Виды ртути. Применение ртути в современной промышленности. Свойства и характеристики ртути

Вряд ли нужно доказывать, что ртуть - металл своеобразный. Это очевидно хотя бы потому, что ртуть - единственный металл, находящийся в жидком состоянии в условиях, которые мы называем нормальными. Почему ртуть жидкая - вопрос особый. Но именно это свойство, вернее сочетание свойств металла и жидкости (самой тяжелой жидкости!), определило особое положение элемента № 80 в нашей жизни. О ртути можно рассказывать много: жидкому металлу посвящены десятки книг. Этот же рассказ - в основном о многообразии применения ртути и ее соединений.
Причастность ртути к славному клану металлов долгое время была под сомнением. Даже Ломоносов колебался, можно ли считать ртуть металлом, несмотря на то, что и в жидком состоянии она обладает почти полным комплексом металлических свойств: тепло- и электропроводностью, металлическим блеском и так далее. При охлаждении ртути до - 39°С становится совсем очевидным, что она - одно из «светлых тел, которые ковать можно».

Свойства ртути

Ртуть оказала науке огромные услуги . Как знать, насколько задержался бы прогресс техники и естественных наук без измерительных приборов - термометров, манометров, барометров и других, действие которых основано на необыкновенных свойствах ртути. Какие это свойства?

  • Во-первых, ртуть - жидкость.
  • Во-вторых, тяжелая жидкость - в 13,6 раза тяжелее воды.
  • В-третьих, у нее довольно большой коэффициент температурного расширения - всего в полтора раза меньше, чем у воды, и на порядок, а то и два больше, чем у обычных металлов.

Есть и «в-четвертых», «в-пятых», «в-двадцатых», но вряд ли нужно перечислять все.
Еще любопытная деталь: «миллиметр ртутного столба» - не единственная физическая единица, связанная с элементом № 80. Одно из определений ома, единицы электрического сопротивления, - это сопротивление столбика ртути длиной 106,3 см и сечением 1 мм 2 .
Все это имеет отношение не только к чистой науке. Термометры, манометры и другие приборы, «начиненные» ртутью, давно стали принадлежностью не только лабораторий, но и заводов. А ртутные лампы, ртутные выпрямители! Все то же уникальное сочетание свойств открыло ртути доступ в самые разные отрасли техники, в том числе в радиоэлектронику, в автоматику.
Ртутные выпрямители, например, долгое время были наиболее важным и мощным, наиболее широко применяемым в промышленности типом выпрямителей электрического тока. До сих пор их используют во многих электрохимических производствах и на транспорте с электрической тягой, хотя в последние годы их постепенно вытесняют более экономичные и безвредные полупроводниковые выпрямители.
Современная боевая техника тоже использует замечательные свойства жидкого металла.
К примеру, одна из главных деталей взрывателя для зенитного снаряда - это пористое кольцо из железа или никеля. Поры заполнены ртутью. Выстрел - снаряд двинулся, он приобретает все большую скорость, все быстрее вращается вокруг своей оси, и тяжелая ртуть выступает из пор. Она замыкает электрическую цепь - взрыв.
Нередко с нею можно встретиться и там, где меньше всего ожидаешь. Иногда ею легируют другие металлы. Небольшие добавки элемента № 80 увеличивают твердость сплава свинца со щелочноземельными металлами. Даже при паянии бывает подчас нужна ртуть: припой из 93% свинца, 3% олова и 4% ртути - лучший материал для пайки оцинкованных труб.

Амальгамы ртути

Еще одно замечательное свойство ртути: способность растворять другие металлы, образуя твердые или жидкие растворы - амальгамы. Некоторые из них, например амальгамы серебра и кадмия , химически инертны и тверды при температуре человеческого тела, но легко размягчаются при нагревании. Из них делают зубные пломбы.
Амальгаму таллия , затвердевающую только при -60°С, применяют в специальных конструкциях низкотемпературных термометров.
Старинные зеркала были покрыты не тонким слоем серебра, как это делается сейчас, а амальгамой, в состав которой входило 70% олова и 30% ртути. В прошлом амальгамация была важнейшим технологическим процессом при извлечении золота из руд. В XX столетии она не выдержала конкуренции и уступила более совершенному процессу - цианированию. Однако старый процесс находит применение и сейчас, главным образом при извлечении золота, топко вкрапленного в руду.
Некоторые металлы, в частности железо, кобальт, никель , практически не поддаются амальгамации. Это позволяет транспортировать жидкий металл в емкостях из простой стали. (Особо чистую ртуть перевозят в таре из стекла, керамики или пластмассы.) Кроме железа и его аналогов, не амальгамируются тантал , кремний , рений , вольфрам , ванадий , бериллий , титан , марганец и молибден , то есть почти все металлы, применяемые для легирования стали. Это значит, что и легированной стали ртуть нестрашна.
Зато натрий, например, амальгамируется очень легко. Амальгама натрия легко разлагается водой. Эти два обстоятельства сыграли и продолжают играть очень важную роль в хлорной промышленности.
При выработке хлора и едкого натра методом электролиза поваренной соли используют катоды из металлической ртути. Для получения тонны едкого натра нужно от 125 до 400 г элемента № 80. Сегодня хлорная промышленность - один из самых массовых потребителей металлической ртути.

  • ПЕРВЫЙ СВЕРХПРОВОДНИК. Спустя почти полтора столетия после опытов Пристли и Лавуазье Hg оказалась сопричастна еще к одному выдающемуся открытию, на этот раз в области физики. В 1911 г. голландский ученый Гейке Камерлинг-Оннес исследовал электропроводность ртути при низкой температуре. С каждым опытом он уменьшал температуру, и когда она достигла 4,12 К, сопротивление ртути, до этого последовательно уменьшавшееся, вдруг исчезло совсем: электрический ток проходил по ртутному кольцу, не затухая. Так было открыто явление сверхпроводимости, и элемент №80 стал первым сверхпроводником. Сейчас известны десятки сплавов и чистых металлов, приобретающих это свойство при температуре, близкой к абсолютному нулю.
  • КАК ОЧИСТИТЬ Hg. В химических лабораториях часто возникает необходимость очистить жидкий металл. Метод, описанный в этой заметке, пожалуй, самый простой из надежных и самый надежный из простых. На штативе крепят стеклянную трубку диаметром 1-2 см; нижний конец трубки оттянут и загнут. В трубку заливают разбавленную азотную кислоту примерно с 5% нитрата закисной ртути Hg 2 (N0 3) 2 . Сверху в трубку вставляют воронку с бумажным фильтром, в дне которого иголкой проделано небольшое отверстие. Воронку заполняют загрязненной ртутью. На фильтре она очищается от механических примесей, а в трубке - от большей части растворенных в ней металлов. Как это происходит? Ртуть - благородный металл, и примеси, например медь , вытесняют ее из Hg 2 (N0 3) 2 ; часть примесей просто растворяется кислотой. Очищенная ртуть собирается в нижней части трубки и под действием собственной тяжести передавливается в приемный сосуд. Повторив эту операцию несколько раз, можно достаточно полно очистить ее от примеси всех металлов, стоящих в ряду напряжений левее ртути.

Очистить ртуть от благородных металлов, например золота и серебра , намного сложнее. Чтобы разделить их, применяют перегонку в вакууме.

  • ЧЕМ-ТО ПОХОЖА НА ВОДУ. Не только жидкое состояние «роднит» ее с водой. Теплоемкость ртути, как и воды, с ростом температуры (от точки плавления до +80°С) последовательно уменьшается и лишь после определенного температурного «порога» (после 80°С) начинает медленно расти. Если охлаждать элемент №80 очень медленно, ее, как и воду, можно переохладить. В переохлажденном состоянии жидкая ртуть существует при температуре ниже - 50° Ct обычно же она замерзает при - 38,9°С. Кстати, впервые он была заморожена в 1759 г. петербургским академиком И.А. Брауном.
  • ОДНОВАЛЕНТНОЙ РТУТИ НЕТ! Это утверждение многим покажется неверным. Ведь еще в школе учат, что, подобно меди, ртуть может проявлять валентности +2 и 1+ . Широко известны такие соединения, как черная закись Hg 2 0 или каломель Hg 2 Cl 2 . Но Hg здесь лишь формально одновалентна. Как показали исследования, во всех подобных соединениях содержится группировка из двух атомов ртути: -Hg 2 - или -Hg-Hg-. Оба атома двухвалентны, но одна валентность каждого из них затрачена на образование цепочки, подобной углеродным цепям многих органических соединений. Ион Hg 2 +2 нестоек, нестойки и соединения, в которые он входит, особенно гидроокись и карбонат закисной ртути. Последние быстро разлагаются на Hg и HgO и соответственно Н 2 0 или С0 2 .

ЯД И ПРОТИВОЯДИЕ.
Я худшую смерть предпочту работе на ртутных рудниках, где крошатся зубы во рту...
Р. Киплинг
Пары ртути и ее соединения действительно весьма ядовиты. Жидкая ртуть опасна прежде всего своей летучестью: если хранить ее открытой в лабораторном помещении, то в воздухе создастся парциальное давление ртути 0,001. Это много, тем более что предельно допустимая концентрация ртути в промышленных помещениях 0,01 мг на кубический метр воздуха.
Степень токсического действия металлической ртути определяется прежде всего тем, какое количество успело прореагировать в организме, прежде чем ее вывели оттуда, т. е. опасна не сама ртуть, а ее соединения.
Острое отравление солями ртути проявляется в расстройстве кишечника, рвоте, набухании десен. Характерен упадок сердечной деятельности, пульс становится редким и слабым, возможны обмороки. Первое, что необходимо сделать в такой ситуации, это вызнать у больного рвоту. Затем дать ему молока и яичных белков. Она выводится из организма в основном почками. При хроническом отравлении Hg и ее соединениями появляются металлический привкус во рту, рыхлость десен, сильное слюнотечение, легкая возбудимость, ослабление памяти. Опасность такого отравления есть во всех помещениях, где Hg находится в контакте с воздухом. Особенно опасны мельчайшие капли разлитой ртути, забившиеся под плинтусы, линолеум, мебель, в щели пола. Общая поверхность маленьких ртутных шариков велика, и испарение идет интенсивнее. Поэтому случайно разлитую Hg необходимо тщательно собрать. Все места, в которых могли задержаться малейшие капельки жидкого металла, необходимо обработать раствором FeCl 3 , чтобы связать ртуть химически.

  • Космические аппараты нашего времени требуют значительных количеств электроэнергии. Регулировка работы двигателей, связь, научные исследования, работа системы жизнеобеспечения - все это требует электричества... Пока основными источниками тока служат аккумуляторы и солнечные батареи. Энергетические потребности космических аппаратов растут и будут расти. Космическим кораблям недалекого будущего понадобятся электростанции на борту. В основе одного из вариантов таких станций - ядерный турбинный генератор. Во многом он подобен обычной тепловой электростанции, но рабочим телом в нем служит не водяной пар, а ртутный. Разогревает его радиоизотопное горючее. Цикл работы такой установки замкнутый: ртутный пар, пройдя турбину, конденсируется и возвращается в бойлер, где опять нагревается и вновь отправляется вращать турбину.
  • ИЗОТОПЫ. Природный элемент состоит из смеси семи стабильных изотопов с массовыми числами 196, 198. 199, 200, 201, 202 и 204. Наиболее распространен самый тяжелый изотоп: его доля - почти 30%, точнее, 29,8. Второй по распространенности - изотоп ртуть-200 (23,13%). А меньше всего в природной смеси ртути-190 - всего 0,146%.

Из радиоактивных изотопов элемента № 80, а их известно 23, практическое значение приобрели только ртуть-203 (период полураспада 46,9 суток) и ртуть-205 (5,5 минуты). Их применяют при аналитических определениях ртути и изучении ее поведения в технологических процессах.

  • САМЫЕ КРУПНЫЕ МЕСТОРОЖДЕНИЯ - В ЕВРОПЕ. Это - один из немногих металлов, крупнейшие месторождения которых находятся на европейском материке. Наиболее крупными месторождениями ртути считаются Альмаден (Испания), Монте-Амьята (Италия) и Идрия (Югославия).
  • ИМЕННЫЕ РЕАКЦИИ. Для химической промышленности она и сейчас достаточно важна не только как материал катодов в производстве хлора и едкого натра, но и как катализатор. Например, из ацетилена по реакции М.Г. Кучерова, открытой в 1881 г., получается ацетальдегид. Катализатором здесь служит ртутьсодержащая соль, например сульфат HgS0 4 . А вот при растворении отработавших свое урановых блоков как катализатор использовали саму ртуть. Реакция Кучерова - не единственная «именная» реакция с участием ртути или ее соединений. Широко известна и реакция А.Н. Несмеянова, в ходе которой в присутствии солей ртути происходит разложение органических солей диазония и образование ртутьорганических соединений. Они используются в основном для получения других элементоорганических соединений и, ограничено, как фунгициды.

Влияние на эмоции. Она действует на организм в целом и, конечно, на психику. Высказано предположение, что ртутная интоксикация способна вызвать вспышки необузданного гнева. Иван Грозный, например, часто пользовался ртутными мазями против боли в суставах и, возможно, его повышенная возбудимость - результат отравления ртутью? Медики достаточно досконально изучили симптомы ртутного отравления, в том числе и психофизические: ощущение надвигающейся катастрофы, бред, галлюцинации... Паталогоанатомы, исследовавшие прах грозного царя, отметили повышенное содержание ртути в костях.

Периодических элементов, подгруппа цинка, атомный номер – 80. В комнатных условиях, вещество представляется тяжёлой бело-серебристой жидкостью. Пары ртути ядовиты. Температура ртути определяет её агрегатное состояние, не один металл кроме неё, не имеет жидкую структуру в условиях комнатной температуры.

Плавление ртути начинается при температуре 234º К, кипение при 629º К. Сплавляется со многими металлами, образуя сплавы, называемые амальгамами. Ртуть в воде и кислотных растворах не растворяется, сделать это может только азотная кислота или .

С трудом это можно сделать с помощью серной кислоты. При достижении температуры 300º С, происходит реакция с кислородом, результатом которой является оксид ртути , имеющий красный цвет (не путать с вымышленной “красной ртутью”!).

«Красная ртуть» – данный термин обозначает вещество, вымышленное в коммерческих целях. Свойству приписываются запредельные свойства, на деле науке пока не известен подобный металл, ни природного, ни искусственного происхождения. Соединение серы и ртути при высокой температуре образует сульфид ртути.

Добыча и происхождение ртути

Данный металл считается довольно редким, концентрируется, в основном, в специфичных ртутных рудах, количество ртути в которых довольно высокое. По большому счёту весь объём природной ртути рассеян в природе, и лишь малая его часть заключена в рудах. Наиболее высокий процент содержания наблюдается в породах образовавшихся после извержения и осадочных сланцах.

Сульфидные минералы по большей части также содержат ртуть. Это блёклые руды, сфалериаты, реальгары и антимониты. В природе часто обнаруживаются связки сопутствующих друг другу элементов, например такое соседство как селен, сера и ртуть .

Доподлинно известно не менее двадцати видов ртутных минералов. Основным добываемым минералом является киноварь, реже – метациннабарит или самородная ртуть. На месторождении в Мексике (Гуитцуко) добывается ливингстонит.

Наиболее крупные месторождения находятся в Дагестане, Таджикистане, Армении, Киргизии, Украине, Испании и Словении (месторождение в г. Идрия, считается крупнейшим, ещё со средневековья). В России находится также не менее двадцати трёх месторождений.

Применение ртути

Раньше определённое соединение ртути , например её хлорид или меркузал, запросто мог найти применение в медицинской области. Это были различные медикаменты слабительного, мочегонного и антисептического действия. Но сейчас ртутные соединения почти полностью вытеснены из этой области, в виду своей токсичности. Частично этот элемент применяется при производстве термометров, хотя и для них уже нашёлся более безопасный заменитель.

Более приемлемым считается её присутствие в технических устройствах. Это высокоточные термометры технического назначения. Лампы люминесцентного света, где используются её пары. Выпрямительные устройства, электроприводы, и даже некоторые модели сварочных аппаратов. Это датчики положения и герметичные выключатели.

Также её используют при изготовлении некоторых видов источников тока, с ртутно-цинковой начинкой. Одним из компонентов гидродинамических подшипников также является ртуть. Также в технической промышленности нашли своё применение такие соединения как фульминат, иодид и бромид ртути. Положительные свойства показали её с цезием, используемые при производстве ионных двигателей.

В металлургии ртуть применяется при выплавке множества различных сплавов, и при вторичном процессе переработки алюминия. Нашла свою нишу она и в ювелирном производстве, а также при изготовлении зеркал. Немалое распространение ртуть получила при получении золота, ей предварительно обрабатываются золотосодержащие породы, для его извлечения из них. В сельской промышленности некоторые ртутные соединения применяются для обработки посевного материала и в как пестицид. Хотя это крайне не желательно.

Вред ртути для организма человека

Пары ртути чрезвычайно опасны. Попасть в организма она может через испарения или непосредственно через ротовую полость. Последнее обычно происходит с маленькими детьми, в случае если разбилась ртуть из термометра. При этом необходимо как можно скорее вызвать у него рвоту, и вызвать неотложную помощь.

А вот надышаться её парами может каждый, если ртуть из градусника раскатилась по всем щелям комнаты, и оттуда испаряется. Отравление ртутью происходит постепенно, на начальных стадиях особых симптомов не наблюдается. В дальнейшем проявляются чрезмерная раздражительность, постоянная тошнота, происходит потеря веса. В первую очередь удар приходится на центральную нервную систему и почки.

Каких мер предосторожности требует ртуть? Разбили градусник? Что делать и как собрать ртуть с пола, укажет следующая инструкция. Немедленно проветрить помещение, не менее нескольких часов. Но не допускать прямого сквозняка, пока ртуть не собрано полностью. Ограничить доступ к месту происшествия, чтобы не разнести ртуть по всему дому.

Перед тем как начать собирать ртуть, необходимо на руки надеть перчатки из непроницаемого материала, на ноги – любые пакеты, на лицо – повязку, пропитанную водой или раствором. Тщательно собрать всю раскатившуюся ртуть, и остатки разбившегося градусника в ёмкость с водой, это не даст ртути испаряться. Необходимо собрать ртуть как можно тщательней, например, с помощью шприца.

Если ртуть попала под плинтус или пол, не ленясь его вскрыть и вычистить её оттуда, сколько времени бы это не заняло. Если процедура занимает достаточно времени, следует делать перерывы каждые десять минут. Ёмкость необходимо плотно закупорить, и держать её вдали от тепла. Выкидывать ёмкость категорически запрещено. Это загрязнит окружающую среду, её могут найти дети. Поэтому собранная ртуть сдаётся в соответствующие службы.

Место происшествия обрабатывается марганцовым раствором или разведённой хлорной известью. Нельзя собирать ртуть веником или пылесосом, это только усугубит ситуацию, распылив ртуть на большую площадь. К тому же после этого пылесос будет непригоден к использованию, в виду токсического загрязнения.

Цена ртути

Общие объёмы от торговли этим редкоземельным металлом и его различными соединениями, составляет порядком 150 млн. долларов, при мировых запасах около 300 тыс. тонн. В виду ликвидации некоторых основных месторождений поставки ртути на мировой рынок резко сократились, что привело к ценовому подъёму на эту продукцию. Для сравнения в 2001 году, стандартная мерная ёмкость объёмом 34,5 кг, стоила 170 $, к 2005 году цена достигла отметки 775 $. После чего снова пошла на убыль, последние расценки составляли порядком 550 $.

Решением в этом случае стала вторичная ртуть, производимая на ключевых предприятиях. Новейшие технологии обеспечили рынок большим объёмом более дешёвой продукции, что позволило несколько понизить непомерно возросшие цены на ртуть природного происхождения. Хотя цены до сих пор остаются на довольно высоком уровне.

Ртуть - удивительный химический элемент. Это очевидно хотя бы потому, что ртуть - единственный металл, находящийся в жидком состоянии в условиях, которые мы обычно называемым нормальными. В таких условиях ртуть способна испаряться и формировать ртутную атмосферу. Именно эти свойства определили особое положение ртути в нашей жизни. Этот необычный металл отличается благородным серебристо-белым цветом, и его пары чрезвычайно ядовиты. И хотя ртуть не столь активно применяется в промышленности как железо, золото или серебро, в народе о ней сложилось множество мифов. Мы расскажем о пяти самых распространенных из них…

Ртуть оказала человечеству огромные услуги. Много веков она находит применение в самых разнообразных сферах человеческой деятельности - от киноварной краски до атомного реактора. На использовании различных свойств ртути были созданы самостоятельные отрасли промышленности, в том числе, добыча золота методом амальгамации, производство газоразрядных ртутных ламп, химических источников тока, хлора и каустической соды. Ртуть применяется в медицине, фармацевтике, стоматологии. Она служила теплоносителем в одном из первых реакторов на быстрых нейтронах.

В 1886 году в Горловке (ныне Донецкая область Украины) была произведена первая в России ртуть. Этот необычный металл отличается благородным серебристо-белым цветом, и его пары чрезвычайно ядовиты. Хотя ртуть не столь активно применяется в промышленности как железо, золото или серебро, в народе о ней сложилось множество мифов. Мы расскажем о пяти самых распространенных из них…

СМЕРТЕЛЬНЫЕ ШАРИКИ

Существует миф о том, что шарики ртути, которые образуются, например, после того, как разбивается градусник, крайне опасны для здоровья человека. Это не совсем так, сама по себе ртуть опасности не представляет. Вред наносят пары ртути. Поэтому попадание шариков ртути на кожу не вызовет такой реакции, как длительное вдыхание ее паров.

Пары ртути приводят к нарушениям центральной нервной системы человека. Первые симптомы не особенно красноречивы, их легко спутать с обычным недомоганием. Первичное поражение организма парами ртути характеризуется повышенной утомляемостью, слабостью, головными болями, чуть позже начинаются головокружения.

Позже развивается ртутный тремор. Именно на этой стадии, как правило, обращаются к врачу. Ртутный тремор сопровождается дрожанием рук, век, губ, нередко появляется металлический привкус во рту, слезотечения, проблемы с желудком.

САМОСТОЯТЕЛЬНОЕ УСТРАНЕНИЕ РТУТНОЙ УГРОЗЫ

Многие считают, что можно самостоятельно собрать ртуть и устранить опасность отравления. Однако на практике таких результатов достигают немногие. Ртуть очень мобильна и легко распадается на мелкие частички, которые трудно обнаружить «на глаз».

В связи с этим для устранения ртутной угрозы необходимо воспользоваться помощью профессионалов, которые установят экологическое состояние квартиры. Экологическая служба должна провести мероприятия по очистке помещения, предоставить экспертную информацию по профилактике отравления.

Если вы все-таки пытаетесь справиться с ртутной угрозой своими силами, то необходимо хорошо проветрить помещение. Например, если не проветривать комнату площадью 16 кв. м. с потолком высотой 3 м, в которой находится 4 грамма ртути (объем, содержащийся в медицинском градуснике), то концентрация паров ртути на данной площади превысит норму в 27 667 раз.

КРАСНАЯ РТУТЬ

В начале 1990-х годов распространились слухи о создании новой разновидности ртути — красной ртути или вещества RM 20/20, якобы производимого в секретных научных лабораториях СССР.

Красная ртуть, как утверждалось, обладала фантастическими свойствами — от сверхплотности (свыше 20 г/см3) и суперрадиоактивности до космического происхождения и возможности излечивать любые недуги.

Продавцы запрашивали за 1 килограмм ртути от 300 до 400 тыс. долларов. Причем покупатели, в том числе и западные, находились. Покупателю под видом красной ртути подсовывали что угодно — от ртутной амальгамы до обычной ртути, окрашенной красителями или кирпичным порошком.

Многие советские физики-ядерщики неоднократно опровергали возможность создания подобного вещества, объясняя, что это не только противоречит законам природы, но и невозможно на современном технологическом уровне.

Слухи о веществе RM 20/20 через несколько лет утихли сами собой. Нынешние исследователи считают, что ажиотаж был создан намеренно, во имя денежных интересов многих высокопоставленных людей. Впрочем, статьи о реальности научных разработок по созданию красной ртути появляются и сегодня.

МИФ О ДОРОГОВИЗНЕ

Сотрудники милиции регулярно изымают ртуть у граждан, которые пытаются ее продавать. Законодательно такие сделки запрещены. Специалисты утверждают, что в реальности ртуть мало кому нужна и продажи держатся только на заблуждениях граждан о дороговизне ртути.

На самом деле, ртуть не является ценным и востребованным веществом. Ее используют крайне редко, в частности, при изготовлении люминесцентных ламп.

Добычу ртути в России прекратили еще в 1991 году. Но, по данным специалистов, ее запасов хватит еще на десять лет работы промышленности. По словам экспертов, примерно столько же будут процветать незаконные продажи этого тяжелого токсичного металла.

Некоторые умельцы все же умудряются применять ртуть в личных целях. В частности, металл могут использовать при очищении золота от окисей.

ПОЛЕЗНОСТЬ РТУТИ

Многие убеждены, что ртуть имеет целительные свойства и она необходима организму для полноценного функционирования. Появляются статьи о том, что ртуть обладает определенным биотическим эффектом и оказывает стимулирующее действие на процессы жизнедеятельности.

В организме среднего человека массой тела 70 килограмм содержится примерно 13 миллиграмм ртути, однако она, по-видимому, не выполняет никакой физиологической роли. По крайней мере, жизненная необходимость этого металла для человека и других организмов не доказана.

При этом научно доказано, что ртуть, в дозах, превышающих физиологическую потребность, токсична для всех форм жизни, причем практически в любом своем состоянии.

Врач-реаниматолог Рафаєль В. Макаров:

Действительно, опасна не ртуть, а её пары приводящие к хроническому отравлению. И ещё. В старину считалось, что ртуть обладает магическим действием и спасает от нечистой силы и ядов.

Жертвой подобного мифа был Иван Грозный, державший под кроватью чан со ртутью. Длительное вдыхание паров ртути и объясняет психические нарушения царя и его необъяснимую агрессию. А также тот факт, что он в конце жизни практически «сгнил заживо».

    Ртуть (Hg , от лат. Hydrargyrum ) - элемент шестого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 80, относящийся к подгруппе цинка (побочной подгруппе II группы). Простое вещество ртуть - переходный металл, при комнатной температуре представляющий собой тяжёлую серебристо-белую жидкость, пары которой чрезвычайно ядовиты. Ртуть - один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся в жидком агрегатном состоянии (второй такой элемент - бром).


1 История

Происхождение названия

2 Нахождение в природе

2.1 Месторождения

3 В окружающей среде

4 Изотопы

5 Получение

6 Физические свойства

7 Химические свойства

7.1 Характерные степени окисления

7.2 Свойства металлической ртути

8 Применение ртути и её соединений

8.1 Медицина

8.2 Техника

8.3 Металлургия

8.4 Химическая промышленность

8.5 Сельское хозяйство

9 Токсикология ртути

9.1 Гигиеническое нормирование концентраций ртути

9.2 Демеркуризация

История

Астрономический символ планеты Меркурий

Ртуть известна с древних времен. Нередко её находили в самородном виде (жидкие капли на горных породах), но чаще получали обжигом природнойкиновари. Древние греки и римляне использовали ртуть для очистки золота (амальгамирование), знали о токсичности самой ртути и её соединений, в частности сулемы. Много веков алхимики считали ртуть главной составной частью всех металлов и полагали, что если жидкой ртути возвратить твердость при помощи серы или мышьяка, то получится золото. Выделение ртути в чистом виде было описано шведским химиком Георгом Брандтом в 1735 г. Для представления элемента как у алхимиков, так и в нынешнее время используется символ планеты Меркурий. Но принадлежность ртути к металлам была доказана только трудами Ломоносова и Брауна, которые в декабре 1759 года смогли заморозить ртуть и установить её металлические свойства: ковкость, электропроводность и др.

Происхождение названия

Русское название ртути происходит от праслав. *rьt ǫ , связанного с лит. rìsti «катиться» . Символ Hg заимствован от латинского алхимического названия этого элемента hydrargyrum (отдр.-греч. ὕδωρ «вода» и ἄργυρος «серебро»).

Нахождение в природе

Ртуть - относительно редкий элемент в земной коре со средней концентрацией 83 мг/т. Однако ввиду того, что ртуть слабо связывается химически с наиболее распространёнными в земной коре элементами, ртутные руды могут быть очень концентрированными по сравнению с обычными породами. Наиболее богатые ртутью руды содержат до 2,5 % ртути. Основная форма нахождения ртути в природе - рассеянная, и только 0,02 % её заключено в месторождениях. Содержание ртути в различных типах изверженных пород близки между собой (около 100 мг/т). Из осадочных пород максимальные концентрации ртути установлены в глинистых сланцах (до 200 мг/т). В водах Мирового океана содержание ртути - 0,1 мкг/л. Важнейшей геохимической особенностью ртути является то, что среди других халькофильных элементов она обладает самым высоким потенциалом ионизации. Это определяет такие свойства ртути, как способность восстанавливаться до атомарной формы (самородной ртути), значительную химическую стойкость к кислороду и кислотам.

Ртуть присутствует в большинстве сульфидных минералов. Особенно высокие её содержания (до тысячных и сотых долей процента) устанавливаются в блёклых рудах, антимонитах, сфалеритах и реальгарах. Близость ионных радиусов двухвалентной ртути и кальция, одновалентной ртути и бария определяет их изоморфизм во флюоритах и баритах. В киновари и метациннабарите сера иногда замещается селеном или теллуром; содержание селена часто составляет сотые и десятые доли процента. Известны крайне редкие селениды ртути - тиманит (HgSe) и онофрит (смесь тиманита и сфалерита).

Ртуть является одним из наиболее чувствительных индикаторов скрытого оруденения не только ртутных, но и различных сульфидных месторождений, поэтому ореолы ртути обычно выявляются над всеми скрытыми сульфидными залежами и вдоль дорудных разрывных нарушений. Эта особенность, а также незначительное содержание ртути в породах, объясняются высокой упругостью паров ртути, возрастающей с увеличением температуры и определяющей высокую миграцию этого элемента в газовой фазе.

В поверхностных условиях киноварь и металлическая ртуть не растворимы в воде, но при их наличии (Fe 2 (SO 4) 3 , озон, пероксид водорода) растворимость этих минералов достигает десятков мг/л. Особенно хорошо растворяется ртуть в сульфидах едких щелочей с образованием, например, комплекса HgS nNa 2 S. Ртуть легко сорбируется глинами, гидроокислами железа и марганца, глинистыми сланцами и углями .

В природе известно около 20 минералов ртути, но главное промышленное значение имеет киноварь HgS (86,2 % Hg). В редких случаях предметом добычи является самородная ртуть, метациннабарит HgS и блёклая руда - шватцит (до 17 % Hg). На единственном месторождении Гуитцуко (Мексика) главным рудным минералом является ливингстонит HgSb 4 S 7 . В зоне окисления ртутных месторождений образуются вторичные минералы ртути. К ним относятся, прежде всего, самородная ртуть, реже метациннабарит, отличающиеся от таких же первичных минералов большей чистотой состава. Относительно распространена каломель Hg 2 Cl 2 . На месторождении Терлингуа (Техас) распространены и другие гипергенные галоидные соединения - терлингуаит Hg 2 ClO, эглестонит Hg 4 Cl.

Ртуть — элемент побочной подгруппы второй группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 80. Обозначается символом Hg (лат. Hydrargyrum).

Ртуть — один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся в жидком агрегатном состоянии (второй элемент — бром). В природе находится как в самородном виде, так и образует ряд минералов.
Ртуть (англ. Mercury, франц. Mercure, нем. Quecksilber) входит в число семи металлов древности. Она была известна по крайней мере за 1500 лет до н.э., уже тогда ее умели получать из киновари. Ртуть употребляли в Египте, Индии, Месопотамии и Китае; она считалась важнейшим исходным веществом в операциях священного тайного искусства по изготовлению препаратов, продлевающих жизнь и именуемых пилюлями бессмертия. В IV - Ш вв. до н.э. о ртути как о жидком серебре (от греч. вода и серебро) упоминают Аристотель и Теофраст. Позднее Диоскорид описал получение ртути из киновари путем нагревания последней с углем. Ртуть считали основой металлов, близкой к золоту и поэтому называли меркурием (Mercurius), по имени ближайшей к солнцу (золоту) планеты Меркурий. С другой стороны, полагая, что ртуть представляет собой некое состояние серебра, древние люди именовали ее жидким серебром (откуда произошло лат. Hydrargirum). Подвижность ртути вызвала к жизни другое название - живое серебро (лат. Argentum vivum); немецкое слово Quecksilber происходит от нижнесаксонского Quick (живой) и Silber (серебро). Интересно, что болгарское обозначение ртути - живак - и азербайджанское - дживя - заимствованы, вероятно, от славян.

80 элемент таблицы Менделеева В эллинистическом Египте и у греков употреблялось название скифская вода, что позволяет думать о вывозе ртути в какой-то период времени из Скифии. В арабский период развития химии возникла ртутно-серная теория состава металлов, согласно которой ртуть почиталась матерью металлов, а сера (сульфур) их отцом. Сохранилось множество тайных арабских названий ртути, что свидетельствует о ее значении в алхимических тайных операциях. Усилия арабских, а позднее и западноевропейских алхимиков сводились к так называемой фиксации ртути, т. е. к превращению ее в твердое вещество. По мнению алхимиков, получающееся при этом чистое серебро (философское) легко превращалось в золото. Легендарный Василий Валентин (XVI в.) основал теорию трех начал алхимиков (Tria principia) - ртути, серы и соли; эту теорию развил затем Парацельс. В подавляющем большинстве алхимических трактатов, излагающих способы трансмутации металлов, ртуть стоит на первом месте либо как исходный металл для любых операций, либо как основа философского камня (философская ртуть).

Свойства атома Название, символ, номер

Ртуть / Hydrargyrum (Hg), 80

Атомная масса
(молярная масса )

200,592(3) а. е. м. (г /моль )

Электронная конфигурация

4f 14 5d 10 6s 2

Радиус атома

157 пм

Химические свойства Ковалентный радиус

149 пм

Радиус иона

(+2e) 110 (+1e) 127 пм

Электроотрицательность

2,00 (шкала Полинга)

Электродный потенциал

Hg←Hg 2+ 0,854 В

Степени окисления Энергия ионизации
(первый электрон)

1 006,0 (10,43) кДж /моль (эВ )

Термодинамические свойства простого вещества Плотность (при н. у. )

13,546 (20 °C) г/см³

Температура плавления

234,32 K (-38.83 °C)

Температура кипения

629,88 K (356,73 °C)

Уд. теплота плавления

2,295 кДж/моль

Уд. теплота испарения

58,5 кДж/моль

Молярная теплоёмкость

27,98 Дж/(K·моль)

Молярный объём

14,8 см ³/моль

Кристаллическая решётка простого вещества Структура решётки

ромбоэдрическая

Параметры решётки

a hex =3,464 с hex =6,708 Å

Отношение c/a Температура Дебая

100,00 K

Прочие характеристики Теплопроводность

(300 K) 8,3 Вт/(м·К)

Физические свойства ртути

Металлическая ртуть
Переливание ртути из сосуда в сосудРтуть — единственный металл, который находится в жидком состоянии при комнатной температуре. Температура плавления составляет 234,32 K (-38,83 °C), кипит при 629,88 K (356,73 °C). Обладает свойствами диамагнетика. Образует со многими металлами жидкие и твёрдые сплавы — амальгамы. Стойкие к амальгамированию металлы: V, Fe, Mo, Cs, Nb, Ta, W.

Плотность ртути при нормальных условиях — 13 500 кг/м3

Температура в °С ρ, 10 3 кг/м 3 Температура в °С ρ, 10 3 кг/м 3
0 13,5951 50 13,4723
5 13,5827 55 13,4601
10 13,5704 60 13,4480
15 13,5580 65 13,4358
20 13,5457 70 13,4237
25 13,5335 75 13,4116
30 13,5212 80 13,3995
35 13,5090 90 13,3753
40 13,4967 100 13,3514
45 13,4845 300 12,875