutmrut.ru ().
  3. Интернет-портал Fizmat.by ().