Значение синусов по четвертям. Знаки тригонометрических функций. Ось тангенсов и ось котангенсов

Знак тригонометрической функции зависит исключительно от координатной четверти, в которой располагается числовой аргумент. В прошлый раз мы учились переводить аргументы из радианной меры в градусную (см. урок «Радианная и градусная мера угла »), а затем определять эту самую координатную четверть. Теперь займемся, собственно, определением знака синуса, косинуса и тангенса.

Синус угла α — это ордината (координата y ) точки на тригонометрической окружности, которая возникает при повороте радиуса на угол α.

Косинус угла α — это абсцисса (координата x ) точки на тригонометрической окружности, которая возникает при повороте радиуса на угол α.

Тангенс угла α — это отношение синуса к косинусу. Или, что то же самое, отношение координаты y к координате x .

Обозначение: sin α = y ; cos α = x ; tg α = y : x .

Все эти определения знакомы вам из курса алгебры старших классов. Однако нас интересуют не сами определения, а следствия, которые возникают на тригонометрической окружности. Взгляните:

Синим цветом обозначено положительное направление оси OY (ось ординат), красным — положительное направление оси OX (ось абсцисс). На этом «радаре» знаки тригонометрических функций становятся очевидными. В частности:

  1. sin α > 0, если угол α лежит в I или II координатной четверти. Это происходит из-за того, что по определению синус — это ордината (координата y ). А координата y будет положительной именно в I и II координатных четвертях;
  2. cos α > 0, если угол α лежит в I или IV координатной четверти. Потому что только там координата x (она же — абсцисса) будет больше нуля;
  3. tg α > 0, если угол α лежит в I или III координатной четверти. Это следует из определения: ведь tg α = y : x , поэтому он положителен лишь там, где знаки x и y совпадают. Это происходит в I координатной четверти (здесь x > 0, y > 0) и III координатной четверти (x < 0, y < 0).

Для наглядности отметим знаки каждой тригонометрической функции — синуса, косинуса и тангенса — на отдельных «радарах». Получим следующую картинку:


Заметьте: в своих рассуждениях я ни разу не говорил о четвертой тригонометрической функции — котангенсе. Дело в том, что знаки котангенса совпадают со знаками тангенса — никаких специальных правил там нет.

Теперь предлагаю рассмотреть примеры, похожие на задачи B11 из пробного ЕГЭ по математике, который проходил 27 сентября 2011. Ведь лучший способ понять теорию — это практика. Желательно — много практики. Разумеется, условия задач были немного изменены.

Задача. Определите знаки тригонометрических функций и выражений (значения самих функций считать не надо):

  1. sin (3π/4);
  2. cos (7π/6);
  3. tg (5π/3);
  4. sin (3π/4) · cos (5π/6);
  5. cos (2π/3) · tg (π/4);
  6. sin (5π/6) · cos (7π/4);
  7. tg (3π/4) · cos (5π/3);
  8. ctg (4π/3) · tg (π/6).

План действий такой: сначала переводим все углы из радианной меры в градусную (π → 180°), а затем смотрим в какой координатной четверти лежит полученное число. Зная четверти, мы легко найдем знаки — по только что описанным правилам. Имеем:

  1. sin (3π/4) = sin (3 · 180°/4) = sin 135°. Поскольку 135° ∈ , это угол из II координатной четверти. Но синус во II четверти положителен, поэтому sin (3π/4) > 0;
  2. cos (7π/6) = cos (7 · 180°/6) = cos 210°. Т.к. 210° ∈ , это угол из III координатной четверти, в которой все косинусы отрицательны. Следовательно, cos (7π/6) < 0;
  3. tg (5π/3) = tg (5 · 180°/3) = tg 300°. Поскольку 300° ∈ , мы находимся в IV четверти, где тангенс принимает отрицательные значения. Поэтому tg (5π/3) < 0;
  4. sin (3π/4) · cos (5π/6) = sin (3 · 180°/4) · cos (5 · 180°/6) = sin 135° · cos 150°. Разберемся с синусом: т.к. 135° ∈ , это II четверть, в которой синусы положительны, т.е. sin (3π/4) > 0. Теперь работаем с косинусом: 150° ∈ — снова II четверть, косинусы там отрицательны. Поэтому cos (5π/6) < 0. Наконец, следуя правилу «плюс на минус дает знак минус», получаем: sin (3π/4) · cos (5π/6) < 0;
  5. cos (2π/3) · tg (π/4) = cos (2 · 180°/3) · tg (180°/4) = cos 120° · tg 45°. Смотрим на косинус: 120° ∈ — это II координатная четверть, поэтому cos (2π/3) < 0. Смотрим на тангенс: 45° ∈ — это I четверть (самый обычный угол в тригонометрии). Тангенс там положителен, поэтому tg (π/4) > 0. Опять получили произведение, в котором множители разных знаков. Поскольку «минус на плюс дает минус», имеем: cos (2π/3) · tg (π/4) < 0;
  6. sin (5π/6) · cos (7π/4) = sin (5 · 180°/6) · cos (7 · 180°/4) = sin 150° · cos 315°. Работаем с синусом: поскольку 150° ∈ , речь идет о II координатной четверти, где синусы положительны. Следовательно, sin (5π/6) > 0. Аналогично, 315° ∈ — это IV координатная четверть, косинусы там положительны. Поэтому cos (7π/4) > 0. Получили произведение двух положительных чисел — такое выражение всегда положительно. Заключаем: sin (5π/6) · cos (7π/4) > 0;
  7. tg (3π/4) · cos (5π/3) = tg (3 · 180°/4) · cos (5 · 180°/3) = tg 135° · cos 300°. Но угол 135° ∈ — это II четверть, т.е. tg (3π/4) < 0. Аналогично, угол 300° ∈ — это IV четверть, т.е. cos (5π/3) > 0. Поскольку «минус на плюс дает знак минус», имеем: tg (3π/4) · cos (5π/3) < 0;
  8. ctg (4π/3) · tg (π/6) = ctg (4 · 180°/3) · tg (180°/6) = ctg 240° · tg 30°. Смотрим на аргумент котангенса: 240° ∈ — это III координатная четверть, поэтому ctg (4π/3) > 0. Аналогично, для тангенса имеем: 30° ∈ — это I координатная четверть, т.е. самый простой угол. Поэтому tg (π/6) > 0. Снова получили два положительных выражения — их произведение тоже будет положительным. Поэтому ctg (4π/3) · tg (π/6) > 0.

В заключение рассмотрим несколько более сложных задач. Помимо выяснения знака тригонометрической функции, здесь придется немного посчитать — именно так, как это делается в настоящих задачах B11. В принципе, это почти настоящие задачи, которые действительно встречается в ЕГЭ по математике.

Задача. Найдите sin α, если sin 2 α = 0,64 и α ∈ [π/2; π].

Поскольку sin 2 α = 0,64, имеем: sin α = ±0,8. Осталось решить: плюс или минус? По условию, угол α ∈ [π/2; π] — это II координатная четверть, где все синусы положительны. Следовательно, sin α = 0,8 — неопределенность со знаками устранена.

Задача. Найдите cos α, если cos 2 α = 0,04 и α ∈ [π; 3π/2].

Действуем аналогично, т.е. извлекаем квадратный корень: cos 2 α = 0,04 ⇒ cos α = ±0,2. По условию, угол α ∈ [π; 3π/2], т.е. речь идет о III координатной четверти. Там все косинусы отрицательны, поэтому cos α = −0,2.

Задача. Найдите sin α, если sin 2 α = 0,25 и α ∈ .

Имеем: sin 2 α = 0,25 ⇒ sin α = ±0,5. Снова смотрим на угол: α ∈ — это IV координатная четверть, в которой, как известно, синус будет отрицательным. Таким образом, заключаем: sin α = −0,5.

Задача. Найдите tg α, если tg 2 α = 9 и α ∈ .

Все то же самое, только для тангенса. Извлекаем квадратный корень: tg 2 α = 9 ⇒ tg α = ±3. Но по условию угол α ∈ — это I координатная четверть. Все тригонометрические функции, в т.ч. тангенс, там положительны, поэтому tg α = 3. Все!

В прошлом уроке мы с вами успешно освоили (или повторили – кому как) ключевые понятия всей тригонометрии. Это тригонометрический круг , угол на круге , синус и косинус этого угла , а также освоили знаки тригонометрических функций по четвертям . Освоили подробно. На пальцах, можно сказать.

Но этого пока мало. Для успешного практического применения всех этих простых понятий нам необходим ещё один полезный навык. А именно – правильная работа с углами в тригонометрии. Без этого умения в тригонометрии – никак. Даже в самых примитивных примерах. Почему? Да потому, что угол – ключевая действующая фигура во всей тригонометрии! Нет, не тригонометрические функции, не синус с косинусом, не тангенс с котангенсом а именно сам угол . Нет угла – нету и тригонометрических функций, да…

Как правильно работать с углами на круге? Для этого нам надо железно усвоить два пункта.

1) Как отсчитываются углы на круге?

2) В чём они считаются (измеряются)?

Ответ на первый вопрос – и есть тема сегодняшнего урока. С первым вопросом мы детально разберёмся прямо здесь и сейчас. Ответ на второй вопрос здесь не дам. Ибо достаточно развёрнутый он. Как и сам второй вопрос очень скользкий, да.) Вдаваться в подробности пока не буду. Это – тема следующего отдельного урока.

Приступим?

Как отсчитываются углы на круге? Положительные и отрицательные углы.

У прочитавших название параграфа, возможно, уже волосы встали дыбом. Как так?! Отрицательные углы? Разве такое вообще возможно?

К отрицательным числам мы с вами уже попривыкли. На числовой оси их изображать умеем: справа от нуля положительные, слева от нуля отрицательные. Да и на градусник за окном поглядываем периодически. Особенно зимой, в мороз.) И денежки на телефоне в "минус" (т.е. долг ) иногда уходят. Это всё знакомо.

А что же с углами? Оказывается, отрицательные углы в математике тоже бывают! Всё зависит от того, как отсчитывать этот самый угол… нет, не на числовой прямой, а на числовой окружности! То бишь, на круге. Круг – вот он, аналог числовой прямой в тригонометрии!

Итак, как же отсчитываются углы на круге? Ничего не поделать, придётся нам для начала этот самый круг нарисовать.

Я нарисую вот такую красивую картинку:

Она очень похожа на картинки из прошлого урока. Есть оси, есть окружность, есть угол. Но есть и новая информация.

Также я добавил циферки 0°, 90°, 180°, 270° и 360° на осях. Вот это уже поинтереснее.) Что это за циферки? Правильно! Это значения углов, отсчитанные от нашей неподвижной стороны, которые попадают на координатные оси. Вспоминаем, что неподвижная сторона угла у нас всегда крепко-накрепко привязана к положительной полуоси ОХ. И любой угол в тригонометрии отсчитывается именно от этой полуоси. Это базовое начало отсчёта углов надо держать в голове железно. А оси – они же под прямым углом пересекаются, верно? Вот и прибавляем по 90° в каждой четверти.

И ещё добавлена красная стрелочка. С плюсом. Красная – это специально, чтобы в глаза бросалась. И в память хорошенько врезалась. Ибо это надо запомнить надёжно.) Что же означает эта стрелочка?

Так вот оказывается, если наш угол мы будем крутить по стрелочке с плюсом (против часовой стрелки, по ходу нумерации четвертей), то угол будет считаться положительным! В качестве примера на рисунке показан угол +45°. Кстати, обратите внимание, что осевые углы 0°, 90°, 180°, 270° и 360° также отмотаны именно в плюс! По красной стрелочке.

А теперь посмотрим на другую картинку:


Здесь почти всё то же самое. Только углы на осях пронумерованы в обратную сторону. По часовой стрелке. И имеют знак "минус".) Ещё нарисована синяя стрелочка. Также с минусом. Эта стрелочка – направление отрицательного отсчёта углов на круге. Она нам показывает, что, если мы будем откладывать наш угол по ходу часовой стрелки , то угол будет считаться отрицательным. Для примера я показал угол -45°.

Кстати, прошу заметить, что нумерация четвертей никогда не меняется! Неважно, в плюс или в минус мы мотаем углы. Всегда строго против часовой стрелки.)

Запоминаем:

1. Начало отсчёта углов – от положительной полуоси ОХ. По часам – "минус", против часов – "плюс".

2. Нумерация четвертей всегда против часовой стрелки вне зависимости от направления исчисления углов.

Кстати говоря, подписывать углы на осях 0°, 90°, 180°, 270°, 360°, каждый раз рисуя круг – вовсе не обязаловка. Это чисто для понимания сути сделано. Но эти циферки обязательно должны присутствовать в вашей голове при решении любой задачи по тригонометрии. Почему? Да потому, что эти элементарные знания дают ответы на очень многие другие вопросы во всей тригонометрии! Самый главный вопрос – в какую четверть попадает интересующий нас угол? Хотите верьте, хотите нет, но правильный ответ на этот вопрос решает львиную долю всех остальных проблем с тригонометрией. Этим важным занятием (распределением углов по четвертям) мы займёмся в этом же уроке, но чуть позже.

Величины углов, лежащих на осях координат (0°, 90°, 180°, 270° и 360°), надо запомнить! Запомнить накрепко, до автоматизма. Причём как в плюс, так и в минус.

А вот с этого момента начинаются первые сюрпризы. И вместе с ними и каверзные вопросы в мой адрес, да...) А что будет, если отрицательный угол на круге совпадёт с положительным? Выходит, что одну и ту же точку на круге можно обозначить как положительным углом, так и отрицательным???

Совершенно верно! Так и есть.) Например, положительный угол +270° занимает на круге то же самое положение , что и отрицательный угол -90°. Или, например, положительный угол +45° на круге займёт то же самое положение , что и отрицательный угол -315°.

Смотрим на очередной рисунок и всё видим:


Точно так же положительный угол +150° попадёт туда же, куда и отрицательный угол -210°, положительный угол +230° – туда же, куда и отрицательный угол -130°. И так далее…

И что теперь делать? Как именно считать углы, если можно и так и сяк? Как правильно?

Ответ: по-всякому правильно! Ни одно из двух направлений отсчёта углов математика не запрещает. А выбор конкретного направления зависит исключительно от задания. Если в задании ничего не сказано прямым текстом про знак угла (типа "определите наибольший отрицательный угол" и т.п.), то работаем с наиболее удобными нам углами.

Конечно, например, в таких крутых темах, как тригонометрические уравнения и неравенства направление исчисления углов может колоссально влиять на ответ. И в соответствующих темах мы эти подводные камни рассмотрим.

Запоминаем:

Любую точку на круге можно обозначить как положительным, так и отрицательным углом. Любым! Каким хотим.

А теперь призадумаемся вот над чем. Мы выяснили, что угол 45° в точности совпадает с углом -315°? Как же я узнал про эти самые 315 ° ? Не догадываетесь? Да! Через полный оборот.) В 360°. У нас есть угол 45°. Сколько не хватает до полного оборота? Отнимаем 45 ° от 360 ° – вот и получаем 315 ° . Мотаем в отрицательную сторону – и получаем угол -315°. Всё равно непонятно? Тогда смотрим на картинку выше ещё раз.

И так надо поступать всегда при переводе положительных углов в отрицательные (и наоборот) – рисуем круг, отмечаем примерно заданный угол, считаем, сколько градусов не хватает до полного оборота, и мотаем получившуюся разность в противоположную сторону. И всё.)

Чем ещё интересны углы, занимающие на круге одно и то же положение, как вы думаете? А тем, что у таких углов совершенно одинаковые синус, косинус, тангенс и котангенс! Всегда!

Например:

Sin45° = sin(-315°)

Cos120° = cos(-240°)

Tg249° = tg(-111°)

Ctg333° = ctg(-27°)

А вот это уже крайне важно! Зачем? Да всё за тем же!) Для упрощения выражений. Ибо упрощение выражений – ключевая процедура успешного решения любых заданий по математике. И по тригонометрии в том числе.

Итак, с общим правилом отсчёта углов на круге разобрались. Ну а коли мы тут заикнулись про полные обороты, про четверти, то пора бы уже покрутить и порисовать эти самые углы. Порисуем?)

Начнём пока с положительных углов. Они попроще в рисовании будут.

Рисуем углы в пределах одного оборота (между 0° и 360°).

Нарисуем, например, угол 60°. Тут всё просто, никаких заморочек. Рисуем координатные оси, круг. Можно прямо от руки, безо всякого циркуля и линейки. Рисуем схематично : у нас не черчение с вами. Никаких ГОСТов соблюдать не надо, не накажут.)

Можно (для себя) отметить значения углов на осях и указать стрелочку в направлении против часов. Ведь мы же в плюс откладывать собираемся?) Можно этого и не делать, но в голове держать всяко надо.

И теперь проводим вторую (подвижную) сторону угла. В какой четверти? В первой, разумеется! Ибо 60 градусов – это строго между 0° и 90°. Вот и рисуем в первой четверти. Под углом примерно 60 градусов к неподвижной стороне. Как отсчитать примерно 60 градусов без транспортира? Легко! 60° – это две трети от прямого угла! Делим мысленно первую чертвертинку круга на три части, забираем себе две трети. И рисуем... Сколько у нас там по факту получится (если приложить транспортир и померить) – 55 градусов или же 64 – неважно! Важно, что всё равно где-то около 60° .

Получаем картинку:


Вот и всё. И инструментов не понадобилось. Развиваем глазомер! В задачах по геометрии пригодится.) Этот неказистый рисунок бывает незаменим, когда надо нацарапать круг и угол на скорую руку, не особо задумываясь о красоте. Но при этом нацарапать правильно , без ошибок, со всей необходимой информацией. Например, как вспомогательное средство при решении тригонометрических уравнений и неравенств.

Нарисуем теперь угол, например, 265°. Прикидываем, где он может располагаться? Ну, ясное дело, что не в первой четверти и даже не во второй: они на 90 и на 180 градусов оканчиваются. Можно сообразить, что 265° - это 180° плюс ещё 85°. То есть, к отрицательной полуоси ОХ (там, где 180°) надо добавить примерно 85°. Или, что ещё проще, догадаться, что 265° не дотягивает до отрицательной полуоси OY (там, где 270°) каких-то несчастных 5°. Одним словом, в третьей четверти будет этот угол. Очень близко к отрицательной полуоси OY, к 270 градусам, но всё-таки в третьей!

Рисуем:


Повторюсь, абсолютная точность здесь не требуется. Пускай в реальности этот угол получился, скажем 263 градуса. Но на самый главный вопрос (какая четверть?) мы ответили безошибочно. Почему этот вопрос самый главный? Да потому, что любая работа с углом в тригонометрии (неважно, будем мы рисовать этот угол или не будем) начинается с ответа именно на этот вопрос! Всегда. Если этот вопрос проигнорировать или пробовать на него ответить мысленно, то ошибки почти неизбежны, да… Оно вам надо?

Запоминаем:

Любая работа с углом (в том числе и рисование этого самого угла на круге) всегда начинается с определения четверти, в которую попадает этот угол.

Теперь, я надеюсь, вы уже безошибочно изобразите углы, например, 182°, 88°, 280°. В правильных четвертях. В третьей, первой и четвёртой, если что…)

Четвёртая четверть заканчивается углом 360°. Это один полный оборот. Ясен перец, что этот угол занимает на круге то же самое положение, что и 0° (т.е. начало отсчёта). Но углы на этом не заканчиваются, да…

Что делать с углами, большими 360°?

"А такие разве бывают?" – спросите вы. Бывают, ещё как! Бывает, например, угол 444°. А бывает, скажем, угол 1000°. Всякие углы бывают.) Просто визуально такие экзотические углы воспринимаются чуть сложнее, чем привычные нам углы в пределах одного оборота. Но рисовать и просчитывать такие углы тоже надо уметь, да.

Для правильного рисования таких углов на круге необходимо всё то же самое – выяснить, в какую четверть попадает интересующий нас угол. Здесь умение безошибочно определять четверть куда более важно, чем для углов от 0° до 360°! Сама процедура определения четверти усложняется всего одним шагом. Каким, скоро увидите.

Итак, например, нам надо выяснить, в какую четверть попадает угол 444°. Начинаем крутить. Куда? В плюс, разумеется! Угол-то нам дали положительный! +444°. Крутим, крутим… Крутанули на один оборот – дошли до 360°.

Сколько там осталось до 444°? Считаем оставшийся хвостик:

444°-360° = 84°.

Итак, 444° - это один полный оборот (360°) плюс ещё 84°. Очевидно, это первая четверть. Итак, угол 444° попадает в первую четверть. Полдела сделано.

Осталось теперь изобразить этот угол. Как? Очень просто! Делаем один полный оборот по красной (плюсовой) стрелке и добавляем ещё 84°.

Вот так:


Здесь я уж не стал загромождать рисунок – подписывать четверти, рисовать углы на осях. Это всё добро уже давно в голове быть должно.)

Зато я "улиткой" или спиралькой показал, как именно складывается угол 444° из углов 360° и 84°. Пунктирная красная линия – это один полный оборот. К которому дополнительно прикручиваются 84° (сплошная линия). Кстати, обратите внимание, что, если этот самый полный оборот отбросить, то это никак не повлияет на положение нашего угла!

А вот это важно! Положение угла 444° полностью совпадает с положением угла 84°. Никаких чудес нет, так уж получается.)

А можно ли отбросить не один полный оборот, а два или больше?

А почему – нет? Если угол здоровенный, то не просто можно, а даже нужно! Угол-то не изменится! Точнее, сам-то угол по величине, конечно же, изменится. А вот его положение на круге – никак нет!) На то они и полные обороты, что сколько экземпляров ни добавляй, сколько ни убавляй, всё равно будешь в одну и ту же точку попадать. Приятно, правда?

Запоминаем:

Если к углу прибавить (отнять) любое целое число полных оборотов, положение исходного угла на круге НЕ изменится!

Например:

В какую четверть попадает угол 1000°?

Никаких проблем! Считаем, сколько полных оборотов сидит в тысяче градусов. Один оборот - это 360°, ещё один – уже 720°, третий - 1080°… Стоп! Перебор! Значит, в угле 1000° сидит два полных оборота. Выбрасываем их из 1000° и считаем остаток:

1000° - 2 ·360° = 280°

Значит, положение угла 1000° на круге то же самое , что и у угла 280°. С которым работать уже гораздо приятнее.) И куда же попадает этот угол? В четвёртую четверть он попадает: 270° (отрицательная полуось OY) плюс ещё десяточка.

Рисуем:


Здесь я уже не рисовал пунктирной спиралькой два полных оборота: уж больно длинная она получается. Просто нарисовал оставшийся хвостик от нуля , отбросив все лишние обороты. Как будто бы их и не было вовсе.)

И ещё раз. По-хорошему, углы 444° и 84°, а также 1000° и 280° – разные. Но для синуса, косинуса, тангенса и котангенса эти углы – одинаковые!

Как вы видите, для того чтобы работать с углами, большими 360°, надо определить, сколько полных оборотов сидит в заданном большом угле. Это и есть тот самый дополнительный шаг, который обязательно надо предварительно проделывать при работе с такими углами. Ничего сложного, правда?

Отбрасывание полных оборотов, конечно, занятие приятное.) Но на практике при работе с совсем уж кошмарными углами случаются и затруднения.

Например:

В какую четверть попадает угол 31240° ?

И что же, будем много-много раз прибавлять по 360 градусов? Можно, если не горит особо. Но мы же не только складывать можем.) Ещё и делить умеем!

Вот и поделим наш большущий угол на 360 градусов!

Этим действием мы как раз и узнаем, сколько полных оборотов запрятано в наших 31240 градусах. Можно уголком поделить, можно (шепну на ушко:)) на калькуляторе.)

Получим 31240:360 = 86,777777….

То, что число получилось дробным – не страшно. Нас же только целые обороты интересуют! Стало быть, до конца делить и не надо.)

Итак, в нашем лохматом угле сидит аж 86 полных оборотов. Ужас…

В градусах это будет 86·360° = 30960°

Вот так. Именно столько градусов можно безболезненно выкинуть из заданного угла 31240°. Останется:

31240° - 30960° = 280°

Всё! Положение угла 31240° полностью идентифицировано! Там же, где и 280°. Т.е. четвёртая четверть.) Кажется, мы уже изображали этот угол ранее? Когда угол 1000° рисовали?) Там мы тоже на 280 градусов вышли. Совпадение.)

Итак, мораль сей басни такова:

Если нам задан страшный здоровенный угол, то:

1. Определяем, сколько полных оборотов сидит в этом угле. Для этого делим исходный угол на 360 и отбрасываем дробную часть.

2. Считаем, сколько градусов в полученном количестве оборотов. Для этого умножаем число оборотов на 360.

3. Отнимаем эти обороты от исходного угла и работаем с привычным углом в пределах от 0° до 360°.

Как работать с отрицательными углами?

Не вопрос! Точно так же, как и с положительными, только с одним единственным отличием. Каким? Да! Крутить углы надо в обратную сторону , в минус! По ходу часовой стрелки.)

Нарисуем, например, угол -200°. Сначала всё как обычно для положительных углов – оси, круг. Ещё синюю стрелочку с минусом изобразим да углы на осях по-другому подпишем. Их, естественно, также придётся отсчитывать в отрицательном направлении. Это будут всё те же самые углы, шагающие через 90°, но отсчитанные в обратную сторону, в минус: 0°, -90°, -180°, -270°, -360°.

Картинка станет вот такой:


При работе с отрицательными углами часто возникает чувство лёгкого недоумения. Как так?! Получается, что одна и та же ось – это одновременно, скажем, и +90° и -270°? Неее, что-то тут нечисто…

Да всё чисто и прозрачно! Мы ведь же уже в курсе, что любую точку на круге можно обозвать как положительным углом, так и отрицательным! Совершенно любую. В том числе и на какой-то из координатных осей. В нашем случае нам нужно отрицательное исчисление углов. Вот и отщёлкиваем в минус все углы.)

Теперь нарисовать правильно угол -200° никакого труда не составляет. Это -180° и минус ещё 20°. Начинаем мотать от нуля в минус: четвёртую четверть пролетаем, третью тоже мимо, доходим до -180°. Куда мотать оставшуюся двадцатку? Да всё туда же! По часам.) Итого угол -200° попадает во вторую четверть.


Теперь вы понимаете, насколько важно железно помнить углы на осях координат?

Углы на осях координат (0°, 90°, 180°, 270°, 360°) надо помнить именно для того, чтобы безошибочно определять четверть, куда попадает угол!

А если угол большой, с несколькими полными оборотами? Ничего страшного! Какая разница, куда эти самые полные обороты крутить – в плюс или в минус? Точка-то на круге не изменит своего положения!

Например:

В какую четверть попадает угол -2000°?

Всё то же самое! Для начала считаем, сколько полных оборотов сидит в этом злом угле. Чтобы не косячить в знаках, оставим минус пока в покое и просто поделим 2000 на 360. Получим 5 с хвостиком. Хвостик нас пока не волнует, его чуть позже сосчитаем, когда рисовать угол будем. Считаем пять полных оборотов в градусах:

5·360° = 1800°

Воот. Именно столько лишних градусов можно смело выкинуть из нашего угла без ущерба для здоровья.

Считаем оставшийся хвостик:

2000° – 1800° = 200°

А вот теперь можно и про минус вспомнить.) Куда будем мотать хвостик 200°? В минус, конечно же! Нам же отрицательный угол задан.)

2000° = -1800° - 200°

Вот и рисуем угол -200°, только уже без лишних оборотов. Только что его рисовали, но, так уж и быть, накалякаю ещё разок. От руки.


Ясен перец, что и заданный угол -2000°, так же как и -200°, попадает во вторую четверть.

Итак, мотаем себе на кру… пардон… на ус:

Если задан очень большой отрицательный угол, то первая часть работы с ним (поиск числа полных оборотов и их отбрасывание) та же самая, что и при работе с положительным углом. Знак "минус" на данном этапе решения не играет никакой роли. Учитывается знак лишь в самом конце, при работе с углом, оставшимся после удаления полных оборотов.

Как видите, рисовать отрицательные углы на круге ничуть не сложнее, чем положительные.

Всё то же самое, только в другую сторону! По часам!

А вот теперь - самое интересное! Мы рассмотрели положительные углы, отрицательные углы, большие углы, маленькие - полный ассортимент. Также мы выяснили, что любую точку на круге можно обозвать положительным и отрицательным углом, отбрасывали полные обороты… Нету никаких мыслей? Должно отложиться...

Да! Какую точку на круге ни возьми, ей будет соответствовать бесконечное множество углов! Больших и не очень, положительных и отрицательных - всяких! И разница между этими углами будет составлять целое число полных оборотов. Всегда! Так уж тригонометрический круг устроен, да...) Именно поэтому обратная задача - найти угол по известным синусу/косинусу/тангенсу/котангенсу - решается неоднозначно . И куда сложнее. В отличие от прямой задачи - по заданному углу найти весь набор его тригонометрических функций. И в более серьёзных темах тригонометрии (арки , тригонометрические уравнения и неравенства ) мы с этой фишкой будем сталкиваться постоянно. Привыкаем.)

1. В какую четверть попадает угол -345°?

2. В какую четверть попадает угол 666°?

3. В какую четверть попадает угол 5555°?

4. В какую четверть попадает угол -3700°?

5. Какой знак имеет cos 999°?

6. Какой знак имеет ctg 999°?

И это получилось? Прекрасно! Есть проблемы? Тогда вам .

Ответы:

1. 1

2. 4

3. 2

4. 3

5. "+"

6. "-"

В этот раз ответы выданы по порядку в нарушение традиций. Ибо четвертей всего четыре, а знаков так и вовсе два. Особо не разбежишься…)

В следующем уроке мы с вами поговорим про радианы, про загадочное число "пи", научимся легко и просто переводить радианы в градусы и обратно. И с удивлением обнаружим, что даже этих простых знаний и навыков нам будет уже вполне достаточно для успешного решения многих нетривиальных задачек по тригонометрии!

Разнообразны. Некоторые из них - о том, в каких четвертях косинус положительный и отрицательный, в каких четвертях синус положительный и отрицательный. Все оказывается просто, если знаешь, как вычислить значение данных функций в разных углах и знаком с принципом построения функций на графике.

Какие значения косинуса

Если рассматривать то мы имеем следующее соотношение сторон, которое его определяет: косинусом угла а является отношение прилегающего катета ВС к гипотенузе АВ (рис. 1): cos a = ВС/АВ.

С помощью этого же треугольника можно найти синус угла, тангенс и котангенс. Синусом будет соотношение противоположного к углу катета АС к гипотенузе АВ. Тангенс угла находится, если синус искомого угла разделить на косинус того же угла; подставив соответственные формулы нахождения синуса и косинуса, получим, что tg a = АС/ВС. Котангенс, как обратная к тангенсу функция, будет находиться так: ctg a = ВС/АС.

То есть, при одинаковых значениях угла обнаружилось, что в прямоугольном треугольнике соотношение сторон всегда одинаковое. Казалось бы, стало ясно, откуда эти значения, но почему получаются отрицательные числа?

Для этого нужно рассматривать треугольник в декартовой системе координат, где присутствуют как положительные, так и отрицательные значения.

Наглядно про четверти, где какая

Что такое декартовые координаты? Если говорить о двумерном пространстве, мы имеем две направленные прямые, которые пересекаются в точке О - это ось абсцисс (Ох) и ось ординат (Оу). От точки О в направлении прямой располагаются положительные числа, а в обратную сторону - отрицательные. От этого, в конечном итоге, напрямую зависит, в каких четвертях косинус положительный, а в каких, соответственно, отрицательный.

Первая четверть

Если разместить прямоугольный треугольник в первой четверти (от 0 о до 90 о), где ось х и у имеют положительные значения (отрезки АО и ВО лежат на осях там, где значения имеют знак "+"), то что синус, что косинус тоже будут иметь положительные значения, и им присвоено значение со знаком «плюс». Но что происходит, если переместить треугольник во вторую четверть (от 90 о до 180 о)?

Вторая четверть

Видим, что по оси у катет АО получил отрицательное значение. Косинус угла a теперь имеет в соотношении эту сторону с минусом, потому и итоговое его значение становится отрицательным. Выходит, что то, в какой четверти косинус положительный, зависит от размещения треугольника в системе декартовых координат. И в этом случае косинус угла получает отрицательное значение. А вот для синуса ничего не изменилось, ведь для определения его знака нужна сторона ОВ, которая осталась в данном случае со знаком плюс. Подведем итог по первым двум четвертям.

Чтобы выяснить, в каких четвертях косинус положительный, а в каких отрицательный (а также синус и другие тригонометрические функции), необходимо смотреть на то, какой знак присвоен тому или иному катету. Для косинуса угла a важен катет АО, для синуса - ОВ.

Первая четверть пока что стала единственной, отвечающей на вопрос: «В каких четвертях синус и косинус положительный одновременно?». Посмотрим далее, будут ли еще совпадения по знаку этих двух функций.

Во второй четверти катет АО стал иметь отрицательное значение, а значит и косинус стал отрицательным. Для синуса сохранено положительное значение.

Третья четверть

Теперь оба катета АО и ОВ стали отрицательными. Вспомним соотношения для косинуса и синуса:

Cos a = АО/АВ;

Sin a = ВО/АВ.

АВ всегда имеет положительный знак в данной системе координат, так как не направлена ни в одну из двух определённых осями сторон. А вот катеты стали отрицательными, а значит и результат для обоих функций тоже отрицательный, ведь если производить операции умножения или деления с числами, среди которых одно и только одно имеет знак «минус», то результат тоже будет с этим знаком.

Итог на данном этапе:

1) В какой четверти косинус положительный? В первой из трех.

2) В какой четверти синус положительный? В первой и второй из трёх.

Четвёртая четверть (от 270 о до 360 о)

Здесь катет АО вновь приобретает знак «плюс», а значит и косинус тоже.

Для синуса дела всё еще «отрицательны», ведь катет ОВ остался ниже начальной точки О.

Выводы

Для того чтобы понимать, в каких четвертях косинус положительный, отрицательный и т.д., нужно запомнить соотношение для вычисления косинуса: прилегающий к углу катет, деленный на гипотенузу. Некоторые учителя предлагают запомнить так: к(осинус) = (к) углу. Если запомнить этот «чит», то автоматически понимаешь, что синус - это отношение противоположного к углу катета к гипотенузе.

Запомнить, в каких четвертях косинус положительный, а в каких отрицательный, довольно сложно. Тригонометрических функций много, и все они имеют свои значения. Но все же, как итог: положительные значения для синуса - 1, 2 четверти (от 0 о до 180 о); для косинуса 1, 4 четверти (от 0 о до 90 о и от 270 о до 360 о). В остальных четвертях функции имеют значения с минусом.

Возможно, кому-то будет легче запомнить, где какой знак, по изображению функции.

Для синуса видно, что от нуля до 180 о гребень находится над линией значений sin(x), значит и функция здесь положительна. Для косинуса так же: в какой четверти косинус положительный (фото 7), а в какой отрицательный видно по перемещению линии над и под осью cos(x). Как итог, мы можем запомнить два способа определения знака функций синус, косинус:

1. По мнимому кругу с радиусом равным единице (хотя, на самом деле, не важно, какой радиус у круга, но в учебниках чаще всего приводят именно такой пример; это облегчает восприятие, но в то же время, если не оговориться, что это не суть важно, дети могут запутаться).

2. По изображению зависимости функции по (х) от самого аргумента х, как на последнем рисунке.

С помощью первого способа можно ПОНЯТЬ, от чего именно зависит знак, и мы подробно разъяснили это выше. Рисунок 7, построенный по этим данным, как нельзя лучше визуализирует полученную функцию и ее знакопринадлежность.


В этой статье собраны таблицы синусов, косинусов, тангенсов и котангенсов . Сначала мы приведем таблицу основных значений тригонометрических функций, то есть, таблицу синусов, косинусов, тангенсов и котангенсов углов 0, 30, 45, 60, 90, …, 360 градусов (0, π/6, π/4, π/3, π/2, …, 2π радиан). После этого мы дадим таблицу синусов и косинусов, а также таблицу тангенсов и котангенсов В. М. Брадиса, и покажем, как использовать эти таблицы при нахождении значений тригонометрических функций.

Навигация по странице.

Таблица синусов, косинусов, тангенсов и котангенсов для углов 0, 30, 45, 60, 90, … градусов

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Брадис В. М. Четырехзначные математические таблицы: Для общеобразоват. учеб. заведений. - 2-е изд. - М.: Дрофа, 1999.- 96 с.: ил. ISBN 5-7107-2667-2

Пример 1.

Найти радианную меру угла равного а) 40° , б)120° , в)105°

а) 40° = 40·π / 180 = 2π/9

б) 120° = 120·π/180 = 2π/3

в) 105° = 105·π/180 = 7π/12

Пример 2.

Найти градусную меру угла выраженного в радианах а) π/6 , б) π/9, в) 2·π/3

а) π/6 = 180°/6 = 30°

б) π/9 = 180°/9 = 20°

в) 2π/3 = 2·180°/6 = 120°

Определение синуса, косинуса, тангенса и котангенса

Синус острого угла t прямоугольного треугольника равен отношению противолежащего катета к гипотенузе (рис.1):

Косинус острого угла t прямоугольного треугольника равен отношению прилежащего катета к гипотенузе (рис.1):

Эти определения относятся к прямоугольному треугольнику и являются частными случаями тех определений, которые представлены в данном разделе.

Поместим тот же прямоугольный треугольник в числовую окружность (рис.2).

Мы видим, что катет b равен определенной величине y на оси Y (оси ординат), катет а равен определенной величине x на оси X (оси абсцисс). А гипотенуза с равна радиусу окружности (R).

Таким образом, наши формулы обретают иной вид.

Так как b = y , a = x , c = R, то:

y x
sin t = -- , cos t = --.
R R

Кстати, тогда иной вид обретают, естественно, и формулы тангенса и котангенса.

Так как tg t = b/a, ctg t = a/b, то, верны и другие уравнения:

tg t = y /x ,

ctg = x /y .

Но вернемся к синусу и косинусу. Мы имеем дело с числовой окружностью, в которой радиус равен 1. Значит, получается:

y
sin t = -- = y ,
1

x
cos t = -- = x .
1

Так мы приходим к третьему, более простому виду тригонометрических формул.

Эти формулы применимы не только к острому, но и к любому другому углу (тупому или развернутому).

Определения и формулы cos t, sin t, tg t, ctg t.

Из формул тангенса и котангенса следует еще одна формула:

Уравнения числовой окружности.

Знаки синуса, косинуса, тангенса и котангенса в четвертях окружности:

1-я четверть 2-я четверть 3-я четверть 4-я четверть
cos t + +
sin t + +
tg t, ctg t + +

Косинус и синус основных точек числовой окружности:


Как запомнить значения косинусов и синусов основных точек числовой окружности.

Прежде всего надо знать, что в каждой паре чисел значения косинуса стоят первыми, значения синуса – вторыми.

1) Обратите внимание: при всем множестве точек числовой окружности мы имеем дело лишь с пятью числами (в модуле):

1 √2 √3
0; -; --; --; 1.
2 2 2

Сделайте для себя это «открытие» - и вы снимете психологический страх перед обилием чисел: их на самом деле всего-то пять.

2) Начнем с целых чисел 0 и 1. Они находятся только на осях координат.

Не надо учить наизусть, где, к примеру, косинус в модуле имеет единицу, а где 0.

На концах оси косинусов (оси х ), разумеется, косинусы равны модулю 1 , а синусы равны 0.

На концах оси синусов (оси у ) синусы равны модулю 1 , а косинусы равны 0.

Теперь о знаках. Ноль знака не имеет. Что касается 1 – тут просто надо вспомнить самую простую вещь: из курса 7 класса вы знаете, что на оси х справа от центра координатной плоскости – положительные числа, слева – отрицательные; на оси у вверх от центра идут положительные числа, вниз – отрицательные. И тогда вы не ошибетесь со знаком 1.

3) Теперь перейдем к дробным значениям.

Во всех знаменателях дробей – одно и то же число 2. Уже не ошибемся, что писать в знаменателе.

В серединах четвертей косинус и синус имеют абсолютно одинаковое значение по модулю: √2/2. В каком случае они со знаком плюс или минус – см.таблицу выше. Но вряд ли вам нужна такая таблица: вы знаете это из того же курса 7 класса.

Все ближайшие к оси х точки имеют абсолютно одинаковые по модулю значения косинуса и синуса: (√3/2; 1/2).

Значения всех ближайших к оси у точек тоже абсолютно идентичны по модулю – причем в них те же числа, только они «поменялись» местами: (1/2; √3/2).

Теперь о знаках – тут свое интересное чередование (хотя со знаками, полагаем, вы должны легко разобраться и так).

Если в первой четверти значения и косинуса, и синуса со знаком плюс, то в диаметрально противоположной (третьей) они со знаком минус.

Если во второй четверти со знаком минус только косинусы, то в диаметрально противоположной (четвертой) – только синусы.

Осталось только напомнить, что в каждом сочетании значений косинуса и синуса первое число – это значение косинуса, второе число – значение синуса.

Обратите внимание еще на одну закономерность: синус и косинус всех диаметрально противоположных точек окружности абсолютно равны по модулю. Возьмем, к примеру, противоположные точки π/3 и 4π/3:

cos π/3 = 1/2, sin π/3 = √3/2
cos 4π/3 = -1/2, sin 4π/3 = -√3/2

Различаются значения косинусов и синусов двух противоположных точек только по знаку. Но и здесь есть своя закономерность: синусы и косинусы диаметрально противоположных точек всегда имеют противоположные знаки.

Важно знать :

Значения косинусов и синусов точек числовой окружности последовательно возрастают или убывают в строго определенном порядке: от самого малого значения до самого большого и наоборот (см. раздел «Возрастание и убывание тригонометрических функций» - впрочем, в этом легко убедиться, лишь просто посмотрев на числовую окружность выше).

В порядке убывания получается такое чередование значений:

√3 √2 1 1 √2 √3
1; --; --; -; 0; – -; – --; – --; –1
2 2 2 2 2 2

Возрастают они строго в обратном порядке.

Поняв эту простую закономерность, вы научитесь довольно легко определять значения синуса и косинуса.