Ядерные источники питания. Налажен выпуск настоящих атомных батареек

Старые электронные часы могли работать более года, используя одну маленькую батарейку. Но современные электронные устройства настолько многофункциональны, что проблема малой ёмкости современных аккумуляторов стоит в полный рост. Если смартфоны и планшеты имеют достаточно много места в корпусе, то компактная электроника вроде «умных» часов страдает от нехватки ёмкости особенно сильно, что существенно сдерживает рост её популярности. С другой стороны, футурологи пятидесятых — шестидесятых годов вовсю рисовали картины «светлого атомного будущего», где автомобили не нуждаются в заправке, а аккумуляторы — в зарядке.

Возможно, это будущее не совсем потеряно. Учёным из Университета Миссури удалось достичь существенного прогресса в области создания «атомных батареек». Не стоит пугаться, речь вовсе не идёт о карманном ядерном реакторе. Создание такого реактора на данном этапе развития технологий невозможно. Принципом действия батарея, созданная в стенах университета, очень напоминает обычные солнечные панели, но если процесс, протекающий в последних, называется «фотовольтаикой», то в описываемой разработке имеет место «бетавольтаика», то есть поглощение полупроводниковым устройством бета-излучения.

Нельзя сказать, что бета-излучение безвредно, но, в отличие от гамма-излучения, оно представляет собой поток заряженных частиц и имеет сравнительно небольшой пробег, около двух метров в воздухе и порядка десяти миллиметров в тканях тела. Но достаточно двух-трёх миллиметров алюминия или пары сантиметров органического стекла, чтобы полностью экранировать такой поток. В конструкции «атомной батарейки» используется электрод из диоксида титана, покрытый слоем платины, вода и источник бета-излучения. В качестве последнего используется изотоп стронций-90 с периодом полураспада около 29 лет. В процессе распада он испускает электрон (пресловутое бета-излучение), антинейтрино, а побочным эффектом реакции является иттрий-90. Последний имеет период полураспада всего 64 часа, также испускает электроны и антинейтрино, а в конце превращается в стабильный нерадиоактивный цирконий. Гамма-излучение в этих реакциях практически отсутствует.

Идея батарей, использующих процесс бетавольтаики, не нова, однако команде учёных Миссурийского Университета удалось существенно повысить их эффективность использованием… простой воды. Да, это не опечатка. Вода очень хорошо поглощает бета-излучение, предохраняет полупроводниковый приёмник от разрушения, а само излучение расщепляет молекулы воды, позволяя извлечь дополнительную порцию электроэнергии, а значит, повысить коэффициент полезного действия бета-батареи. Как заявил один из разработчиков, их решение слабо подвержено действию низких температур и может использоваться в самых различных сценариях, от автомобильных аккумуляторов до источников питания космических аппаратов.

Разумеется, нет никаких теоретических ограничений на использование этой технологии и в носимой электронике. Однако радиофобия очень широко распространена в наши дни, большинство людей незнакомы даже с азами ядерной физики и будут воспринимать любое упоминание «радиации» в штыки. Напуганные случаями возгорания обычных литий-ионных аккумуляторов, пользователи и слышать не захотят об «атомных батарейках», несмотря на их «вечность», хотя для безопасного использования бета-батареи достаточно прочного экранирующего корпуса и соблюдения элементарных правил техники безопасности. Литий-ионные аккумуляторы тоже не рекомендуется вскрывать и пробовать на зуб.

Но описанная технология непременно будет доведена до совершенства и найдёт себе применение в военной и космической отраслях, да и везде, где продолжительность жизни источника питания является критической характеристикой, перевешивающей все возможные риски. А там, кто знает — возможно, наши потомки преодолеют иррациональный страх перед атомными технологиями и будут безопасно и с удовольствием пользоваться их плодами.

Изобретение относится к устройствам, преобразующим энергию частиц, испускаемых изотопами, в электрический ток, и может быть использовано в качестве элемента питания в различных электронных устройствах, потребляющих небольшой ток, но вынужденных работать без замены источников питания в течение десятка лет. Сущность изобретения заключается в том, что ядерная батарейка содержит корпус, наполненный материалом изотопа, куда помещен, по крайней мере, один полупроводниковый детектор, у которого в объеме созданы колодцы, причем все размеры колодцев меньше длины свободного пробега частиц, испускаемых газообразным изотопом, при этом детектор выполнен в виде чередующихся слоев n + , i (либо ν, либо π) и p + -типов проводимостей в такой последовательности n + -i-p + -i-…-n + -i-p + , причем эти слои лежат в плоскостях, перпендикулярных стенкам колодцев; к слоям n+-типа созданы омические контакты, электрически соединенные между собой, такие же контакты созданы и к слоям p + -типа, которые тоже соединены. Технический результат - упрощение технологии изготовления полупроводникового детектора, преобразующего энергию бета-частиц в электрический ток. 1 ил.

Изобретение относится к устройствам, преобразующим энергию частиц, испускаемых изотопами, в электрический ток, и может быть использовано в качестве элемента питания в различных электронных устройствах, потребляющих небольшой ток, но вынужденных работать без замены источников питания в течение десятка лет, например в кардиостимуляторах, или в глубоководных датчиках, или в приборах, запущенных в космос, либо в приборах, установленных в труднодоступных местах.

Известны ядерные батарейки, принцип действия которых основан на конверсии энергии частиц, возникающих при радиоактивном распаде изотопов, в электрический ток при прохождении через полупроводниковый детектор, работающий в бета- или фотовольтаическом режиме. Известные батарейки используют газообразные, жидкие и твердотельные изотопы, испускающие альфа-, бета-частицы, а также гаммакванты .

Известно устройство , которое содержит корпус, в котором помещен полупроводниковый детектор из аморфного кремния, представляющий p-i-n-структуру, а внутренность корпуса наполнена тритием (3 H), который испускает электроны. Время полураспада трития примерно 12 лет. В рабочем режиме каждая бета-частица, достигшая поверхности детектора, влетает в детектор и создает в нем более одной тысячи электронно-дырочных пар. Возникшие дырки и электроны разделяются внутренним полем p-i-n-структуры, что приводит к формированию напряжения на контактах детектора и появлению электрического тока при подключении нагрузки. Недостатком такой батарейки являются малые значения тока, пропорциональные площади только одной поверхности плоского детектора.

Наиболее близким аналогом предлагаемого изобретения является батарейка на изотопах, предложенная в американском патенте (Patent US 6774531) . В прототипе существенно увеличена эффективность детектора за счет специальной конструкции 3D-кремниевого детектора.

Известная батарейка содержит корпус, наполненный газообразным тритием, куда помещен бетавольтаический детектор из кремния n-типа. В объеме детектора созданы колодцы для трития, на стенках которых сформирован слой p + -типа проводимости, причем все размеры колодцев не превышают длину свободного пробега электронов в тритии.

Недостатком известного устройства является то, что реализация детектора, содержащего в объеме полупроводника глубокие колодцы, на стенках которых сформирован p-n-переход, является очень сложной технической задачей, решенной пока только для кремния. Для других полупроводников, имеющих более высокую плотность, чем у кремния, известная конструкция детектора вообще малоэффективна. Действительно, при средней энергии электронов Е=6 кэВ, испускаемых тритием, электрон сможет проникнуть в детектор только на глубину 0.1-0.2 мкм, а при наличии слоя p-типа на стенках колодцев значительная часть заряда, порожденная электронами, рекомбинирует в нем, не достигнув p-n-перехода.

Технический результат, на который направлено заявляемое решение, состоит в устранении указанных недостатков.

Этот результат достигается тем, что ядерная батарейка на радиоактивных изотопах, содержащая корпус, наполненный материалом изотопа, куда помещен, по крайней мере, один полупроводниковый детектор, у которого в объеме созданы колодцы, причем все размеры колодцев меньше длины свободного пробега частиц, испускаемых газообразным изотопом, отличается тем, что в объеме детектора созданы чередующиеся слои n + , i (либо ν, либо π) и p + -типов проводимостей в такой последовательности: n + -i-p + -i-…-n + -i-р + , причем эти слои лежат в плоскостях, перпендикулярных стенкам колодцев, к слоям n+-типа созданы омические контакты, электрически соединенные между собой, такие же контакты созданы и к слоям p + -типа и тоже соединены.

В предлагаемом устройстве конструкция детектора исключает необходимость формирования на стенках колодцев p-n-переходов. Поэтому детектор может быть изготовлен не только из кремния, но и из других полупроводников, например из арсенида галлия.

На фиг.1 схематично представлено сечение одной из возможных конструкций предлагаемой батарейки. Батарейка содержит корпус 1 с электродами 2 и 3. Корпус наполнен материалом радиоактивного изотопа 4. В корпус помещены два детектора 5 и 6 из арсенида галлия. Детекторы выполнены из эпитаксиального материала, содержащего последовательность слоев n + 7, i 8, p + 9, высоколегированным слоям n + 7, p + 9 созданы омические контакты соответственно 10 и 11, соединенные проволочками с электродами 2 и 3 корпуса. Перпендикулярно плоскостям, в которых выращены слои n + , i, p + в объеме детектора сформированы колодцы 12.

Пример практического исполнения. В герметичный металлический корпус 1, имеющий электроды 2 и 3, электрически развязанные с корпусом за счет диэлектрических вставок, были установлены два идентичных детектора 5 и 6. При этом внутренность корпуса была заполнена радиоактивным тритием, испускающим бета-частицы. Детекторы изготавливались из арсенида галлия, выращенного с помощью газофазовой эпитаксии. На проводящей подложке n + -типа последовательно были выращены слои: n + -слой 7 толщиной 10 мкм, i-слой 8, компенсированный хромом в процессе эпитаксии, толщиной 30 мкм, p + -слой 9 толщиной 10 мкм, затем i-слой 8 толщиной 30 мкм, n + -слой 7 толщиной 10 мкм и затем снова i-слой 8 толщиной 30 мкм, p + -слой 9 толщиной 10 мкм. С использованием стандартных методов фотолитографии, химического травления и вакуумного напыления формировались омические контакты 10 и 11 к высоколегированным слоям. С использованием реактивно-ионного травления и кратковременного химического травления в детекторах формировались колодцы 12 с диаметром верхнего отверстия 80 мкм и шагом 100 мкм. В результате была получена ядерная батарейка новой конструкции.

В рабочем режиме при размерах детекторов 5×5 см 2 общий объем колодцев, заполненных тритием, составляет 0.25 см 3 . При этом радиоактивность указанного объема с тритием равна 10 10 Бк. Поскольку 70% электронов, испущенных в результате радиоактивного распада трития, попадают в активные области детектора т.е. в полуизолирующие области 8 (часть попадает в высоколегированные слои) и каждый электрон порождает примерно 1700 электронно-дырочных пар, то максимальная величина тока от данной батарейки составит 2.5 мкА.

Таким образом, предложена ядерная батарейка с новой конструкцией бетавольтаического детектора. Реализация детектора не требует создания p-n-переходов на стенках колодцев, сформированных в объеме детектора, поэтому для создания полупроводникового детектора можно использовать не только кремниевые структуры.

Источники информации

1. Kherani N.P., Shmayda W.T., Zukotynski S. /Nuclear batteries/ Patent US 5606213, 1997.

2. Chu F.Y., Mannik L., Peralta S.B., Ruda H.E. /Radioisotope-powered semiconductor battery/ Patent US 5859484, 1999.

3. Gadeken L. /Apparatus and method for generating electrical current from the nuclear decay process of radioactive material/ Patent US 6774531, 2004.

Ядерная батарейка, содержащая корпус, наполненный материалом изотопа, куда помещен, по крайней мере, один полупроводниковый детектор, у которого в объеме созданы колодцы, причем все размеры колодцев меньше длины свободного пробега частиц, испускаемых газообразным изотопом, отличающаяся тем, что детектор выполнен в виде чередующихся слоев n + , i (либо ν либо π) и p + -типов проводимостей в такой последовательности n + -i-p + -i-…-n + -i-p + , причем эти слои лежат в плоскостях, перпендикулярных стенкам колодцев; к слоям n + -типа, созданы омические контакты, электрически соединенные между собой, такие же контакты созданы и к слоям p + -типа, которые тоже соединены.

Похожие патенты:

Изобретение относится к устройству плазменного осаждения из паровой фазы для получения кремниевых тонкопленочных модулей солнечного элемента, к способу получения тонкопленочных модулей и к кремниевым тонкопленочным фотогальваническим панелям.

Изобретение относится к применению пластикового композита, содержащего материал-носитель, выбранный из группы полиэтилентерефталата (PET), полиэтиленнафтената (PEN) или сополимера этилена с тетрафторэтиленом (ETFE), а также слои полиамида-12, граничащие с материалом-носителем по обеим сторонам, для получения фотоэлектрических модулей.

Изобретение относится к области конструкции и технологии изготовления фотоэлектрических преобразователей (ФП) солнечного излучения в электрический ток и может быть использовано в производстве солнечных фотоэлементов.

Разрабатываемая атомная батарейка на основе углерода-14 отличается рядом преимуществ по сравнению с атомными батарейками на основе других радиоактивных изотопов, а именно: экологичностью, дешевизной и длительным периодом эксплуатации. Эти преимущества обеспечиваются, во-первых, за счет применения в атомной батарейке углерода-14 в качестве радиоактивного источника. Период полураспада этого элемента составляет 5700 лет и при этом, в отличие, например, от Ni-63, углерод-14 нетоксичен и отличается низкой стоимостью.

Технология находится в процессе разработки!

Атомная батарейка:

Атомная батарейка — эта технология , которая базируется на идее преобразования энергии, которую излучает радиоактивный источник, в электрическую энергию. Простейшая атомная батарейка состоит из источника излучения и отделенного от нее диэлектрической пленкой коллектора. При распаде радиоактивный источник испускает бета-излучение, вследствие чего он заряжается положительно, а коллектор — отрицательно и между ними возникает разность потенциалов.

Над созданием источников питания, которые могли бы работать за счет энергии радиоизотопов, сейчас трудятся ученые по всему миру. Образцы ядерных батареек существуют и в России, и в США, и в других странах. При этом в качестве радиоактивных источников используется тритий, Ni-63 и углерод-14.

Атомная батарейка на основе углерода -14 отличается рядом преимуществ по сравнению с атомными батарейками на основе других радиоактивных изотопов, а именно: экологичностью, дешевизной и длительным периодом эксплуатации.

Эти преимущества обеспечиваются, во-первых, за счет применения в атомной батарейке углерода-14 в качестве радиоактивного источника. Период полураспада этого элемента составляет 5700 лет и при этом, в отличие, например, от Ni-63, углерод-14 нетоксичен и отличается низкой стоимостью.

Второе отличие атомной батарейки на основе углерода-14 состоит в том, что в качестве «подложки» под радиоактивный элемент используется принципиально новая структура – пористая карбидокремниевая гетероструктура. Технология производства карбидной пленки путем ее наращивания на готовой кремниевой подложке «методом эндотаксии» позволяет уменьшить стоимость «подложки» в 100 раз, что делает атомную батарейку дешевой.

Неоспоримым плюсом карбидокремниевой гетероструктуры также является ее устойчивость к радиации . При излучении изотопа она остается практически неизменной, что и позволяет говорить о том, что такая атомная батарейка будет работать неограниченно долгое время.

Карбид кремния — это тоже полупроводниковый материал. Он химически более устойчив, способен работать при температуре до 350 градусов. Кремниевые датчики температур работают максимум до 200. Карбид кремния работает при температуре на 150 градусов выше. Он в 10 раз радиационно пассивнее и устойчивее, чем кремний.

Преимущества атомной батарейки на основе углерода-14:

— углерод-14 нетоксичен,

низкая стоимость атомной батарейки по сравнению с другими атомными батарейками на основе других радиоактивных источников,

— длительный период эксплуатации — срок службы более 100 лет,

безопасность. Бета-излучение обладает малой проникающей способностью и задерживается оболочкой атомной батарейки,

— возможность работать в экстремальных условиях – при сверх низких и высоких температурах.

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Новая система земледелия Овсинского И.Е....

Стеклоткань

Биоразлагаемые пакеты

Резина для шин, экономящая до 30% горючего...

Утилизация опасных отходов, содержащих тяжелые мет...

Снижение вязкости нефти

Берегоукрепление дамбами в чрезвычайных ситуациях...

Утеплитель эковата для монолитного утепления и зву...

Российские инфракрасные обогреватели...

Эмаль антикоррозийная, супергидрофобная, со свойст...

Новый атомный источник питания, над которым работают в России, на основе источника бета-излучения (преобразуется в электроэнергию) изотопа никель-63 может почти 50 лет снабжать электронные устройства питанием. Как ранее , специалисты Томского политехнического университета станут единственным в стране поставщиком услуг по облучению мишени, которая создана из стабильного изотопа никеля-62.

Напомним, ранее специалисты ГХК совместно с сотрудниками Сибирского аэрокосмического университета имени Решетнева (СибГАУ) разработали технологию изготовления батарей, которые используют «мягкий» бета-распад радиоизотопа никель-63. Проект стал одним из лауреатов конкурса, который проводился Министерством образования и науки РФ. Теперь данный процесс подходит к опытным испытаниям.

«Мы уже изготовили мишени, никель-62 в Железногорске уже наработали, в октябре мы планируем загрузить мишени в реактор, примерно год уйдет на это. То есть, в конце 2016 года мы наработаем никель-63. К 2017 году появится первый прототип такой батарейки, раньше ожидать преждевременно» , - рассказал директор ФГУП ГХК (Горно-химический комбинат, входит в «Росатом») Петр Гаврилов .

Перспективу применения данной батарейки ее создатели видят в в космической индустрии, различных подводных системах, медицине и оборонной промышленности, а в перспективе и в транспортной индустрии. Кроме того, в сравнении с литий-ионными аккумуляторами, батарейка на основе никеля-63 в 30 раз компактнее, экологически безопасна и безвредна для человека за счет производимого мягкого бета-излучения, которое самопоглощается внутри аккумулятора: «Наши специалисты ездили в клиники Швейцарии и швейцарские медики очень заинтересовались изобретением для использования в кардиостимуляторе» .

Сегодня единственным препятствием повсеместного распространения «ядерных батареек» выступает их высокая стоимость. По оценкам экспертов, стоимость 1 грамма радиоактивного никеля составляет порядка 4000 долларов, а изготовление одной «батарейки» может обойтись в 4,5 миллиона рублей. Такое затратное производство объясняется сложной технологической цепочкой получения изотопа никель-63, не существующего в природе. Его можно наработать только на специальных ядерных реакторах, которые есть на трех российских предприятиях. Впрочем, если наукоемкие и технологичные устройства успешно апробируют технологию, то и необходимый для них объем будет расти, а себестоимость одной батарейки - падать. Будем надеяться, что отечественным ученым удастся сделать технологию доступной широкой общественности как можно скорее.

Ученые из НИТУ "МИСиС", МФТИ и НПО "Луч" разработали новую технологию создания "ядерных батареек" на основе радиоактивного изотопа никель-63, которые могут найти применение в разных областях - от медицины до космических исследований, сообщила пресс-служба вуза.

Группой российских ученых под руководством заведующего кафедрой полупроводников и диэлектриков МИСиС, профессора Юрия Пархоменко разработана технология создания преобразователей энергии бета-излучения никеля-63 в электрическую энергию на основе монокристаллов пьезоэлектриков для использования в составе автономных бета-вольтаических батарей переменного напряжения.

В эфире радио Sputnik Юрий Пархоменко рассказал о новой разработке.

"Изобретена не просто батарейка, а ядерный генератор переменного напряжения длительного срока службы. Почему ядерный? В нем используется процесс бета-распада, а это один из видов радиоактивного излучения. Но, несмотря на это, он абсолютно безопасен. В нашем случае это мягкое бета-излучение. Электроны легко задерживаются даже корпусом прибора. В этом генераторе энергия ядерного распада преобразуется в энергию механических колебаний, которая затем преобразуется в электрическую энергию с помощью пьезокристалла. Такой генератор перспективен и сроком службы - не менее 50 лет, и очень широким диапазоном рабочих температур. Он может работать в диапазоне от минус 100 по Цельсию до плюс 200. Также у него маленький размер: ширина - где-то сантиметр, а ширина и высота по полсантиметра", - сказал Юрий Пархоменко.

По его словам, область применения таких генераторов очень широкая.

"Где его можно использовать? В основном для питания различных датчиков, не подлежащих регулярному техобслуживанию. Это труднодоступные районы Земли - Крайний Север, Арктика, а также авиакосмическая техника, дальний космос, ядерная техника, атомные электростанции. Это и спецтехника, включая системы контроля и безопасности, датчики, которые устанавливают на границах", - сказал профессор.

Он отметил, что производство "ядерных батареек" на сегодняшний момент достаточно дорогостоящее, однако со временем их цена будет снижаться.

"В генераторе где-то 90% - это цена изотопа никеля-63. Его получают на предприятиях "Росатома", и стоимость одного грамма составляет где-то полмиллиона рублей. Для нашего прибора нужен один миллиграмм. Стоимость пять тысяч рублей - это дорого. Но сейчас серийно этот генератор не выпускается. Мы сделали только прототип, опытный образец. К концу года будет внедрение в производство. Если мы найдем широкое применение, тогда наладится производство и этого изотопа, и цена будет дешевле", - заключил профессор.