Уравнения статики атмосферы. Силы, действующие в атмосфере, и их влияние на ветер

Силы, действующие в атмосфере делятся на массовые и поверхностные:

Массовые или объемные силы.

К массовым силам относятся те силы, которые действуют на каждый элементарный объем воздуха, и обычно, рассчитываются на единицу массы. К ним относятся:

Сила тяжести

Представляет собой векторную сумму двух сил: силы земного притяжения, направленной к центру Земли, и центробежной силы, возникающая из-за вращения Земли вокруг своей оси и направленная по радиусу круга широты, проходящей через рассматриваемую точку.

Сила Кориолиса

(отклоняющая сила вращения земли) связана с вращением Земли вокруг своей оси и действует на движущиеся относительно Земли частицы воздуха (на воздушные течения атмосферы). Сила Кориолиса возникает в результате переносного вращательного движения Земли и одновременного движения частиц воздуха относительно земной поверхности.

Или .

где ω – угловая скорость вращения Земли.

Применяя формулы векторного анализа получим составляющие силы Кориолиса по осям координат.

Поверхностные силы.

К поверхностным силам относятся те силы, которые действуют на соприкасающиеся поверхности слоя воздуха.

Сила давления

(сила барического градиента) возникает за счет неравномерного распределения давления. Вектор силы барического градиента определяется соотношением

а его составляющие, отнесенные к единице массы, по осям координат, имеют следующий вид:

Сила трения

Возникает при движении воздуха, когда различные его объемы имеют разную скорость движения. Если рассматривать движение воздуха, как движение вязкой жидкости, то при движении двух соседних слоев жидкости с различными скоростями, между ними развиваются касательные силы внутреннего трения (касательное напряжение), или силы вязкости. Составляющие этой силы по осям координат.

Силы, действующие в атмосфере в состоянии равновесия

СТАТИКА АТМОСФЕРЫ

Система находится в равновесии (покое), если результирующая всех сил, действующих на систему равна нулю.

Силы подразделяются на массовые и поверхностные.

Массовыми силами, действующими на атмосферу в целом и на ее части, являются сила тяжести и отклоняющая сила вращения Земли (кориолисова сила).

Поверхностные силы, действующие в атмосфере, - это сила давления и сила трения.

Однако кориолисова сила и сила трения появляются лишь при движении атмосферы относительно поверхности Земли или одних ее частей относительно других. Поэтому силами, действующими в атмосфере в состоянии покоя, являются сила тяжести и сила давления.

Пусть атмосфера находится в состоянии покоя по отношению к земной поверхности. Тогда горизонтальная составляющая градиента давления должна обращаться в нуль (в противном случае воздух придет в движение). Для этого необходимо и достаточно, чтобы изобарические поверхности совпадали с уровенными.

Выделим в атмосфере две изобарические поверхности, расположенные на высотах z и z+dz (рис.). Между изобарическими поверхностямиp p+dp выделим объем воздуха с горизонтальными основаниями 1 м 2 . На нижнее основание действует сила давления p, направленное снизу вверх; на верхнее – сила давления p+dp, направленная сверху вниз. Силы давления, действующие на боковые грани выделенного объема взаимно уравновешиваются.

Рис. К выводу уравнения статики.

На этот объем действует сила тяжести Р, направленная по вертикали вниз и равная по модулю

Спроектируем все силы на ось z. Поскольку сумма всех сил равна нулю, то и сумма этих проекций равна нулю:

Подставив выражение силы тяжести, получим .

Разделив на dz определим второй вид основного уравнения статики атмосферы:

Левая часть представляет собой вертикальную составляющую градиента давления, правая – силу тяжести, действующую на единичный объем воздуха. Таким образом, уравнение статики выражает равновесие двух сил – градиента давления и силы тяжести.

Из уравнения статики можно сделать три важных вывода:

1. Увеличению высоты (dz>0) соответствует отрицательное приращение давления (dp>0), что означает убывае давления с высотой. Уравнение статики выполняется с высокой точностью и в случае движения атмосферы.

2. Выделим в атмосфере вертикальный столб воздуха с основанием 1м2 и высотой от уровня z до верхней границы атмосферы . Вес этого столба равен . Проинтегрировав обе части () в пределах от z , где давление р, до , давление равно 0 (по определению верхней границы), получим: , или .


Таким образом, приходим ко второму определения понятия давления. Атмосферное давление на каждом уровне равно весу столба воздуха единичного поперечного сечения и высотой от данного уровня до верхней границы атмосферы. Отсюда понятен физический смысл убывания давления с высотой.

3. Уравнения статики позволяют сделать вывод о скорости убывания давления с высотой. Уменьшение давления тем больше, чем больше плотность воздуха и ускорение свободного падения. Основную роль играет плотность. Плотность воздуха с увеличением высоты падает. Чем выше расположен уровень, тем меньше убывание давления.

Если точки расположены на одной и той же изобарической поверхности, то плотность воздуха будет зависеть только от температуры в этих точках. В точке с более низкой температурой плотность выше. Это означает, что при подъеме на одну и ту же высоту понижение давления в точке с более высокой температурой меньше, чем в точке с более низкой температурой.

В холодной воздушной массе давление с высотой убывает быстрее, чем в теплой. Подтверждением этого вывода является тот факт, что на высотах (в средней и верхней тропосфере) в холодных воздушных массах преобладает низкое давление, а в теплых – высокое.

Оценим значение вертикального градиента. При нормальных условиях вблизи уровня моря r=1.29 кг/м3, g=9.81 м/с2. Подставив эти значения в (), найдем: G=12ю5 гПа/100м.

Силы, действующие в атмосфере.

Силы, действующие в атмосфере делятся на массовые и поверхностные:

Массовые или объемные силы.

К массовым силам относятся те силы, которые действуют на каждый элементарный объем воздуха, и обычно, рассчитываются на единицу массы. К ним относятся:

Сила тяжести представляет собой векторную сумму двух сил: силы земного притяжения, направленной к центру Земли, и центробежной силы, возникающая из-за вращения Земли вокруг своей оси и направленная по радиусу круга широты, проходящей через рассматриваемую точку.

Сила Кориолиса (отклоняющая сила вращения земли) связана с вращением Земли вокруг своей оси и действует на движущиеся относительно Земли частицы воздуха (на воздушные течения атмосферы). Сила Кориолиса возникает в результате переносного вращательного движения Земли и одновременного движения частиц воздуха относительно земной поверхности.

где? - угловая скорость вращения Земли.

Применяя формулы векторного анализа получим составляющие силы Кориолиса по осям координат.

Поверхностные силы. К поверхностным силам относятся те силы, которые действуют на соприкасающиеся поверхности слоя воздуха.

Сила давления (сила барического градиента) возникает за счет неравномерного распределения давления. Вектор силы барического градиента определяется соотношением

а его составляющие, отнесенные к единице массы, по осям координат, имеют следующий вид:

Сила трения возникает при движении воздуха, когда различные его объемы имеют разную скорость движения. Если рассматривать движение воздуха, как движение вязкой жидкости, то при движении двух соседних слоев жидкости с различными скоростями, между ними развиваются касательные силы внутреннего трения (касательное напряжение), или силы вязкости. Составляющие этой силы по осям координат:

Кинематический коэффициент турбулентной вязкости, а - динамический коэффициент вязкости.

Уравнение движения свободной атмосферы

Как известно, плотность вещества в физике вводится предельным переходом: , где в механике сплошной среды следует понимать под m массу вещества, заключенную в объеме W. Посмотрим, как будет выглядеть закон сохранения массы для произвольного подвижного объема сплошной среды, для которого. Из (1.12) тогда следует:

или в силу произвольности объема W:

Это уравнение носит название уравнения неразрывности (непрерывности).

Геострофический ветер

Простейший вид движения воздуха, который можно пред-ставить теоретически, -- это прямолинейное равномерное движе-ние без трения. Такое движение при отклоняющей силе, отличной от нуля, называют геострофическим ветром.

При геострофическом ветре, кроме движущей силы градиента G = - 1/?*dp/dn на воздух действует еще отклоняющая сила вращения Земли A = 2?*sin?*V. Поскольку движение пред-полагается равномерным, обе силы уравновеши-ваются, т. е. равны по ве-личине и направлены взаимно противоположно. Отклоняющая сила вра-щения Земли в северном полушарии направлена под прямым углом к ско-рости движения вправо. Отсюда следует, что сила градиента, равная ей по величине, должна быть направлена под прямым углом к скорости влево. А так как под прямым углом к градиенту лежит изобара, то это значит, что геостро-фический ветер дует вдоль изобар, оставляя низкое давление слева (рис. 4.21).

Рис.4.21. Геострофический ветер. G -- сила барического градиента, А -- отклоняю-щая сила вращения Земли, V -- скорость ветра.

В южном полушарии, где отклоняющая сила вращения Земли направлена влево, геострофичёский ветер дол-жен дуть, оставляя низкое давление справа. Скорость геострофи-ческого ветра легко найти, написав условие равновесия действую-щих сил, т. е. приравняв их сумму нулю. Получим

откуда, решив уравнение, найдем для скорости геострофического ветра

Это значит, что скорость геострофического ветра прямо пропорциональна величине самого барического градиента. Чем больше градиент, т. е. чем гуще проходят изобары, тем сильнее ветер.

Подставим в формулу (2) числовые значения для плот-ности воздуха при стандартных условиях давления и темпера-туры на уровне моря и для угловой скорости вращения Земли; выразим скорость ветра в метрах в секунду, а барический гра-диент -- в миллибарах на 100 км. Тогда получим формулу (2) в рабочем виде, удобном для определения скорости геострофи-ческого ветра (на уровне моря) по величине градиента.

Атмосфера обволакивает весь земной шар, оказывая давление на каждый квадратный метр поверхности. Следовательно, на поверхности Земли и на любой высоте в каждой точке создается определенная величина давления, т. е. поле давления, или барическое поле. Это поле можно описать как систему поверхностей одинакового давления, так называемых изобарических поверхностей, например: 1000 гПа, 850 гПа, 500 гПа, 200 гПа и т. д. На уровне моря пересечения с изобарическими поверхностями образуют линии одинакового давления - изобары.

Распределение давления на земном шаре очень неоднородно, оно меняется от точки к точке и изменяется во времени. Неоднородность распределения давления объясняется неравномерным распределением масс воздуха внутри каждого столба атмосферы, которое в свою очередь зависит от распределения температуры. Если в одном географическом районе давление высокое, а в другом - низкое, то воздух будет двигаться от области более высокого давления к области более низкого давления. При этом, чем больше разность давлений, тем большее ускорение приобретает воздух. Разность давлений, которая приходится на единицу расстояния по нормали к изобаре, называется горизонтальным барическим градиентом. Иначе, это и есть сила, приводящая в движение воздух. Кроме силы градиента давления в действуют силы инерции (сила Кориолиса и центробежная), а также сила трения. Все воздушные течения рассматриваются относительно Земли, которая вращается вокруг своей оси. Понять, как действует сила Кориолиса (СК), можно, если вспомнить, что линейная скорость вращения каждого неподвижного тела на Земле равна произведению угловой скорости вращения Земли си на расстояние до оси вращения г, т. е. u = wr. Рассмотрим действие силы Кориолиса на примере движения тела единичной массы вдоль меридиана. Положим, что 1 кг воздуха в Северном полушарии расположен на широте ф и начинает двигаться вдоль меридиана на север со скоростью ветра V. В силу инерции этот килограмм воздуха будет сохранять линейную скорость вращения u которую он имел на широте ф. В результате движения на север он будет находиться на все более высоких широтах, где расстояние до оси вращения Земли меньше и линейная скорость вращения Земли меньше. Таким образом, это тело будет опережать неподвижные тела, расположенные на том же меридиане, но в более высоких широтах, т. е. наблюдатель на Земле сможет отметить, что это тело под действием какой-то силы отклонится вправо. Эта сила и есть действие силы Кориолиса. Подобные рассуждения показывают, что в Южном полушарии такой килограмм воздуха отклонится влево от направления движения. Величина горизонтальной составляющей силы Кориолиса, действующей на 1 кг, равна СК = 2wVsinф Северном полушарии она направлена под прямым углом вправо от скорости ветра V. Из формулы следует, что если тело покоится, то силы Кориолиса нет. Она действует только тогда, когда воздух движется.

На нашей планете силы горизонтального барического градиента и силы Кориолиса имеют один порядок, поэтому нередко они почти уравновешивают друг друга. Тогда ускорение воздуха мало и движение близко к прямолинейному и равномерному. В этом случае воздух движется не вдоль градиента давления, а вдоль изобары или близко к ней, оставляя в Северном полушарии низкое давление слева.
Воздушные течения в атмосфере имеют вихревой характер: обычно траектории воздушных частиц искривляются, и частицы движутся либо против, либо по часовой стрелке. При таком движении на каждый килограмм воздуха действует центробежная сила V2/R, где V - скорость ветра, a R - радиус кривизны траектории. В атмосфере сила всегда меньше силы барического градиента. Сила трения возникает между поверхностью Земли и движущимся над ней воздухом. Неровности земной поверхности задерживают нижние объемы воздуха. Перенос объемов воздуха, обладающих малой горизонтальной скоростью, вверх с нижних уровней задерживает движение верхних слоев воздуха. Таким образом, трение о земную поверхность передается вверх, постепенно ослабевая. Сила трения замедляет скорость ветра. Она заметна в слое 1 - 1,5 км, который называется планетарным пограничным слоем. Ветер здесь из-за трения отклоняется от изобар в сторону низкого давления. Выше 1,5 км влияние трения значительно, поэтому более высокие слои называют свободной атмосферой.

Силы, действующие в атмосфере.

Все силы, рассматриваемые в метеорологи, беруться на единицу массы. Если давление в горизонтальной плоскости неоднаково, то возникает поток воздуха в сторону наименьшего давления. Другими словами, возникает сила, заставляющая воздух двигаться. Она называется солой барического градиента и на единицу массы равна:

где ρ – плотность воздуха. Градиент давления dp/dn направлен в сторону роста давления. Движение, вызванное разностью давления, направлено в противоположную сторону. Поэтому, чтобы значения силы барического градиента было противоположным, в уравнении ставят знак минус.

Кроме этого есть еще и другие силы, которые оказывают влияние на движение воздуха. Это силы Кариолиса К, центробежная сила Z, трения F тр и сила тяжести g.

Сила Кариолиса К или, иначе, отклоняющая сила вращения Земли, является инерционной кажущейся силой. Она возникает потому, что Земля вращается вокруг своей оси и на единицу массы равна:

K = 2ω С sinφ, (14)

где ω угловая скорость вращения Земли, равная ω = 2 π /Т, где Т – период обращения Земли вокруг своей оси, Т = 24*60*60с;

С –скорость движения воздуха;

φ – широта места.

Таким образом, сила Кариолиса зависит от скорости движения и широты места. Сила Кариолиса действует только на движущиеся тела перпендикулярно направлению движения. Она наибольшая на полюсах, а на экваторе – равна нулю. В результате, тела перемещаются вдоль земной плоскости, отклоняются в северном полушарии вправо, а в южном – влево от перво начального направления их движения.

Центробежная сила Z. Центробежная сила является также кажущейся, инерционной силой, возникающей при движении по криволинейной траектории. Она направлена по радиусу от центра и на единицу массы равна:

Z = C 2 /r, (15)

где r – радиус кривизны.

Аналитическое выражение для силы трения F тр имеет сложный вид. В навигации решаются задачи в, так называемой геострофической модели, без учета силы трения, а сила трения вводится затем коэффициентом. И, наконец, есть еще известная всем сила тяжести g. Она часто рассматривается как константа.

Сила тяжести g. Несравненно больше других сил (9,81 ~ 10 м/с 2). Она действует вдоль вертикальной оси. Однако мы не замечаем в атмосфере заметных вертикальных движений, направленных к поверхности Земли (вниз). Это связано с тем, что такая большая сила уравновешивается столь же большой силой барического градиента по вертикали. Из основного уравнения статики следует:

g = - dp/dz (16)

Как видим, в левой части уравнения стоит сила тяжести, а в правой записана сила барического градиента по вертикали. Вертикальный барический градиент – большая величина, а значит и сила барического градиента велика. Аналогично, можно констатировать, что очень большая сила барического градиента по вертикали, не вызывает движений вверх так как уравновешивается силой тяжести. Эти силы находятся на одной оси, направленные в разные стороны и обычно уравновешивают друг друга.

Таким образом, на ветер, под которым мы понимаем горизонтальное движение воздуха, сила тяжести g не влияет. Ее проекция на горизонтальную плоскость равна нулю. Силы Кариолиса К и центробежная сила Z появляются лишь после того, как уже возникло движение. То есть, единственной силой, вызывающей движение воздуха, является сила барического градиента по горизонтали G r . Разность давлений в разных местах порождает движение воздуха, стремящееся сгладить эти различия. Остальные сила разворачивают движение относительно первоначального направления и тормозят его.